ICS843204AGI-01LF [IDT]

Clock Generator, 156.25MHz, PDSO48, 6.10 X 12.50 MM, 0.925 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-48;
ICS843204AGI-01LF
型号: ICS843204AGI-01LF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Clock Generator, 156.25MHz, PDSO48, 6.10 X 12.50 MM, 0.925 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-48

光电二极管
文件: 总13页 (文件大小:208K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FEMTOCLOCKS™ CRYSTAL-TO-  
3.3V LVPECL FREQUENCY SYNTHESIZER  
ICS843204I-01  
GENERAL DESCRIPTION  
FEATURES  
The ICS843204I-01 is a 4 output LVPECL Synthe-  
• Four 3.3V LVPECL outputs  
ICS  
sizer optimized to generate Gigabit Ethernet and  
SONET reference clock frequencies and is a  
member of the HiPerClocksTM family of high  
performance clock solutions from IDT. Using a  
• Selectable crystal oscillator interface or clock inputs  
HiPerClockS™  
• Supports the following output frequencies: 155.52MHz  
and 156.25MHz  
19.44MHz and 25MHz, 18pF parallel resonant crystal,  
155.52MHz and 156.25MHz frequencies can be generated.  
The ICS843204I-01 uses IDT’s FemtoClockTM low phase noise  
VCO technology and can achieve 1ps or lower typical RMS  
phase jitter.  
• VCO range: 560MHz - 680MHz  
• RMS phase jitter @ 155.52MHz, using a 19.44MHz crystal  
(12kHz - 13MHz): 0.6ps (typical)  
• RMS phase jitter @ 156.25MHz, using a 25MHz crystal  
(1.875MHz - 20MHz): 0.7ps (typical)  
• Full 3.3V supply mode  
• -40°C to 85°C ambient operating temperature  
• Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
Pullup  
nPLL_BYPASS_A  
nQA1  
QA1  
nQA0  
QA0  
nc  
1
2
3
4
5
6
7
8
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
IN_SELA  
CLK0  
XTAL_IN0  
XTAL_OUT0  
nc  
VEE  
OEA0  
OEA1  
VCC  
VCCA  
nPLL_BYPASS_B  
nc  
SELB0  
VEE  
OEB0  
OEB1  
VCC  
SELB1  
VCCA  
nc  
nc  
nc  
nc  
nc  
Pullup  
IN_SELA  
Pulldown  
CLK0  
SELA0  
OEA0  
OEA1  
VCCO_A  
SELA1  
SELA0  
nPLL_BYPASS_A  
nc  
25MHz  
XTAL_IN0  
QA0  
÷4  
PLL  
0
1
OSC  
9
nQA0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
XTAL_OUT0  
156.25MHz  
nc  
nc  
nc  
SELA1  
625MHz  
XTAL_IN1  
XTAL_OUT1  
CLK1  
QA1  
Pullup  
Pullup  
nPLL_BYPASS_B  
IN_SELB  
0
1
nQA1  
nCLK1  
IN_SELB  
VCCO_B  
nc  
Pulldown  
CLK1  
SELB0  
Pullup/pulldown  
nCLK1  
QB0  
nQB0  
QB1  
nQB1  
OEB0  
OEB1  
QB0  
19.44MHz  
0
1
XTAL_IN1  
nQB0  
OSC  
÷4  
PLL  
ICS843204I-01  
48 Lead TSSOP  
6.1mm x 12.5mm x 0.925mm  
package body  
XTAL_OUT1  
SELB0  
155.52MHz  
622.08MHz  
QB1  
0
1
G Package  
Top View  
nQB1  
IDT/ ICS3.3V LVPECL FREQUENCY SYNTHESIZER  
1
ICS843204AGI-01 REV. A OCTOBER 18, 2007  
ICS843204I-01  
FEMTOCLOCKS™ CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
TABLE 1. PIN DESCRIPTIONS  
Number  
1, 2  
Name  
Type  
Description  
nQA1, QA1  
nQA0, QA0  
Output  
Output  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
3, 4  
5, 10, 11, 12,  
13, 20, 25, 26,  
27, 28, 29, 37,  
44  
nc  
Unused  
No connect.  
6
VCCO_A  
Power  
Input  
Output supply pin for Bank A outputs.  
Select pin. When HIGH, selects QA1/nQA1 at 155.52MHz. When LOW,  
selects QA1/nQA1 at 156.25MHz. LVCMOS/LVTTL interface levels.  
Select pin. When HIGH, selects QA0/nQA0 at 155.52MHz. When LOW,  
selects QA1/nQA1 at 156.25MHz. LVCMOS/LVTTL interface levels.  
7
SELA1  
Pulldown  
8
9
SELA0  
Input  
Input  
Input  
Input  
Input  
Pulldown  
Pullup  
nPLL_BYPASS_A  
When LOW, PLL is bypassed. When HIGH, PLL output is active.  
14,  
15  
XTAL_IN1,  
XTAL_OUT1  
Parallel resonant crystal interface. XTAL_OUT1 is the output,  
XTAL_IN1 is the input.  
16  
CLK1  
Pulldown Non-inverting differential clock input.  
Pullup/  
17  
nCLK1  
Inverting differential clock input. VDD/2 bias voltage when left floating.  
Pulldown  
Select pin. When HIGH, selects XTAL1 inputs. When LOW, selects  
CLK1, nCLK1 inputs. LVCMOS/LVTTL interface levels.  
18  
IN_SELB  
Input  
Pullup  
19  
VCCO_B  
QB0, nQB0  
QB1, nQB1  
VCCA  
Power  
Ouput  
Ouput  
Power  
Output supply pin for Bank B outputs.  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Analog supply pins.  
21, 22  
23, 24  
30, 39  
Select pin. When HIGH, selects QB1/nQB1 at 155.52MHz. When LOW,  
Pullup  
31  
32, 40  
33  
SELB1  
VCC  
Input  
Power  
Input  
selects QB1/nQB1 at 156.25MHz. LVCMOS/LVTTL interface levels.  
Core supply pins.  
Output enable pin. QB1/nQB1 outputs are enable.  
LVCMOS/LVTTL interface levels.  
OEB1  
Pullup  
Output enable pin. QB0/nQB0 outputs are enabled.  
LVCMOS/LVTTL interface levels.  
34  
35, 43  
36  
OEB0  
VEE  
Input  
Power  
Input  
Input  
Input  
Pullup  
Negative supply pins.  
Select pin. When HIGH, selects QB0/nQB0 at 155.52MHz. When LOW,  
Pullup  
SELB0  
selects QB0/nQB0 at 156.25MHz. LVCMOS/LVTTL interface levels.  
38  
nPLL_BYPASS_B  
OEA1  
Pullup  
Pullup  
When LOW, PLL is bypassed. When HIGH, PLL output is active.  
Output enable pin. QA1/nQA1 outpus are enabled.  
LVCMOS/LVTTL interface levels.  
41  
Output enable pin. QA0/nQA0 outputs are enabled.  
LVCMOS/LVTTL interface levels.  
42  
OEA0  
Input  
Pullup  
45,  
46  
XTAL_OUT0,  
XTAL_IN0  
Parallel resonant crystal interface. XTAL_OUT0 is the output,  
XTAL_IN0 is the input.  
Input  
Input  
Input  
47  
CLK0  
Pulldown LVCMOS/LVTTL clock input.  
Select pin. When HIGH, selects XTAL0 inputs. When LOW, selects  
CLK0 input. LVCMOS/LVTTL interface levels.  
48  
IN_SELA  
Pullup  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
CIN  
Input Capacitance  
4
pF  
kΩ  
kΩ  
RPULLDOWN Input Pulldown Resistor  
RPULLUP Input Pullup Resistor  
51  
51  
IDT/ ICS3.3V LVPECL FREQUENCY SYNTHESIZER  
2
ICS843204AGI-01 REV. A OCTOBER 18, 2007  
ICS843204I-01  
FEMTOCLOCKS™ CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, VCC  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device. These ratings are stress specifications only. Functional op-  
eration of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not  
implied. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect product reliability.  
Inputs, V  
-0.5V to VCC + 0.5V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θ  
54.8°C/W (0 mps)  
-65°C to 150°C  
JA  
Storage Temperature, T  
STG  
TABLE 3A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCO_A = VCCO_B = 3.3V 10ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
2.97  
Typical  
3.3  
Maximum Units  
VCC  
Core Supply Voltage  
3.63  
VCC  
V
V
VCCA  
Analog Supply Voltage  
VCC – 0.22  
3.3  
VCCO_A,  
VCCO_B  
Output Supply Voltage  
2.97  
3.3  
3.63  
V
IEE  
Power Supply Current  
Analog Supply Current  
165  
22  
mA  
mA  
ICCA  
TABLE 3B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = VCCO_A = VCCO_B = 3.3V 10ꢀ, VEE = 0V, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
CLK0, SELA0, SELA1  
2
VCC + 0.3  
0.8  
V
V
-0.3  
VCC = VIN = 3.63V  
VCC = VIN = 3.63V  
150  
µA  
nPLL_BYPASS_A,  
nPLL_BYPASS_B,  
IN_SELA, IN_SELB,  
SELB1, SELB0, OEB0,  
OEB1, OEA0, OEA1  
Input  
High Current  
IIH  
5
µA  
µA  
µA  
CLK0, SELA0, SELA1  
VCC = 3.63V, VIN = 0V  
-5  
nPLL_BYPASS_A,  
nPLL_BYPASS_B,  
IN_SELA, IN_SELB,  
SELB1, SELB0, OEB0,  
OEB1, OEA0, OEA1  
Input  
Low Current  
IIL  
V
CC = 3.63V, VIN = 0V  
-150  
IDT/ ICS3.3V LVPECL FREQUENCY SYNTHESIZER  
3
ICS843204AGI-01 REV. A OCTOBER 18, 2007  
ICS843204I-01  
FEMTOCLOCKS™ CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
TABLE 3C. DIFFERENTIAL DC CHARACTERISTICS, VCC = VCCO_A = VCCO_B = 3.3V±±10% VEE = 1V% TA = -41°C TO 85°C  
Symbol Parameter  
IIH Input High Current  
Test Conditions  
VIN = VCC = 3.63V  
IN = 1V% VCC = 3.63V  
Minimum Typical Maximum Units  
CLK±%  
nCLK±  
±51  
µA  
nCLK±  
CLK±  
V
-±51  
-5  
µA  
µA  
V
IIL  
Input Low Current  
VIN = 1V% VCC = 3.63V  
VPP  
Peak-to-Peak Input Voltage; NOTE ±  
1.±5  
±.3  
Common Mode Input Voltage;  
NOTE ±% 2  
VCMR  
V
EE + 1.5  
VCC - 1.85  
V
NOTE ±: VIL should not be less than -1.3V  
NOTE 2: Common mode voltage is defined as VIH.  
TABLE 3D. LVPECL DC CHARACTERISTICS, VCC = VCCO_A = VCCO_B = 3.3V±±10% VEE = 1V% TA = -41°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VOH  
Output High Voltage; NOTE ±  
VCCO - ±.4  
VCCO - 2.1  
1.6  
VCCO - 1.9  
VCCO - ±.7  
±.1  
V
V
V
VOL  
Output Low Voltage; NOTE ±  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE ±: Outputs terminated with 51Ω to VCCO - 2V.  
TABLE 4. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum  
Fundamental  
25  
±9.44  
Typical Maximum Units  
Mode of Oscillation  
XTAL1  
MHz  
MHz  
Ω
Frequency  
XTAL±  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
51  
7
pF  
Drive Level  
±
mW  
NOTE: Characterized using an ±8pF parallel resonant crystal.  
TABLE 5. AC CHARACTERISTICS, VCC = VCCO_A = VCCO_B = 3.3V±±10% VEE = 1V% TA = -41°C TO 85°C  
Symbol Parameter  
Test Conditions  
SELB1 = ±; OEB1 = ±  
SELA1 = 1; OEA1 = ±  
Minimum Typical Maximum Units  
±55.52  
±56.25  
MHz  
MHz  
ps  
fOUT  
Output Frequency  
tsk(b)  
tjit(Ø)  
Bank Skew; NOTE ±% 2  
61  
±55.52MHz% (±2kHz - ±.3MHz)  
±56.25MHz% (±.875MHz - 21MHz)  
210 to 810  
1.6  
1.7  
ps  
RMS Phase Jitter (Random);  
NOTE 3  
ps  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
251  
47  
611  
53  
ps  
0
NOTE ±: Defined as skew within a bank of outputs at the same supply voltags and with equal load conditions.  
NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 3: See Phase Noise plot.  
IDT/ ICS3.3V LVPECL FREQUENCY SYNTHESIZER  
4
ICS843204AGI-01 REV. A OCTOBER 18, 2007  
ICS843204I-01  
FEMTOCLOCKS™ CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
PARAMETER MEASUREMENT INFORMATION  
2V  
2V  
VCC  
SCOPE  
VCC  
VCCO_A  
VCCO_B  
,
Qx  
,
VCCA  
nCLK1  
CLK1  
LVPECL  
VPP  
VCMR  
Cross Points  
nQx  
VEE  
-1.3V 0.33V  
VEE  
3.3V CORE/3.3V OUTPUT LOAD AC TEST CIRCUIT  
DIFFERENTIAL INPUT LEVEL  
Phase Noise Plot  
nQXx  
QXx  
Phase Noise Mask  
nQXy  
QXy  
Offset Frequency  
f1  
f2  
tsk(b)  
RMS Jitter = Area Under the Masked Phase Noise Plot  
Where X = A or B  
RMS PHASE JITTER  
BANK SKEW  
nQA0, nQA1  
nQB0, nQB1  
80ꢀ  
tF  
80ꢀ  
QA0, QA1  
QB0, QB1  
VSWING  
20ꢀ  
tPW  
Clock  
20ꢀ  
tPERIOD  
Outputs  
tR  
tPW  
odc =  
x 100ꢀ  
tPERIOD  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
OUTPUT RISE/FALL TIME  
IDT/ ICS3.3V LVPECL FREQUENCY SYNTHESIZER  
5
ICS843204AGI-01 REV. A OCTOBER 18, 2007  
ICS843204I-01  
FEMTOCLOCKS™ CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS843204I-01 provides  
separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL. VCC, VCCA, and VCCO_x  
should be individually connected to the power supply plane  
through vias, and bypass capacitors should be used for each  
pin. To achieve optimum jitter performance, power supply iso-  
lation is required. Figure 1 illustrates how a 10Ω resistor along  
with a 10µF and a .01μF bypass capacitor should be connected  
3.3V  
VCC  
.01μF  
.01μF  
10Ω  
VCCA  
10μF  
to each VCCA  
.
FIGURE 1. POWER SUPPLY FILTERING  
CRYSTAL INPUT INTERFACE  
The ICS843204I-01 has been characterized with 18pF parallel  
were determined using an 18pF parallel resonant crystal and  
were chosen to minimize the ppm error.  
resonant crystals. The capacitor values shown in Figure 2 below  
XTAL_IN  
C1  
27p  
X1  
18pF Parallel Crystal  
XTAL_OUT  
C2  
27p  
FIGURE 2. CRYSTAL INPUt INTERFACE  
IDT/ ICS3.3V LVPECL FREQUENCY SYNTHESIZER  
6
ICS843204AGI-01 REV. A OCTOBER 18, 2007  
ICS843204I-01  
FEMTOCLOCKS™ CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
LVCMOS TO XTAL INTERFACE  
The XTAL_IN input can accept a single-ended LVCMOS signal  
through an AC coupling capacitor. A general interface diagram is  
shown in Figure 3. The XTAL_OUT pin can be left floating. The  
input edge rate can be as slow as 10ns. For LVCMOS inputs, it is  
recommended that the amplitude be reduced from full swing to  
half swing in order to prevent signal interference with the power  
rail and to reduce noise.This configuration requires that the output  
impedance of the driver (Ro) plus the series resistance (Rs) equals  
the transmission line impedance. In addition, matched termination  
at the crystal input will attenuate the signal in half. This can be  
done in one of two ways. First, R1 and R2 in parallel should equal  
the transmission line impedance. For most 50Ω applications, R1  
and R2 can be 100Ω.This can also be accomplished by removing  
R1 and making R2 50Ω.  
VDD  
VDD  
R1  
.1uf  
Ro  
Rs  
Zo = 50  
XTAL_IN  
R2  
Zo = Ro + Rs  
XTAL_OUT  
FIGURE 3. GENERAL DIAGRAM FOR LVCMOS DRIVER TO XTAL INPUT INTERFACE  
WIRING THE DIFFERENTIAL INPUT TO ACCEPT SINGLE ENDED LEVELS  
Figure 4 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = V /2 is  
generated by the bias resistors R1, R2 and C1. This bias CcCircuit  
should be located as close as possible to the input pin. The ratio  
of R1 and R2 might need to be adjusted to position the V_REF in  
the center of the input voltage swing. For example, if the input  
clock swing is only 2.5V and V = 3.3V, V_REF should be 1.25V  
CC  
and R2/R1 = 0.609.  
VCC  
R1  
1K  
Single Ended Clock Input  
V_REF  
CLK  
nCLK  
C1  
0.1u  
R2  
1K  
FIGURE 4. SINGLE ENDED SIGNAL DRIVING DIFFERENTIAL INPUT  
IDT/ ICS3.3V LVPECL FREQUENCY SYNTHESIZER  
7
ICS843204AGI-01 REV. A OCTOBER 18, 2007  
ICS843204I-01  
FEMTOCLOCKS™ CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS:  
CRYSTAL INPUTS  
OUTPUTS:  
LVPECL OUTPUTS  
For applications not requiring the use of the crystal oscillator input,  
both XTAL_IN and XTAL_OUT can be left floating. Though not  
required, but for additional protection, a 1kΩ resistor can be tied  
from XTAL_IN to ground.  
All unused LVPECL outputs can be left floating. We recommend  
that there is no trace attached. Both sides of the differential output  
pair should either be left floating or terminated.  
CLK INPUT  
For applications not requiring the use of a clock input, it can be  
left floating. Though not required, but for additional protection, a  
1kΩ resistor can be tied from the CLK input to ground.  
CLK/nCLK INPUTS  
For applications not requiring the use of the differential input,  
both CLK and nCLK can be left floating. Though not required, but  
for additional protection, a 1kΩ resistor can be tied from CLK to  
ground.  
LVCMOS CONTROL PINS  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional  
protection. A 1kΩ resistor can be used.  
TERMINATION FOR 3.3V LVPECL OUTPUT  
The clock layout topology shown below is a typical termina-  
tion for LVPECL outputs. The two different layouts mentioned  
are recommended only as guidelines.  
designed to drive 50Ω transmission lines. Matched imped-  
ance techniques should be used to maximize operating fre-  
quency and minimize signal distortion. Figures 5A and 5B  
show two different layouts which are recommended only as  
guidelines. Other suitable clock layouts may exist and it  
would be recommended that the board designers simulate  
to guarantee compatibility across all printed circuit and clock  
component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, ter-  
minating resistors (DC current path to ground) or current  
sources must be used for functionality. These outputs are  
3.3V  
Z
o = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 5A. LVPECL OUTPUT TERMINATION  
FIGURE 5B. LVPECL OUTPUT TERMINATION  
IDT/ ICS3.3V LVPECL FREQUENCY SYNTHESIZER  
8
ICS843204AGI-01 REV. A OCTOBER 18, 2007  
ICS843204I-01  
FEMTOCLOCKS™ CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS843204I-01.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS843204I-01 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for V = 3.3V + 10ꢀ = 3.63V, which gives worst case results.  
CC  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core) = V  
* I  
= 3.63V * 165mA = 598.95mW  
EE_MAX  
MAX  
CC_MAX  
Power (outputs) = 30mW/Loaded Output pair  
MAX  
If all outputs are loaded, the total power is 4 * 30mW = 120mW  
Total Power  
(3.63V, with all outputs switching) = 598.95mW + 120mW = 718.95mW  
_MAX  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
TM  
device. The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assumig no air  
flow and a multi-layer board, the appropriate value is 54.8°C/W per Table 6 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.719W * 54.8°C/W = 124.4°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 6. THERMAL RESISTANCE θ FOR 48-PIN TSSOP, FORCED CONVECTION  
JA  
θ by Velocity (Meters per Second)  
JA  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
54.8°C/W  
51.0°C/W  
49.1°C/W  
IDT/ ICS3.3V LVPECL FREQUENCY SYNTHESIZER  
9
ICS843204AGI-01 REV. A OCTOBER 18, 2007  
ICS843204I-01  
FEMTOCLOCKS™ CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 6.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
FIGURE 6. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage of V - 2V.  
CCO  
For logic high, V = V  
= V  
– 0.9V  
OUT  
OH_MAX  
CCO_MAX  
)
= 0.9V  
OH_MAX  
(V  
- V  
CCO_MAX  
For logic low, V = V  
= V  
– 1.7V  
OUT  
OL_MAX  
CCO_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
L
L
[(2V - 0.9V)/50Ω] * 0.9V = 19.8mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
/R ] * (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50Ω] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
IDT/ ICS3.3V LVPECL FREQUENCY SYNTHESIZER  
10  
ICS843204AGI-01 REV. A OCTOBER 18, 2007  
ICS843204I-01  
FEMTOCLOCKS™ CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
RELIABILITY INFORMATION  
TABLE 7. θ VS. AIR FLOW TABLE FOR 48 LEAD TSSOP  
JA  
θ by Velocity (Meters per Second)  
JA  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
54.8°C/W  
51.0°C/W  
49.1°C/W  
TRANSISTOR COUNT  
The transistor count for ICS843204I-01 is: 3974  
PACKAGE OUTLINE - G SUFFIX FOR 48 LEAD TSSOP  
TABLE 8. PACKAGE DIMENSIONS  
SYMBOL  
Millimeters  
Minimum  
Maximum  
N
A
48  
--  
1.20  
0.15  
1.05  
0.27  
0.20  
12.60  
A1  
A2  
b
0.05  
0.80  
0.17  
0.09  
12.40  
c
D
E
8.10 BASIC  
0.50 BASIC  
E1  
e
6.00  
6.20  
L
0.45  
0°  
0.75  
8°  
α
aaa  
--  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
IDT/ ICS3.3V LVPECL FREQUENCY SYNTHESIZER  
11  
ICS843204AGI-01 REV. A OCTOBER 18, 2007  
ICS843204I-01  
FEMTOCLOCKS™ CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
TABLE 9. ORDERING INFORMATION  
Part/Order Number  
ICS843204AGI-01  
Marking  
TBD  
Package  
Shipping Packaging  
tube  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
48 Lead TSSOP  
ICS843204AGI-01T  
ICS843204AGI-01LF  
ICS843204AGI-01LFT  
TBD  
48 Lead TSSOP  
1000 tape & reel  
tube  
ICS843204AI01L  
ICS843204AI01L  
48 Lead "Lead-Free" TSSOP  
48 Lead "Lead-Free" TSSOP  
1000 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology, Incorporated (IDT) assumes no responsibility for either its use or for  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and  
industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT  
reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.  
IDT/ ICS3.3V LVPECL FREQUENCY SYNTHESIZER  
12  
ICS843204AGI-01 REV. A OCTOBER 18, 2007  
ICS843204I-01  
FEMTOCLOCKS™ CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER  
Innovate with IDT and accelerate your future networks. Contact:  
www.IDT.com  
For Sales  
800-345-7015  
408-284-8200  
Fax: 408-284-2775  
For Tech Support  
netcom@idt.com  
480-763-2056  
Corporate Headquarters  
Integrated Device Technology, Inc.  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Asia Pacific and Japan  
Integrated Device Technology  
Singapore (1997) Pte. Ltd.  
Reg. No. 199707558G  
435 Orchard Road  
Europe  
IDT Europe, Limited  
321 Kingston Road  
Leatherhead, Surrey  
KT22 7TU  
United States  
800 345 7015  
#20-03 Wisma Atria  
England  
+408 284 8200 (outside U.S.)  
Singapore 238877  
+44 (0) 1372 363 339  
Fax: +44 (0) 1372 378851  
+65 6 887 5505  
© 2007 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT, the IDT logo, ICS and HiPerClockS are trademarks  
of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be  
trademarks or registered trademarks used to identify products or services of their respective owners.  
Printed in USA  

相关型号:

ICS843204AGILF

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843204AGILFT

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843204AGIT

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843204I

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843207-350

FEMTOCLOCKS⑩ CRYSTAL-TO-LVPECL 350MHZ FREQUENCY MARGINING SYNTHESIZER
IDT

ICS843207AY-350LF

Clock Generator, 375MHz, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, LQFP-48
IDT

ICS843207AY-350LFT

Clock Generator, 375MHz, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, LQFP-48
IDT

ICS843207AY-350T

Clock Generator, 375MHz, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, LQFP-48
IDT

ICS843207CY-350LF

Clock Generator, 375MHz, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026, LQFP-48
IDT

ICS843207CY-350LFT

Clock Generator, 375MHz, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026, LQFP-48
IDT

ICS84320A01N

780MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL LVPECL FREQUENCY SYNTHESIZER
IDT

ICS84320AI01

780MHZ, CRYSTAL-TO-3.3V DIFFERENTIAL
ICSI