ICS843001BGI-23 [IDT]

Clock Generator, 650MHz, PDSO24, 4.40 X 7.80 MM, 0.92 MM HEIGHT, MO-153, TSSOP-24;
ICS843001BGI-23
型号: ICS843001BGI-23
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Clock Generator, 650MHz, PDSO24, 4.40 X 7.80 MM, 0.92 MM HEIGHT, MO-153, TSSOP-24

时钟 光电二极管 外围集成电路 晶体
文件: 总24页 (文件大小:1091K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
FemtoClock Crystal/LVCMOS-to-  
ICS843001I-23  
LVPECL/ LVCMOS Frequency Synthesizer  
DATA SHEET  
General Description  
Features  
The ICS843001I-23 is a highly versatile, low phase noise  
LVPECL/LVCMOS Synthesizer which can generate low jitter  
reference clocks for a variety of communication applications. The  
dual crystal interface allows the synthesizer to support up to three  
communication standards in a given application (i.e. SONET with a  
19.44MHz crystal, 1Gb/10Gb Ethernet and Fibre Channel using a  
25MHz crystal). The RMS phase jitter performance is typically less  
than 1ps, thus making the device acceptable for use in demanding  
applications such as OC48 SONET, GbE/10Gb Ethernet and SAN  
applications. The ICS843001I-23 is packaged in a small 24-pin  
TSSOP, E-Pad package.  
One 3.3Vdifferential LVPECL output pair and  
one LVCMOS/LVTTL single-ended reference clock output  
Selectable crystal oscillator interface  
or LVCMOS/LVTTL single-ended input  
Crystal and CLK range: 19.44MHz – 27MHz  
Able to generate GbE/10GbE/12GbE, Fibre Channel  
(1Gb/4Gb/10Gb), PCI-E and SATA from a 25MHz crystal  
VCO range: 1.12GHz – 1.275GHz  
Supports the following applications:  
SONET, Ethernet, Fibre Channel, Serial ATA, and HDTV  
RMS phase jitter @ 622.08MHz (12kHz - 20MHz):  
0.9ps (typical), 3.3V  
Supply modes  
VCC/VCCO  
3.3V/3.3V  
3.3V/2.5V  
2.5V/2.5V  
-40°C to 85°C ambient operating temperature  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
package  
Pin Assignment  
Block Diagram  
3
REF_OUT  
1
24  
VCCO_LVCMOS  
N2:N0  
2
23  
VEE  
N0  
OE_REF  
M2  
3
4
22  
21  
N1  
N2  
Pulldown  
SEL0  
Pulldown  
SEL1  
5
6
7
20  
19  
18  
17  
M1  
M0  
MR  
VCCO_LVPECL  
Q
N
nQ  
VEE  
VCCA  
VCC  
SEL1  
8
9
10  
11  
12  
XTAL_IN0  
000 ÷2  
SEL0  
CLK  
XTAL_IN0  
XTAL_OUT0  
16  
15  
14  
13  
001 ÷4  
OSC  
00  
01  
11  
010 ÷5  
Q
XTAL_OUT1  
XTAL_IN1  
011 ÷6  
XTAL_OUT0  
XTAL_IN1  
10  
01  
00  
nQ  
100 ÷8 (default)  
101 ÷10  
110 ÷12  
111 ÷16  
Phase  
Detector  
VCO  
ICS843001I-23  
OSC  
24-Lead TSSOP, E-Pad  
4.4mm x 7.8mm x 0.925mm  
package body  
XTAL_OUT1  
CLK  
M
000 ÷44  
10  
11  
Pulldown  
001 ÷45  
G Package  
Top View  
010 ÷48  
011 ÷50  
100 ÷51  
111 ÷64 (default)  
Pulldown  
Pullup  
MR  
3
M2:M0  
REF_OUT  
Pulldown  
OE_REF  
ICS843001CGI-23 REVISION A OCTOBER 4, 2011  
1
©2011 Integrated Device Technology, Inc.  
ICS843001I-23 Data Sheet  
FEMTOCLOCK® CRYSTAL/LVCMOS-TO-LVPECL/LVCMOS FREQUENCY SYNTHESIZER  
Table 1. Pin Descriptions  
Number  
Name  
VCCO_LVCMOS  
N0, N1  
N2  
Type  
Description  
1
2, 3  
4
Power  
Input  
Output supply pin for REF_CLK output.  
Pulldown  
Output divider select pins. LVCMOS/LVTTL interface levels. See Table 3C.  
Input  
Pullup  
5
VCCO_LVPECL  
Q, nQ  
Power  
Output  
Power  
Power  
Power  
Output supply pin for LVPECL output.  
Differential output pair. LVPECL interface levels.  
Negative supply pins.  
6, 7  
8, 23  
9
VEE  
VCCA  
Analog supply pin.  
10  
VCC  
Core supply pin.  
11,  
12  
XTAL_OUT1,  
XTAL_IN1  
Parallel resonant crystal interface.  
XTAL_OUT1 is the output, XTAL_IN1 is the input.  
Input  
Input  
13,  
14  
XTAL_OUT0,  
XTAL_IN0  
Parallel resonant crystal interface.  
XTAL_OUT0 is the output, XTAL_IN0 is the input.  
15  
CLK  
Input  
Input  
Pulldown  
Pulldown  
Single-ended clock input. LVCMOS/LVTTL interface levels.  
16, 17  
SEL0, SEL1  
Input MUX select pins. LVCMOS/LVTTL interface levels. See Table 3D.  
Active HIGH Master Reset. When logic HIGH, the internal dividers are reset  
causing the true output Q to go low and the inverted output nQ to go high.  
When logic LOW, the internal dividers and the outputs are enabled.  
LVCMOS/LVTTL interface levels.  
18  
MR  
Input  
Pulldown  
19, 20, 21  
M0, M1, M2  
OE_REF  
Input  
Input  
Pullup  
Feedback divider select pins. LVCMOS/LVTTL interface levels. See Table 3B.  
Reference clock output enable. Default LOW. See Table 3E.  
LVCMOS/LVTTL interface levels.  
22  
24  
Pulldown  
REF_OUT  
Output  
Reference clock output. LVCMOS/LVTTL interface levels.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
4
RPULLUP  
51  
51  
21  
25  
k  
kΩ  
RPULLDOWN Input Pulldown Resistor  
VCCO = 3.3V  
VCCO = 2.5V  
ROUT Output Impedance  
REF_OUT  
ICS843001CGI-23 REVISION A OCTOBER 4, 2011  
2
©2011 Integrated Device Technology, Inc.  
ICS843001I-23 Data Sheet  
FEMTOCLOCK® CRYSTAL/LVCMOS-TO-LVPECL/LVCMOS FREQUENCY SYNTHESIZER  
Function Tables  
Table 3A. Common Configuration Table  
VCO  
Frequency  
(MHz)  
Input Frequency  
(MHz)  
M Feedback Divider  
Value  
N Output Divider  
Value  
16  
16  
8
Output Frequency (MHz)  
Application  
HDTV  
27  
24.75  
19.44  
19.44  
19.44  
25  
44  
48  
64  
64  
64  
50  
50  
50  
50  
50  
45  
48  
48  
48  
51  
51  
51  
1188  
1188  
74.25  
74.25  
155.52  
622.08  
311.04  
125  
HDTV  
1244.16  
1244.16  
1244.16  
1250  
SONET  
2
SONET  
4
SONET  
10  
8
GigE  
25  
1250  
156.25  
250  
10 GigE  
25  
1250  
5
GigE  
25  
1250  
4
312.5  
625  
XGMII  
25  
1250  
2
10 GigE  
25  
1125  
6
187.5  
100  
12 GigE  
25  
1200  
12  
8
PCI Express  
SATA  
25  
1200  
150  
25  
1200  
16  
12  
8
75  
SATA  
25  
1275  
106.25  
159.375  
212.5  
Fibre Channel  
10 Gig Fibre Channel  
4 Gig Fibre Channel  
25  
1275  
25  
1275  
6
Table 3B. Programmable M Feedback Divider Function Table  
Inputs  
Input Frequency (MHz)  
M Feedback Divider  
Value  
M2  
0
M1  
0
M0  
0
Minimum  
25.5  
Maximum  
27  
44  
0
0
1
45  
24.9  
27  
0
1
0
48  
50  
23.3  
26.56  
25.5  
25  
0
1
1
22.4  
1
0
0
51  
22.0  
1
0
1
64 (default)  
19.44  
19.92  
ICS843001CGI-23 REVISION A OCTOBER 4, 2011  
3
©2011 Integrated Device Technology, Inc.  
ICS843001I-23 Data Sheet  
FEMTOCLOCK® CRYSTAL/LVCMOS-TO-LVPECL/LVCMOS FREQUENCY SYNTHESIZER  
Table 3C. Programmable N Output Divider Function Table  
Inputs  
N2  
0
N1  
0
N0  
0
N Divider Value  
2
0
0
1
4
0
1
0
5
0
1
1
6
8 (default)  
10  
1
0
0
1
0
1
1
1
0
12  
1
1
1
16  
Table 3D. Select Mode Function Table  
Inputs  
SEL1  
SEL0  
Reference Input  
XTAL0  
PLL Mode  
Active (default)  
Active  
0
0
1
1
0
1
0
1
XTAL1  
CLK  
Active  
CLK  
Bypass  
Table 3E. OE_REF Output Function Table  
Input  
Output  
REF_OUT  
OE_REF  
0
1
High-Impedance (default)  
Active  
ICS843001CGI-23 REVISION A OCTOBER 4, 2011  
4
©2011 Integrated Device Technology, Inc.  
ICS843001I-23 Data Sheet  
FEMTOCLOCK® CRYSTAL/LVCMOS-TO-LVPECL/LVCMOS FREQUENCY SYNTHESIZER  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VCC  
4.6V  
Inputs, VI  
XTAL_IN  
Other Input  
0V to VCC  
-0.5V to VCC + 0.5V  
Outputs, IO (LVPECL)  
Continuous Current  
Surge Current  
50mA  
100mA  
Outputs, VO (LVCMOS)  
-0.5V to VCCO_LVCMOS + 0.5V  
32.1°C/W (0 mps)  
Package Thermal Impedance, θJA  
Storage Temperature, TSTG  
-65°C to 150°C  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, V = V  
= V  
= 3.3V 5%, V = 0V,  
CCO_LVPECL EE  
CC  
CCO_LVCMOS  
T = -40°C to 85°C  
A
Symbol  
VCC  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
3.465  
Units  
Core Supply Voltage  
3.135  
3.3  
3.3  
V
V
VCCA  
Analog Supply Voltage  
VCC – 0.11  
VCC  
VCCO_LVPECL,  
VCCO_LVCMOS  
Output Supply Voltage  
3.135  
3.3  
3.465  
V
IEE  
Power Supply Current  
Analog Supply Current  
140  
11  
mA  
mA  
ICCA  
Outputs Unterminated  
Table 4B. Power Supply DC Characteristics, V = 3.3V 5%, V  
= V  
= 2.5V 5%, V = 0V,  
CCO_LVPECL EE  
CC  
CCO_LVCMOS  
T = -40°C to 85°C  
A
Symbol  
VCC  
Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
Maximum  
3.465  
Units  
Core Supply Voltage  
3.3  
3.3  
V
V
VCCA  
Analog Supply Voltage  
VCC – 0.11  
VCC  
VCCO_LVPECL,  
VCCO_LVCMOS  
Output Supply Voltage  
2.375  
2.5  
2.625  
V
IEE  
Power Supply Current  
Analog Supply Current  
139  
11  
mA  
mA  
ICCA  
Outputs Unterminated  
ICS843001CGI-23 REVISION A OCTOBER 4, 2011  
5
©2011 Integrated Device Technology, Inc.  
ICS843001I-23 Data Sheet  
FEMTOCLOCK® CRYSTAL/LVCMOS-TO-LVPECL/LVCMOS FREQUENCY SYNTHESIZER  
Table 4C. Power Supply DC Characteristics, V = V  
= V  
= 2.5V 5%, V = 0V,  
CCO_LVPECL EE  
CC  
CCO_LVCMOS  
T = -40°C to 85°C  
A
Symbol  
VCC  
Parameter  
Test Conditions  
Minimum  
2.375  
Typical  
2.5  
Maximum  
Units  
Core Supply Voltage  
2.625  
VCC  
V
V
VCCA  
Analog Supply Voltage  
VCC – 0.10  
2.375  
2.5  
VCCO_PECL,  
VCCO_CMOS  
Output Supply Voltage  
2.5  
2.625  
V
IEE  
Power Supply Current  
Analog Supply Current  
133  
10  
mA  
mA  
ICCA  
Outputs Unterminated  
Table 4D. LVCMOS/LVTTL DC Characteristics, TA = -40°C to 85°C  
Symbol Parameter Test Conditions  
Minimum  
Typical  
Maximum  
VCC + 0.3  
VCC + 0.3  
0.8  
Units  
VCC = 3.3V  
VCC = 2.5V  
2
V
V
V
V
VIH  
VIL  
Input High Voltage  
1.7  
-0.3  
-0.3  
V
CC = 3.3V  
CC = 2.5V  
Input Low Voltage  
Input High Current  
V
0.7  
CLK, OE_REF, MR,  
N0, N1 SEL0, SEL1  
V
CC = VIN = 3.465V or  
2.625V  
150  
5
µA  
µA  
µA  
µA  
V
IIH  
V
CC = VIN = 3.465V or  
2.625V  
N2, M[2:0]  
CLK, OE_REF, MR,  
N0, N1 SEL0, SEL1  
V
CC = 3.465V or 2.625V,  
-5  
-150  
2.6  
VIN = 0V  
IIL  
Input Low Current  
VCC = 3.465V or 2.625V,  
VIN = 0V  
N2, M[2:0]  
VCCO_LVCMOS = 3.465V,  
IOH = -12mA  
VOH  
Output High Voltage REF_OUT  
Output Low Voltage REF_OUT  
VCCO_LVCMOS = 2.625V,  
IOH = -12mA  
1.8  
V
VCCO_LVCMOS = 3.465V or  
2.625V, IOL = 12mA  
VOL  
0.5  
V
.
Table 4E. LVPECL DC Characteristics, VCC = VCCO_LVPECL = 3.3V 5%, V = 0V, TA = -40°C to 85°C  
EE  
Symbol Parameter  
Test Conditions  
Minimum  
VCCO_LVPECL – 1.4  
VCCO_LVPECL – 2.0  
0.6  
Typical  
Maximum  
Units  
VOH  
VOL  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
VCCO_LVPECL – 0.9  
VCCO_LVPECL – 1.7  
1.0  
V
V
V
VSWING Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50to VCCO_LVPECL – 2V.  
ICS843001CGI-23 REVISION A OCTOBER 4, 2011  
6
©2011 Integrated Device Technology, Inc.  
ICS843001I-23 Data Sheet  
FEMTOCLOCK® CRYSTAL/LVCMOS-TO-LVPECL/LVCMOS FREQUENCY SYNTHESIZER  
Table 4F. LVPECL DC Characteristics, VCC = 3.3V 5% or 2.5V 5%, VCCO_LVPECL = 2.5V 5%, V = 0V,  
EE  
TA = -40°C to 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
VCCO_LVPECL – 1.4  
VCCO_LVPECL – 2.0  
0.4  
Typical  
Maximum  
VCCO_LVPECL – 0.9  
VCCO_LVPECL – 1.5  
1.0  
Units  
VOH  
VOL  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
V
V
V
VSWING Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50to VCCO_LVPECL – 2V.  
Table 5. Crystal Characteristics  
Parameter  
Test Conditions  
Minimum  
Typical  
Fundamental  
Maximum  
Units  
Mode of Oscillation  
Frequency  
19.44  
27  
50  
7
MHz  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
pF  
NOTE: Characterized using an 18pF parallel resonant crystal.  
AC Electrical Characteristics  
Table 6A. AC Characteristics, VCC = VCCO_LVCMOS = VCCO_LVPECL = 3.3V 5%, V = 0V, TA = -40°C to 85°C  
EE  
Symbol  
Parameter  
Test Conditions  
Minimum  
70  
Typical  
Maximum  
637.5  
27  
Units  
MHz  
MHz  
Q, nQ  
fOUT  
Output Frequency  
REF_OUT  
19.44  
Propagation Delay; CLK to  
tPD  
2.2  
2.7  
ns  
ps  
NOTE 1  
REF_OUT  
RMS Phase Jitter, (Random);  
NOTE 2  
622.08MHz,  
(12kHz – 20MHz)  
tjit(Ø)  
0.97  
fVCO  
PLL VCO Lock Range  
1.12  
200  
1.275  
700  
GHz  
ps  
Q, nQ  
20% to 80%  
20% to 80%  
Output  
Rise/Fall Time  
tR / tF  
REF_OUT,  
NOTE 3  
250  
46  
650  
54  
ps  
%
Q, nQ  
odc  
Output Duty Cycle  
PLL Lock Time  
REF_OUT;  
NOTE 3  
Using Clock Input  
48  
52  
%
tLOCK  
60  
ms  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
NOTE 1: Measured from the VCC/2 of the input to VCCO_LVCMOS/2 of the output.  
NOTE 2: Phase jitter measured using a 19.44MHz quartz crystal.  
NOTE 3: REF_OUT output duty cycle characterized with CLK input duty cycle between 48% and 52%.  
ICS843001CGI-23 REVISION A OCTOBER 4, 2011  
7
©2011 Integrated Device Technology, Inc.  
ICS843001I-23 Data Sheet  
FEMTOCLOCK® CRYSTAL/LVCMOS-TO-LVPECL/LVCMOS FREQUENCY SYNTHESIZER  
Table 6B. AC Characteristics, VCC = 3.3V 5%, VCCO_LVCMOS = VCCO_LVPECL = 2.5V 5%, V = 0V, TA = -40°C to 85°C  
EE  
Symbol  
Parameter  
Test Conditions  
Minimum  
70  
Typical  
Maximum  
637.5  
27  
Units  
MHz  
MHz  
Q, nQ  
fOUT  
Output Frequency  
REF_OUT  
19.44  
Propagation Delay; CLK to  
tPD  
2.3  
2.9  
ns  
ps  
NOTE 1  
REF_OUT  
RMS Phase Jitter, (Random);  
NOTE 2  
622.08MHz,  
(12kHz – 20MHz)  
tjit(Ø)  
1
fVCO  
PLL VCO Lock Range  
1.12  
200  
350  
46  
1.275  
700  
750  
54  
GHz  
ps  
Q, nQ  
20% to 80%  
20% to 80%  
Output  
Rise/Fall Time  
tR / tF  
REF_OUT  
Q, nQ  
ps  
%
odc  
Output Duty Cycle  
PLL Lock Time  
REF_OUT;  
NOTE 3  
Using Clock Input  
48  
52  
60  
%
tLOCK  
ms  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
NOTE 1: Measured from the VCC/2 of the input to VCCO_LVCMOS/2 of the output.  
NOTE 2: Phase jitter measured using a 19.44MHz quartz crystal.  
NOTE 3: REF_OUT output duty cycle characterized with CLK input duty cycle between 48% and 52%.  
Table 6C. AC Characteristics, VCC = VCCO_LVCMOS = VCCO_LVPECL = 2.5V 5%, V = 0V, TA = -40°C to 85°C  
EE  
Symbol  
Parameter  
Test Conditions  
Minimum  
70  
Typical  
Maximum  
637.5  
27  
Units  
MHz  
MHz  
Q, nQ  
fOUT  
Output Frequency  
REF_OUT  
19.44  
Propagation Delay; CLK to  
tPD  
2.3  
2.9  
ns  
ps  
NOTE 1  
REF_OUT  
RMS Phase Jitter, (Random);  
NOTE 2  
622.08MHz,  
(12kHz – 20MHz)  
tjit(Ø)  
1.1  
fVCO  
PLL VCO Lock Range  
1.12  
200  
350  
46  
1.275  
700  
750  
54  
GHz  
ps  
Q, nQ  
20% to 80%  
20% to 80%  
Output  
Rise/Fall Time  
tR / tF  
REF_OUT  
Q, nQ  
ps  
%
odc  
Output Duty Cycle  
PLL Lock Time  
REF_OUT;  
NOTE 3  
Using Clock Input  
48  
52  
60  
%
tLOCK  
ms  
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the device is  
mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after thermal equilibrium  
has been reached under these conditions.  
NOTE 1: Measured from the VCC/2 of the input to VCCO_LVCMOS/2 of the output.  
NOTE 2: Phase jitter measured using a 19.44MHz quartz crystal.  
NOTE 3: REF_OUT output duty cycle characterized with CLK input duty cycle between 48% and 52%.  
ICS843001CGI-23 REVISION A OCTOBER 4, 2011  
8
©2011 Integrated Device Technology, Inc.  
ICS843001I-23 Data Sheet  
FEMTOCLOCK® CRYSTAL/LVCMOS-TO-LVPECL/LVCMOS FREQUENCY SYNTHESIZER  
Typical Phase Noise at 622.08MHz  
.
622.08MHz  
RMS Phase Jitter (Random)  
12kHz to 20MHz = 0.97ps (typical)  
Offset Frequency (Hz)  
ICS843001CGI-23 REVISION A OCTOBER 4, 2011  
9
©2011 Integrated Device Technology, Inc.  
ICS843001I-23 Data Sheet  
FEMTOCLOCK® CRYSTAL/LVCMOS-TO-LVPECL/LVCMOS FREQUENCY SYNTHESIZER  
Parameter Measurement Information  
2V  
1.65V 5%  
1.65V 5%  
2V  
SCOPE  
SCOPE  
V
V
CC,  
Qx  
CCO_LVCMOS  
V
V
CC,  
CCO_LVPECL  
V
CCA  
Qx  
V
CCA  
VEE  
nQx  
VEE  
-1.65V 5%  
-1.3V 0.165V  
3.3V LVPECL Output Load AC Test Circuit  
3.3V LVCMOS Output Load AC Test Circuit  
2V  
1.25V 5%  
1.25V 5%  
2V  
SCOPE  
SCOPE  
V
V
CC,  
Qx  
CCO_LVCMOS  
V
Qx  
CCA  
V
CCA  
V
CC,  
V
CCO_LVPECL  
VEE  
nQx  
VEE  
-1.25V 5%  
-0.5V 0.125V  
2.5V LVPECL Output Load AC Test Circuit  
2.5V LVCMOS Output Load AC Test Circuit  
2.8V 0.04V  
2V  
2.05V 5%  
1.25V 5%  
2.05V 5%  
2.8V 0.04V  
V
CC  
SCOPE  
SCOPE  
V
Qx  
CC  
V
CCO_LVPECL  
V
CCO_LVPECL  
V
Qx  
CCA  
V
CCA  
nQx  
VEE  
VEE  
-1.25V 5%  
-0.5V 0.125V  
3.3V Core/2.5V LVCMOS Output Load AC Test Circuit  
3.3 Core/2.5V LVPECL Output Load AC Test Circuit  
ICS843001CGI-23 REVISION A OCTOBER 4, 2011  
10  
©2011 Integrated Device Technology, Inc.  
ICS843001I-23 Data Sheet  
FEMTOCLOCK® CRYSTAL/LVCMOS-TO-LVPECL/LVCMOS FREQUENCY SYNTHESIZER  
Parameter Measurement Information, continued  
Phase Noise Plot  
VCCO_CMOS  
2
REF_OUT  
tPW  
tPERIOD  
tPW  
odc =  
x 100%  
Offset Frequency  
f1  
f2  
tPERIOD  
RMS Jitter = Area Under Curve Defined by the Offset Frequency Markers  
RMS Phase Jitter  
LVCMOS Output Duty Cycle/Pulse Width/Period  
nQ  
Q
80%  
tF  
80%  
tR  
tPW  
tPERIOD  
20%  
20%  
REF_OUT  
tPW  
odc =  
x 100%  
tPERIOD  
LVPECL Output Duty Cycle/Pulse Width/Period  
LVCMOS Output Rise/Fall Time  
nQ  
80%  
tF  
80%  
tR  
VSWING  
20%  
20%  
Q
LVPECL Output Rise/Fall Time  
ICS843001CGI-23 REVISION A OCTOBER 4, 2011  
11  
©2011 Integrated Device Technology, Inc.  
ICS843001I-23 Data Sheet  
FEMTOCLOCK® CRYSTAL/LVCMOS-TO-LVPECL/LVCMOS FREQUENCY SYNTHESIZER  
Applications Information  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
Crystal Inputs  
LVPECL Outputs  
For applications not requiring the use of the crystal oscillator input,  
both XTAL_IN and XTAL_OUT can be left floating. Though not  
required, but for additional protection, a 1kresistor can be tied from  
XTAL_IN to ground.  
The unused LVPECL output pair can be left floating. We recommend  
that there is no trace attached. Both sides of the differential output  
pair should either be left floating or terminated.  
LVCMOS Output  
CLK Input  
All unused LVCMOS output can be left floating. We recommend that  
there is no trace attached.  
For applications not requiring the use of the clock input, it can be left  
floating. Though not required, but for additional protection, a 1kΩ  
resistor can be tied from the CLK input to ground.  
LVCMOS Control Pins  
All control pins have internal pullups or pulldowns; additional  
resistance is not required but can be added for additional protection.  
A 1kresistor can be used.  
ICS843001CGI-23 REVISION A OCTOBER 4, 2011  
12  
©2011 Integrated Device Technology, Inc.  
ICS843001I-23 Data Sheet  
FEMTOCLOCK® CRYSTAL/LVCMOS-TO-LVPECL/LVCMOS FREQUENCY SYNTHESIZER  
Overdriving the XTAL Interface  
The XTAL_IN input can accept a single-ended LVCMOS signal  
through an AC coupling capacitor. A general interface diagram is  
shown in Figure 1A. The XTAL_OUT pin can be left floating. The  
matched termination at the crystal input will attenuate the signal in  
half. This can be done in one of two ways. First, R1 and R2 in parallel  
should equal the transmission line impedance. For most 50Ω  
maximum amplitude of the input signal should not exceed 2V and the  
input edge rate can be as slow as 10ns. This configuration requires  
that the output impedance of the driver (Ro) plus the series  
applications, R1 and R2 can be 100. This can also be accomplished  
by removing R1 and making R2 50. By overdriving the crystal  
oscillator, the device will be functional, but note, the device  
performance is guaranteed by using a quartz crystal.  
resistance (Rs) equals the transmission line impedance. In addition,  
3.3V  
3.3V  
R1  
100  
C1  
Ro  
~ 7 Ohm  
Zo = 50 Ohm  
XTAL_I N  
RS  
43  
0.1uF  
R2  
Driver_LVCMOS  
100  
XTAL_OU T  
Crystal Input Interf ace  
Figure 1A. General Diagram for LVCMOS Driver to XTAL Input Interface  
VCC=3.3V  
C1  
Zo = 50 Ohm  
XTAL_IN  
0.1uF  
R1  
Zo = 50 Ohm  
50  
XTAL_OUT  
LVPECL  
Cry stal Input Interface  
R2  
50  
R3  
50  
Figure 1B. General Diagram for LVPECL Driver to XTAL Input Interface  
ICS843001CGI-23 REVISION A OCTOBER 4, 2011  
13  
©2011 Integrated Device Technology, Inc.  
ICS843001I-23 Data Sheet  
FEMTOCLOCK® CRYSTAL/LVCMOS-TO-LVPECL/LVCMOS FREQUENCY SYNTHESIZER  
Termination for 3.3V LVPECL Outputs  
The clock layout topology shown below is a typical termination for  
LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
transmission lines. Matched impedance techniques should be used  
to maximize operating frequency and minimize signal distortion.  
Figures 2A and 2B show two different layouts which are  
recommended only as guidelines. Other suitable clock layouts may  
exist and it would be recommended that the board designers  
simulate to guarantee compatibility across all printed circuit and clock  
component process variations.  
The differential outputs are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must be  
used for functionality. These outputs are designed to drive 50Ω  
3.3V  
R3  
R4  
3.3V  
125  
125Ω  
3.3V  
3.3V  
Z
o = 50Ω  
3.3V  
+
_
Z
o = 50Ω  
+
_
Input  
LVPECL  
Zo = 50Ω  
LVPECL  
Input  
Zo = 50Ω  
R1  
R2  
50Ω  
50Ω  
R1  
84Ω  
R2  
84Ω  
VCC - 2V  
1
RTT =  
* Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
Figure 2A. 3.3V LVPECL Output Termination  
Figure 2B. 3.3V LVPECL Output Termination  
ICS843001CGI-23 REVISION A OCTOBER 4, 2011  
14  
©2011 Integrated Device Technology, Inc.  
ICS843001I-23 Data Sheet  
FEMTOCLOCK® CRYSTAL/LVCMOS-TO-LVPECL/LVCMOS FREQUENCY SYNTHESIZER  
Termination for 2.5V LVPECL Outputs  
Figure 3A and Figure 3B show examples of termination for 2.5V  
LVPECL driver. These terminations are equivalent to terminating  
50to VCCO – 2V. For VCCO = 2.5V, the VCCO – 2V is very close to  
ground level. The R3 in Figure 3B can be eliminated and the  
termination is shown in Figure 3C.  
2.5V  
VCCO = 2.5V  
2.5V  
2.5V  
VCCO = 2.5V  
R1  
R3  
50  
250  
250  
+
50Ω  
50Ω  
+
50Ω  
2.5V LVPECL Driver  
R1  
50  
R2  
50  
2.5V LVPECL Driver  
R2  
62.5  
R4  
62.5  
R3  
18  
Figure 3A. 2.5V LVPECL Driver Termination Example  
Figure 3B. 2.5V LVPECL Driver Termination Example  
2.5V  
VCCO = 2.5V  
50Ω  
+
50Ω  
2.5V LVPECL Driver  
R1  
50  
R2  
50  
Figure 3C. 2.5V LVPECL Driver Termination Example  
ICS843001CGI-23 REVISION A OCTOBER 4, 2011  
15  
©2011 Integrated Device Technology, Inc.  
ICS843001I-23 Data Sheet  
FEMTOCLOCK® CRYSTAL/LVCMOS-TO-LVPECL/LVCMOS FREQUENCY SYNTHESIZER  
Schematic Layout  
Figure 6 (next page) shows an example of ICS843001I-23 application  
0.1uF capacitor in each power pin filter should be placed on the  
device side. The other components can be on the opposite side of the  
PCB.  
schematic. In this example, the device is operated VCC  
=
VCCO_LVCMOS = VCCO_LVPECL = 3.3V. The 18pF parallel resonant  
17.5-29.54MHz crystal is used. The load capacitance C1 = 22pF and  
C2 = 22pF are recommended for frequency accuracy. Depending on  
the parasitic of the printed circuit board layout, these values might  
require a slight adjustment to optimize the frequency accuracy.  
Crystals with other load capacitance specifications can be used. This  
will require adjusting C1 and C2. For this device, the crystal load  
capacitors are required for proper operation.  
Power supply filter recommendations are a general guideline to be  
used for reducing external noise from coupling into the devices. The  
filter performance is designed for wide range of noise frequency. This  
low-pass filter starts to attenuate noise at approximately 10kHz. If a  
specific frequency noise component with high amplitude interference  
is known, such as switching power supplies frequencies, it is  
recommended that component values be adjusted and if required,  
additional filtering be added. Additionally general design practice for  
power plane voltage stability suggests adding bulk capacitances in  
the general area of all devices.  
As with any high speed analog circuitry, the power supply pins are  
vulnerable to random noise. To achieve optimum jitter performance,  
power supply isolation is required. The ICS843001I-23 provides  
separate power supplies to isolate any high switching noise from  
coupling into the internal PLL.  
The schematic example focuses on functional connections and is not  
configuration specific. Refer to the pin description and functional  
tables in the datasheet to ensure the logic control inputs are properly  
set.  
In order to achieve the best possible filtering, it is recommended that  
the placement of the filter components be on the device side of the  
PCB as close to the power pins as possible. If space is limited, the  
ICS843001CGI-23 REVISION A OCTOBER 4, 2011  
16  
©2011 Integrated Device Technology, Inc.  
ICS843001I-23 Data Sheet  
FEMTOCLOCK® CRYSTAL/LVCMOS-TO-LVPECL/LVCMOS FREQUENCY SYNTHESIZER  
R
1
33  
Z o = 50 Ohm  
RE F_O UT  
3. 3V  
LV CMOS  
U
1
R2  
R 3  
V CCO  
133  
133  
Zo  
Zo  
=
=
50 Ohm  
Q
1
24  
V CCO_LV CMOS RE F_OUT  
VCCO  
N0  
2
3
23  
22  
TL2  
N0  
N1  
VE E  
+
-
N1  
N2  
OE _RE F  
M2  
O E_RE F  
V CC  
R4  
4
21  
50 Ohm  
N2  
M2  
M1  
M0  
10  
V CCA  
5
6
20  
19  
/Q  
V CCO_LV PE CL  
Q
M1  
M0  
Q
MR  
C6  
nQ  
7
18  
TL3  
nQ  
MR  
C4  
0. 1u  
8
9
17  
16  
SE L1  
SE L0  
V EE  
S EL1  
S EL0  
10u  
VC C  
V CCA  
10  
11  
12  
15  
14  
13  
CLK  
R5  
R 6  
V CC  
CLK  
XTA L_IN0  
XTA L_O UT1  
XTAL_I N 1  
XTAL_IN0  
V CC=3.3V  
82. 5  
82.5  
XTA L_OU T1  
XTA L_O U T0  
XTA L_IN  
1
XTAL_OU T0  
V CCO_LV CMOS=3.3V  
V CCO_LV PECL=3.3V  
X1  
29.54MH  
18p F  
C
3
C2  
X2  
18p F  
22pF  
17. 5MHz  
-
z
22pF  
17. 5MHz - 29. 54MHz  
Zo  
Zo  
=
=
50 O hm  
50 O hm  
Q
+
-
C5  
22 p F  
C1  
22pF  
/Q  
V DD  
R7  
50  
R8  
50  
Logic Control Input Examples  
Q1  
Ro  
~ 7 Ohm  
R
9
Z o = 50 Ohm  
Set Logic  
Input to  
'1'  
Set Logic  
Optional  
LVPECL  
VC C  
VC C  
Input to  
'0'  
R10  
50  
43  
Y-Termination  
R
U1  
RU2  
Driv er_LVCMO S  
1K  
Not Install  
To Logic  
Input  
To Logic  
Input  
pins  
3. 3V  
pins  
m urAta, BLM18B B221S N1  
2
R
N
D1  
RD2  
1K  
(U1:10)  
ot Install  
1
V CC  
F B1  
C
8
C9  
C7  
0. 1uF  
10uF 0. 1uF  
3. 3V  
m urAta, BLM18B B221S N1  
2
(U1:1)  
(U1:5)  
1
V CCO  
F B2  
C
11  
C12  
C
13  
C10  
0. 1uF  
10uF 0. 1uF  
0. 1 u F  
Figure 6. ICS843001I-23 Layout Example  
ICS843001CGI-23 REVISION A OCTOBER 4, 2011  
17  
©2011 Integrated Device Technology, Inc.  
ICS843001I-23 Data Sheet  
FEMTOCLOCK® CRYSTAL/LVCMOS-TO-LVPECL/LVCMOS FREQUENCY SYNTHESIZER  
EPAD Thermal Release Path  
In order to maximize both the removal of heat from the package and  
the electrical performance, a land pattern must be incorporated on  
the Printed Circuit Board (PCB) within the footprint of the package  
corresponding to the exposed metal pad or exposed heat slug on the  
package, as shown in Figure 7. The solderable area on the PCB, as  
defined by the solder mask, should be at least the same size/shape  
as the exposed pad/slug area on the package to maximize the  
thermal/electrical performance. Sufficient clearance should be  
designed on the PCB between the outer edges of the land pattern  
and the inner edges of pad pattern for the leads to avoid any shorts.  
and dependent upon the package power dissipation as well as  
electrical conductivity requirements. Thus, thermal and electrical  
analysis and/or testing are recommended to determine the minimum  
number needed. Maximum thermal and electrical performance is  
achieved when an array of vias is incorporated in the land pattern. It  
is recommended to use as many vias connected to ground as  
possible. It is also recommended that the via diameter should be 12  
to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is  
desirable to avoid any solder wicking inside the via during the  
soldering process which may result in voids in solder between the  
exposed pad/slug and the thermal land. Precautions should be taken  
to eliminate any solder voids between the exposed heat slug and the  
land pattern. Note: These recommendations are to be used as a  
guideline only. For further information, refer to the Application Note  
on the Surface Mount Assembly of Amkor’s Thermally/Electrically  
Enhance Leadframe Base Package, Amkor Technology.  
While the land pattern on the PCB provides a means of heat transfer  
and electrical grounding from the package to the board through a  
solder joint, thermal vias are necessary to effectively conduct from  
the surface of the PCB to the ground plane(s). The land pattern must  
be connected to ground through these vias. The vias act as “heat  
pipes”. The number of vias (i.e. “heat pipes”) are application specific  
SOLDER  
SOLDER  
SOLDER  
EXPOSED HEAT SLUG  
PIN  
PIN  
LAND PATTERN  
(GROUND PAD)  
PIN PAD  
GROUND PLANE  
PIN PAD  
THERMAL VIA  
Figure 7. Assembly for Exposed Pad Thermal Release Path - Side View (drawing not to scale)  
ICS843001CGI-23 REVISION A OCTOBER 4, 2011  
18  
©2011 Integrated Device Technology, Inc.  
ICS843001I-23 Data Sheet  
FEMTOCLOCK® CRYSTAL/LVCMOS-TO-LVPECL/LVCMOS FREQUENCY SYNTHESIZER  
Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS843001I-23.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS843001I-23 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC= 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 140mA = 485.1mW  
Power (outputs)MAX = 30mW/Loaded Output pair  
LVCMOS Output Power Dissipation  
Output Impedance ROUT Power Dissipation due to Loading 50to VDDO/2  
Output Current IOUT = VDDO_MAX / [2 * (50+ ROUT)] = 3.465V / [2 * (50+ 21)] = 24.4mA  
Power Dissipation on the ROUT per LVCMOS output  
Power (ROUT) = ROUT * (IOUT)2 = 21* (24.4mA)2 = 12.5mW per output  
Total Power Dissipation  
Total Power  
= Power (core) + Power (LVPECL output) + Power (ROUT  
)
= 485.1mW + 30mW + 12.5mW = 527.6mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad, and directly affects the reliability of the device. The  
maximum recommended junction temperature is 125°C. Limiting the internal transistor junction temperature, Tj, to 125°C ensures that the bond  
wire and bond pad temperature remains below 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no air flow and  
a multi-layer board, the appropriate value is 32.1°C/W per Table 7 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.528W * 32.1°C/W = 102°C. This is below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type of  
board (multi-layer).  
Table 7. Thermal Resitance θJA for 24 Lead TSSOP, E-Pad Forced Convection  
θJA vs. Air Flow  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
32.1°C/W  
25.5°C/W  
24.0°C/W  
ICS843001CGI-23 REVISION A OCTOBER 4, 2011  
19  
©2011 Integrated Device Technology, Inc.  
ICS843001I-23 Data Sheet  
FEMTOCLOCK® CRYSTAL/LVCMOS-TO-LVPECL/LVCMOS FREQUENCY SYNTHESIZER  
3. Calculations and Equations.  
The purpose of this section is to calculate the power dissipation for the LVPECL output pair.  
LVPECL output driver circuit and termination are shown in Figure 7.  
VCCO  
Q1  
VOUT  
RL  
50Ω  
VCCO - 2V  
Figure 8. LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination voltage of  
VCCO – 2V.  
For logic high, VOUT = VOH_MAX = VCCO_MAX – 0.9V  
(VCCO_MAX VOH_MAX) = 0.9V  
For logic low, VOUT = VOL_MAX = VCOO_MAX – 1.7V  
(VCCO_MAX VOL_MAX) = 1.7V  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = [(VOH_MAX (VCCO_MAX2V))/RL] * (VCCO_MAXVOH_MAX) = [(2V (VCCO_MAX VOH_MAX))/RL] * (VCCO_MAXVOH_MAX) =  
[(2V 0.9V)/50] * 0.9V = 19.8mW  
Pd_L = [(VOL_MAX (VCCO_MAX2V))/RL] * (VCCO_MAXVOL_MAX) = [(2V (VCCO_MAX VOL_MAX))/RL] * (VCCO_MAXVOL_MAX) =  
[(2V 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
ICS843001CGI-23 REVISION A OCTOBER 4, 2011  
20  
©2011 Integrated Device Technology, Inc.  
ICS843001I-23 Data Sheet  
FEMTOCLOCK® CRYSTAL/LVCMOS-TO-LVPECL/LVCMOS FREQUENCY SYNTHESIZER  
Reliability Information  
Table 8. θJA vs. Air Flow Table for a 24 Lead TSSOP, E-pad  
θJA vs. Air Flow  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
32.1°C/W  
25.5°C/W  
24.0°C/W  
Transistor Count  
The transistor count for ICS843001I-23 is: 4165  
ICS843001CGI-23 REVISION A OCTOBER 4, 2011  
21  
©2011 Integrated Device Technology, Inc.  
ICS843001I-23 Data Sheet  
FEMTOCLOCK® CRYSTAL/LVCMOS-TO-LVPECL/LVCMOS FREQUENCY SYNTHESIZER  
Package Outline and Package Dimensions  
Package Outline - G Suffix for 24 Lead TSSOP, E-Pad  
Table 9. Package Dimensions  
All Dimensions in Millimeters  
Symbol  
N
Minimum  
Maximum  
24  
A
1.10  
0.15  
0.95  
0.30  
0.25  
0.20  
0.16  
7.90  
A1  
A2  
b
0.05  
0.85  
0.19  
0.19  
0.09  
0.09  
7.70  
b1  
c
c1  
D
E
6.40 Basic  
E1  
e
4.30  
4.50  
0.65 Basic  
L
0.50  
5.0  
3.0  
0°  
0.70  
5.5  
3.2  
8°  
P
P1  
α
aaa  
bbb  
0.076  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
ICS843001CGI-23 REVISION A OCTOBER 4, 2011  
22  
©2011 Integrated Device Technology, Inc.  
ICS843001I-23 Data Sheet  
FEMTOCLOCK® CRYSTAL/LVCMOS-TO-LVPECL/LVCMOS FREQUENCY SYNTHESIZER  
Ordering Information  
Table 10. Ordering Information  
Part/Order Number  
843001CGI-23  
Marking  
Package  
24 Lead TSSOP, E-Pad  
Shipping Packaging  
Tube  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS843001CI23  
ICS843001CI23  
ICS43001CI23L  
ICS43001CI23L  
843001CGI-23T  
843001CGI-23LF  
843001CGI-23LFT  
24 Lead TSSOP, E-Pad  
2500 Tape & Reel  
Tube  
“Lead-Free” 24 Lead TSSOP, E-Pad  
“Lead-Free” 24 Lead TSSOP, E-Pad  
2500 Tape & Reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the  
infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal  
commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not recommended without  
additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support  
devices or critical medical instruments.  
ICS843001CGI-23 REVISION A OCTOBER 4, 2011  
23  
©2011 Integrated Device Technology, Inc.  
ICS843001I-23 Data Sheet  
FEMTOCLOCK® CRYSTAL/LVCMOS-TO-LVPECL/LVCMOS FREQUENCY SYNTHESIZER  
We’ve Got Your Timing Solution  
6024 Silver Creek Valley Road Sales  
Technical Support  
800-345-7015 (inside USA)  
netcom@idt.com  
San Jose, California 95138  
+408-284-8200 (outside USA) +480-763-2056  
Fax: 408-284-2775  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in this document,  
including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not  
guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the  
suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any  
license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT  
product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third  
party owners.  
Copyright 2011. All rights reserved.  

相关型号:

ICS843001BGI-23LF

Clock Generator, 650MHz, PDSO24, 4.40 X 7.80 MM, 0.92 MM HEIGHT, ROHS COMPLIANT, MO-153, TSSOP-24
IDT

ICS843001BGI-23T

Clock Generator, 650MHz, PDSO24, 4.40 X 7.80 MM, 0.92 MM HEIGHT, MO-153, TSSOP-24
IDT

ICS843001BGILF

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR
ICSI

ICS843001BGILFT

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR
ICSI

ICS843001BGIT

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR
ICSI

ICS843001BI

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR
ICSI

ICS843001BKI

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR
ICSI

ICS843001BKILF

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR
ICSI

ICS843001BKILFT

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR
ICSI

ICS843001BKIT

FEMTOCLOCKS? CRYSTAL-TO-3.3V LVPECL CLOCK GENERATOR
ICSI

ICS843001I-22

FEMTOCLOCKS? CRYSTAL/LVCMOS-TO-3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843001I-23

FEMTOCLOCKS⑩ CRYSTAL-TO-3.3V LVPECL/LVCMOS FREQUENCY SYNTHESIZER
ICSI