8735AM-21T [IDT]

700MHz, DIFFERENTIAL-TO-3.3V LVPECL ZERO DELAY CLOCK GENERATOR; 700MHZ ,差分至3.3V LVPECL零延迟时钟发生器
8735AM-21T
型号: 8735AM-21T
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

700MHz, DIFFERENTIAL-TO-3.3V LVPECL ZERO DELAY CLOCK GENERATOR
700MHZ ,差分至3.3V LVPECL零延迟时钟发生器

时钟发生器
文件: 总20页 (文件大小:837K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
700MHz, DIFFERENTIAL-TO-3.3V LVPECL  
ZERO DELAY CLOCK GENERATOR  
ICS8735-21  
General Description  
Features  
The ICS8735-21 is a highly versatile 1:1 Differential-  
One differential 3.3V LVPECL output pair  
One differential feedback output pair  
S
IC  
to-3.3V LVPECL clock generator and a member of  
the HiPerClockS™family of High Performance Clock  
Solutions from IDT. The CLK, nCLK pair can accept  
most standard differential input levels. The  
HiPerClockS™  
Differential CLK/nCLK input pair  
CLK/nCLK pair can accept the following differential  
input levels: LVPECL, LVDS, LVHSTL, HCSL, SSTL  
ICS8735-21 has a fully integrated PLL and can be configured as  
zero delay buffer, multiplier or divider, and has an output frequency  
range of 31.25MHz to 700MHz. The reference divider, feedback  
divider and output divider are each programmable, thereby  
allowing for the following output-to-input frequency ratios: 8:1, 4:1,  
2:1, 1:1, 1:2, 1:4, 1:8. The external feedback allows the device to  
achieve “zero delay” between the input clock and the output  
clocks. The PLL_SEL pin can be used to bypass the PLL for  
system test and debug purposes. In bypass mode, the reference  
clock is routed around the PLL and into the internal output  
dividers.  
Output frequency range: 31.25MHz to 700MHz  
Input frequency range: 31.25MHz to 700MHz  
VCO range: 250MHz to 700MHz  
External feedback for “zero delay” clock regeneration  
with configurable frequencies  
Programmable dividers allow for the following output-to-input  
frequency ratios: 8:1, 4:1, 2:1, 1:1, 1:2, 1:4, 1:8  
Cycle-to-cycle jitter: 25ps (maximum)  
Static phase offset: 50ps 100ps  
Full 3.3V supply voltage  
0°C to 70°C ambient operating temperature  
Available in both standard (RoHS 5) and lead-free (RoHS 6)  
packages  
Pin Assignments  
CLK  
nCLK  
MR  
1
2
20 nc  
19  
SEL1  
3
4
18 SEL0  
VCC  
17  
VCC  
nFB_IN  
FB_IN  
SEL2  
5
6
7
16 PLL_SEL  
15  
14  
13  
12  
11  
VCCA  
SEL3  
VEE  
nQFB  
QFB  
8
V
CCO  
9
10  
Q
nQ  
Block Diagram  
ICS8735-21  
Pullup  
PLL_SEL  
Q
nQ  
20-Lead SOIC  
7.5mm x 12.8mm x 2.3mm package body  
M Package  
÷1, ÷2, ÷4, ÷8,  
0
÷16, ÷32,÷64  
Pulldown  
Pullup  
CLK  
nCLK  
QFB  
nQFB  
1
Top View  
PLL  
8:1, 4:1, 2:1, 1:1,  
1:2, 1:4, 1:8  
32 31 30 29 28 27 26 25  
Pulldown  
Pullup  
FB_IN  
nFB_IN  
1
2
SEL0  
VCCO  
24  
23  
ICS8735-21  
SEL1  
nc  
nc  
32-Lead VFQFN  
Q
35mm x 5mm x 0.925mm22  
nQ  
QFB  
4
nc  
21  
package body  
K Package  
Top View  
Pulldown  
Pulldown  
Pulldown  
Pulldown  
Pulldown  
SEL0  
SEL1  
SEL2  
SEL3  
MR  
CLK  
5
6
7
8
20  
19  
18  
17  
nCLK  
nc  
nQFB  
nc  
MR  
VCCO  
9
10 11 12 13 14 15 16  
IDT™ / ICS™ 3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
1
ICS8735AM-21 REV. A JULY 31, 2008  
ICS8735-21  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
Table 1. Pin Descriptions  
Name  
CLK  
Type  
Description  
Input  
Input  
Input  
Pulldown Non-inverting differential clock input.  
nCLK  
nFB_IN  
Pullup  
Pullup  
Inverting differential clock input.  
Inverting differential feedback input to phase detector for regenerating clocks with “zero delay.”  
Non-inverted differential feedback input to phase detector for regenerating clocks with  
“zero delay.”  
FB_IN  
Input  
Input  
Input  
Input  
Pulldown  
Active HIGH Master Reset. When logic HIGH, the internal dividers are reset causing the true  
Pulldown output Q to go low and the inverted output nQ to go high. When logic LOW, the internal  
dividers and the outputs are enabled. LVCMOS / LVTTL interface levels.  
MR  
SEL0, SEL1,  
SEL2, SEL3  
Pulldown Determines output divider values in Table 3. LVCMOS / LVTTL interface levels.  
PLL select. Selects between the PLL and reference clock as the input to the dividers.  
PLL_SEL  
Pullup  
When LOW, selects reference clock. When HIGH, selects PLL.  
LVCMOS/LVTTL interface levels.  
nQ, Q  
nQFB, QFB  
VEE  
Output  
Output  
Power  
Power  
Power  
Power  
Differential output pair. LVPECL interface levels.  
Differential feedback output pair. LVPECL interface levels.  
Negative supply pin.  
VCC  
Core supply pins.  
VCCA  
Analog supply pin.  
VCCO  
Output supply pin.  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
4
RPULLUP  
51  
51  
k  
RPULLDOWN Input Pulldown Resistor  
kΩ  
IDT™ / ICS™ 3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
2
ICS8735AM-21 REV. A JULY 31, 2008  
ICS8735-21  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
Function Tables  
Table 3A. Control Input Function Table  
Inputs  
Outputs  
PLL_SEL = 1  
PLL Enable Mode  
SEL3  
SEL2  
SEL1  
SEL0  
Reference Frequency Range (MHz)*  
250 - 700  
Q/nQ, QFB/nQFB  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
÷1  
÷1  
÷1  
÷1  
÷2  
÷2  
÷2  
÷4  
÷4  
÷8  
x2  
x2  
x2  
x4  
x4  
x8  
125 - 350  
62.5 - 175  
31.25 - 87.5  
250 - 700  
125 - 350  
62.5 - 175  
250 - 700  
125 - 350  
250 - 700  
125 - 350  
62.5 - 175  
31.25 - 87.5  
62.5 - 175  
31.25 - 87.5  
31.25 - 87.5  
*NOTE: VCO frequency range for all configurations above is 250MHz to 700MHz.  
IDT™ / ICS™ 3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
3
ICS8735AM-21 REV. A JULY 31, 2008  
ICS8735-21  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
Table 3B. PLL Bypass Function Table  
Inputs  
Outputs  
PLL_SEL = 0  
PLL Bypass Mode  
SEL3  
SEL2  
SEL1  
SEL0  
Q/nQ, QFB/nQFB  
0z  
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
÷4  
÷4  
÷4  
÷8  
÷8  
÷8  
÷16  
÷16  
÷32  
÷64  
÷2  
÷2  
÷4  
÷1  
÷2  
÷1  
IDT™ / ICS™ 3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
4
ICS8735AM-21 REV. A JULY 31, 2008  
ICS8735-21  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VCC  
Inputs, VI  
4.6V  
-0.5V to VCC + 0.5V  
Outputs, IO  
Continuos Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, θJA  
20 Lead SOIC  
32 Lead VFQFN  
46.2°C/W (0 lfpm)  
37.0°C/W (0 mps)  
Storage Temperature, TSTG  
-65°C to 150°C  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, VCC = VCCA = VCCO = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum  
3.465  
3.465  
3.465  
150  
Units  
V
VCC  
VCCA  
VCCO  
IEE  
Core Supply Voltage  
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
3.135  
3.3  
V
3.135  
3.3  
V
mA  
mA  
ICCA  
15  
Table 4B. LVCMOS/LVTTL DC Characteristics, VCC = VCCA = VCCO = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
V
VIH  
VIL  
Input High Voltage  
2
VCC + 0.3  
Input Low Voltage  
-0.3  
0.8  
150  
5
V
SEL[0:3], MR  
PLL_SEL  
VCC = VIN = 3.465V  
VCC = VIN = 3.465V  
CC = 3.465V, VIN = 0V  
CC = 3.465V, VIN = 0V  
µA  
µA  
µA  
µA  
IIH  
Input High Current  
SEL[0:3], MR  
PLL_SEL  
V
V
-5  
IIL  
Input Low Current  
-150  
IDT™ / ICS™ 3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
5
ICS8735AM-21 REV. A JULY 31, 2008  
ICS8735-21  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
Table 4C. Differential DC Characteristics, VCC = VCCA = VCCO = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
µA  
CLK, FB_IN  
VCC = VIN = 3.465V  
150  
5
IIH  
Input High Current  
nCLK, nFB_IN  
VCC = VIN = 3.465V  
µA  
VCC = 3.465V,  
VIN = 0V  
CLK, FB_IN  
-5  
µA  
µA  
IIL  
Input Low Current  
VCC = 3.465V,  
nCLK, nFB_IN  
-150  
VIN = 0V  
VPP  
Peak-to-Peak Voltage; NOTE 1  
0.15  
1.3  
V
V
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
VEE + 0.5  
VCC – 0.85  
NOTE 1: VIL should not be less than -0.3V.  
NOTE 2: Common mode input voltage is defined as VIH.  
Table 4D. LVPECL DC Characteristics, VCC = VCCA = VCCO = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
VCCO – 1.4  
VCCO – 2.0  
0.6  
Typical  
Maximum  
VCCO – 0.9  
VCCO – 1.7  
1.0  
Units  
VOH  
Output High Voltage; NOTE 1  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50to VCCO – 2V.  
Table 5. Input Frequency Characteristics, VCC = VCCA = VCCO = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol  
Parameter  
Test Conditions  
PLL_SEL = 1  
PLL_SEL = 0  
Minimum  
Typical  
Maximum  
700  
Units  
MHz  
MHz  
31.25  
fIN  
Input Frequency  
CLK, nCLK  
700  
IDT™ / ICS™ 3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
6
ICS8735AM-21 REV. A JULY 31, 2008  
ICS8735-21  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
AC Electrical Characteristics  
Table 6. AC Characteristics, VCC = VCCA = VCCO = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Parameter Symbol  
fMAX Output Frequency  
tPD  
Test Conditions  
Minimum Typical Maximum  
Units  
MHz  
ns  
700  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 3  
Static Phase Offset; NOTE 3, 4  
Cycle-to-Cycle Jitter; NOTE 3, 5  
Phase Jitter; NOTE 3, 5, 6  
PLL Lock Time  
PLL_SEL = 0V, f 700MHz  
PLL_SEL = 0V  
3.0  
-50  
4.2  
20  
tsk(o)  
tsk(Ø)  
tjit(cc)  
tjit(θ)  
tL  
ps  
PLL_SEL = 3.3V  
50  
150  
25  
ps  
ps  
50  
ps  
1
ms  
ps  
tR / tF  
odc  
Output Rise/Fall Time; NOTE 7  
Output Duty Cycle  
20% to 80% @ 50MHz  
300  
47  
700  
53  
%
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential  
cross points.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 4: Defined as the time difference between the input reference clock and the averaged feedback input signal across all conditions,  
when the PLL is locked and the input reference frequency is stable.  
NOTE 5: Characterized at VCO frequency of 622MHz.  
NOTE 6: Phase jitter is dependent on the input source used.  
IDT™ / ICS™ 3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
7
ICS8735AM-21 REV. A JULY 31, 2008  
ICS8735-21  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
Parameter Measurement Information  
2V  
V
CC  
SCOPE  
V
V
V
nCLK  
CLK  
Qx  
CC,  
CCA,  
CCO  
VPP  
VCMR  
Cross Points  
LVPECL  
nQx  
VEE  
V
EE  
1.3V 0.165V  
3.3V Output Load AC Test Circuit  
Differential Input Level  
VOH  
VOL  
nCLK  
CLK  
nQx  
Qx  
VOH  
VOL  
nFB_IN  
nQy  
FB_IN  
Qy  
t(Ø)  
tsk(o)  
Phase Jitter and Static Phase Offset  
Output Skew  
nQ, nQFB  
Q, QFB  
80%  
tF  
80%  
VSWING  
20%  
Clock  
20%  
tcycle n  
tcycle n+1  
Outputs  
tR  
tjit(cc) = tcycle n – tcycle n+1  
|
|
1000 Cycles  
Cycle-to-Cycle Jitter  
Output Rise/Fall Time  
IDT™ / ICS™ 3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
8
ICS8735AM-21 REV. A JULY 31, 2008  
ICS8735-21  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
Parameter Measurement Information, continued  
nQ, nQFB  
nCLK  
Q, QFB  
tPW  
CLK  
tPERIOD  
nQ, nQFB  
Q, QFB  
tPW  
odc =  
x 100%  
tPERIOD  
tPD  
Output Duty Cycle/Pulse Width/Period  
Propagation Delay  
Application Information  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
LVCMOS Control Pins  
LVPECL Outputs  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional  
protection. A 1kresistor can be used.  
All unused LVPECL outputs can be left floating. We recommend  
that there is no trace attached. Both sides of the differential output  
pair should either be left floating or terminated.  
CLK/nCLK Inputs  
For applications not requiring the use of the differential input, both  
CLK and nCLK can be left floating. Though not required, but for  
additional protection, a 1kresistor can be tied from CLK to  
ground.  
FB_IN/nFB_IN Inputs  
For applications not requiring the use of the differential input, both  
FB_IN and nFB_IN can be left floating. Though not required, but for  
additional protection, a 1kresistor can be tied from FB_IN to  
ground.  
IDT™ / ICS™ 3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
9
ICS8735AM-21 REV. A JULY 31, 2008  
ICS8735-21  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
Power Supply Filtering Technique  
As in any high speed analog circuitry, the power supply pins are  
vulnerable to random noise. To achieve optimum jitter perform-  
ance, power supply isolation is required. The ICS8735-21 provides  
separate power supplies to isolate any high switching noise from  
the outputs to the internal PLL. VCC, VCCA and VCCO should be  
individually connected to the power supply plane through vias, and  
0.01µF bypass capacitors should be used for each pin. Figure 1  
illustrates this for a generic VCC pin and also shows that VCCA  
requires that an additional 10resistor along with a 10µF bypass  
capacitor be connected to the VCCA pin. The 10resistor can also  
3.3V  
VCC  
.01µF  
.01µF  
10  
VCCA  
10µF  
Figure 1. Power Supply Filtering  
be replaced by a ferrite bead.  
Wiring the Differential Input to Accept Single Ended Levels  
Figure 2 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = VCC/2 is  
generated by the bias resistors R1, R2 and C1. This bias circuit  
should be located as close as possible to the input pin. The ratio of  
R1 and R2 might need to be adjusted to position the V_REF in the  
center of the input voltage swing. For example, if the input clock  
swing is only 2.5V and VCC = 3.3V, V_REF should be 1.25V and  
VCC  
R1  
1K  
Single Ended Clock Input  
R2/R1 = 0.609.  
CLK  
V_REF  
nCLK  
C1  
0.1u  
R2  
1K  
Figure 2. Single-Ended Signal Driving Differential Input  
IDT™ / ICS™ 3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
10  
ICS8735AM-21 REV. A JULY 31, 2008  
ICS8735-21  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
Differential Clock Input Interface  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL  
and other differential signals. Both VSWING and VOH must meet the  
VPP and VCMR input requirements. Figures 3A to 3F show interface  
examples for the HiPerClockS CLK/nCLK input driven by the most  
common driver types. The input interfaces suggested here are  
examples only. Please consult with the vendor of the driver  
component to confirm the driver termination requirements. For  
example, in Figure 3A, the input termination applies for IDT  
HiPerClockS open emitter LVHSTL drivers. If you are using an  
LVHSTL driver from another vendor, use their termination  
recommendation.  
3.3V  
3.3V  
3.3V  
1.8V  
Zo = 50  
Zo = 50Ω  
CLK  
CLK  
Zo = 50Ω  
nCLK  
Zo = 50Ω  
HiPerClockS  
Input  
nCLK  
LVPECL  
HiPerClockS  
LVHSTL  
R1  
50  
R2  
50  
Input  
R1  
50  
R2  
50  
IDT  
HiPerClockS  
LVHSTL Driver  
R2  
50  
Figure 3A. HiPerClockS CLK/nCLK Input  
Driven by an IDT Open Emitter  
HiPerClockS LVHSTL Driver  
Figure 3B. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V LVPECL Driver  
3.3V  
3.3V  
3.3V  
3.3V  
R3  
125  
R4  
125  
3.3V  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
CLK  
CLK  
R1  
100  
nCLK  
nCLK  
Zo = 50Ω  
HiPerClockS  
Input  
LVPECL  
Receiver  
LVDS  
R1  
84  
R2  
84  
Figure 3C. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V LVPECL Driver  
Figure 3D. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V LVDS Driver  
2.5V  
2.5V  
3.3V  
3.3V  
2.5V  
R3  
R4  
120  
120  
Zo = 50Ω  
*R3  
*R4  
33  
33  
Zo = 60Ω  
Zo = 60Ω  
CLK  
CLK  
Zo = 50Ω  
nCLK  
nCLK  
HiPerClockS  
HiPerClockS  
Input  
SSTL  
HCSL  
R1  
50  
R2  
50  
R1  
120  
R2  
120  
*Optional – R3 and R4 can be 0Ω  
Figure 3E. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V HCSL Driver  
Figure 3F. HiPerClockS CLK/nCLK Input  
Driven by a 2.5V SSTL Driver  
IDT™ / ICS™ 3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
11  
ICS8735AM-21 REV. A JULY 31, 2008  
ICS8735-21  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
Termination for 3.3V LVPECL Outputs  
The clock layout topology shown below is a typical termination for  
LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
transmission lines. Matched impedance techniques should be  
used to maximize operating frequency and minimize signal  
distortion. Figures 4A and 4B show two different layouts which are  
recommended only as guidelines. Other suitable clock layouts may  
exist and it would be recommended that the board designers  
simulate to guarantee compatibility across all printed circuit and  
clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must be  
used for functionality. These outputs are designed to drive 50Ω  
3.3V  
Z
o = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
Figure 4A. 3.3V LVPECL Output Termination  
Figure 4B. 3.3V LVPECL Output Termination  
IDT™ / ICS™ 3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
12  
ICS8735AM-21 REV. A JULY 31, 2008  
ICS8735-21  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
Schematic Example  
Figure 5 shows a schematic example of the ICS8735-21. In this  
example, the input is driven by an HCSL driver. The zero delay  
buffer is configured to operate at 155.52MHz input and 77.75MHz  
output. The logic control pins are configured as follows:  
SEL [3:0] = 0101; PLL_SEL = 1  
The decoupling capacitors should be physically located near the  
power pin. For ICS8735-21.  
3.3V  
R7  
10  
VCC  
VCCA  
U1  
Zo = 50 Ohm  
(155.5 MHz)  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
C11  
CLK  
2
nc  
SEL1  
SEL0  
VCCI  
PLL_SEL  
VCCA  
SEL3  
VCCO  
Q
SEL1  
0.01u  
C16  
nCLK  
3
SEL0  
10u  
MR  
VCC  
VCC  
Zo = 50 Ohm  
4
5
VCCI  
nFB_IN  
FB_IN  
SEL2  
VEE  
PLL_SEL  
VCCA  
SEL3  
6
SEL2  
HCSL  
7
VCC  
8
Zo = 50 Ohm  
Zo = 50 Ohm  
R8  
50  
R9  
50  
9
nQFB  
QFB  
+
10  
nQ  
VCC  
R1  
50  
R2  
50  
ICS8735-21  
-
LVPECL_input  
(77.75 MHz)  
RU3  
RU4  
RU5  
RU6  
1K  
RU7  
SP  
1K  
1K  
SP  
R4  
50  
R5  
50  
R3  
50  
PLL_SEL  
SEL0  
SEL1  
Bypass capacitors located  
near the power pins  
SEL2  
R6  
50  
SEL3  
(U1-4) VCC  
(U1-17)  
(U1-13)  
VCC=3.3V  
RD3  
SP  
RD4  
SP  
RD5  
1K  
RD6  
SP  
RD7  
1K  
C1  
C2  
C3  
0.1uF  
0.1uF  
0.1uF  
SEL[3:0] = 0101,  
Divide by 2  
SP = Space (i.e. not intstalled)  
Figure 5. ICS8735-21 LVPECL Buffer Schematic Example  
IDT™ / ICS™ 3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
13  
ICS8735AM-21 REV. A JULY 31, 2008  
ICS8735-21  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
VFQFN EPAD Thermal Release Path  
In order to maximize both the removal of heat from the package  
and the electrical performance, a land pattern must be  
application specific and dependent upon the package power  
dissipation as well as electrical conductivity requirements. Thus,  
thermal and electrical analysis and/or testing are recommended to  
determine the minimum number needed. Maximum thermal and  
electrical performance is achieved when an array of vias is  
incorporated in the land pattern. It is recommended to use as many  
vias connected to ground as possible. It is also recommended that  
the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz  
copper via barrel plating. This is desirable to avoid any solder  
wicking inside the via during the soldering process which may  
result in voids in solder between the exposed pad/slug and the  
thermal land. Precautions should be taken to eliminate any solder  
voids between the exposed heat slug and the land pattern. Note:  
These recommendations are to be used as a guideline only. For  
further information, please refer to the Application Note on the  
Surface Mount Assembly of Amkor’s Thermally/Electrically  
Enhance Leadfame Base Package, Amkor Technology.  
incorporated on the Printed Circuit Board (PCB) within the footprint  
of the package corresponding to the exposed metal pad or  
exposed heat slug on the package, as shown in Figure 6. The  
solderable area on the PCB, as defined by the solder mask, should  
be at least the same size/shape as the exposed pad/slug area on  
the package to maximize the thermal/electrical performance.  
Sufficient clearance should be designed on the PCB between the  
outer edges of the land pattern and the inner edges of pad pattern  
for the leads to avoid any shorts.  
While the land pattern on the PCB provides a means of heat  
transfer and electrical grounding from the package to the board  
through a solder joint, thermal vias are necessary to effectively  
conduct from the surface of the PCB to the ground plane(s). The  
land pattern must be connected to ground through these vias. The  
vias act as “heat pipes”. The number of vias (i.e. “heat pipes”) are  
SOLDER  
SOLDER  
PIN  
PIN  
EXPOSED HEAT SLUG  
PIN PAD  
GROUND PLANE  
LAND PATTERN  
(GROUND PAD)  
PIN PAD  
THERMAL VIA  
Figure 6. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale  
IDT™ / ICS™ 3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
14  
ICS8735AM-21 REV. A JULY 31, 2008  
ICS8735-21  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
Power Considerations  
This section provides information on power dissipation and junction temperature for the ICS8735-21.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8735-21 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * ICC_MAX = 3.465V * 150mA = 519.8mW  
Power (outputs)MAX = 30mW/Loaded output pair  
If all outputs are loaded, the total power is 2 * 30mW = 60mW  
Total Power_MAX = (3.465V, with all outputs switching) = 519.8mW + 60mW = 579.8mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device.  
The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming no air flow  
and a multi-layer board, the appropriate value is 83.2°C/W per Table 7A below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.580W * 83.2°C/W = 118.3°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type  
of board (single layer or multi-layer).  
Table 7A. Thermal Resistance θJA for 20 Lead SOIC, Forced Convection  
θJA vs. Air Flow  
Linear Feet per Minute  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
83.2°C/W  
46.2°C/W  
65.7°C/W  
39.7°C/W  
57.5°C/W  
36.8°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
Table 7B. Thermal Resistance θJA for 32 Lead VFQFN, Forced Convection  
θJA by Velocity  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
37.0°C/W  
32.4°C/W  
29.0°C/W  
IDT™ / ICS™ 3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
15  
ICS8735AM-21 REV. A JULY 31, 2008  
ICS8735-21  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 7.  
VCCO  
Q1  
VOUT  
RL  
50Ω  
VCCO - 2V  
Figure 7. LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination voltage  
of VCCO – 2V.  
For logic high, VOUT = VOH_MAX = VCCO_MAX – 0.9V  
(VCCO_MAX – VOH_MAX) = 0.9V  
For logic low, VOUT = VOL_MAX = VCCO_MAX – 1.7V  
(VCCO_MAX – VOL_MAX) = 1.7V  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = [(VOH_MAX – (VCCO_MAX – 2V))/RL] * (VCCO_MAX – VOH_MAX) = [(2V – (VCCO_MAX – VOH_MAX))/RL] * (VCCO_MAX – VOH_MAX) =  
[(2V – 0.9V)/50] * 0.9V = 19.8mW  
Pd_L = [(VOL_MAX – (VCCO_MAX – 2V))/RL] * (VCCO_MAX – VOL_MAX) = [(2V – (VCCO_MAX – VOL_MAX))/RL] * (VCCO_MAX – VOL_MAX) =  
[(2V – 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
IDT™ / ICS™ 3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
16  
ICS8735AM-21 REV. A JULY 31, 2008  
ICS8735-21  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
Reliability Information  
Table 8A. θJA vs. Air Flow Table for a 20 Lead TSSOP  
θJA vs. Air Flow  
Linear Feet per Minute  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
83.2°C/W  
46.2°C/W  
65.7°C/W  
39.7°C/W  
57.5°C/W  
36.8°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
Table 8B. θJA vs. Air Flow Table for a 32 Lead VFQFN, Forced Convection  
θJA by Velocity  
Meters per Second  
0
1
2.5  
Multi-Layer PCB, JEDEC Standard Test Boards  
37.0°C/W  
32.4°C/W  
29.0°C/W  
Transistor Count  
The transistor count for ICS8735-21 is: 2969  
Package Outline and Package Dimensions  
Package Outline - M Suffix for 20 Lead SOIC  
Table 9A. Package Dimensions for 20 Lead SOIC  
300 Millimeters  
All Dimensions in Millimeters  
Symbol  
Minimum  
Maximum  
N
A
A1  
A2  
B
C
D
E
20  
2.65  
0.10  
2.05  
0.33  
0.18  
12.60  
7.40  
2.55  
0.51  
0.32  
13.00  
7.60  
e
1.27 Basic  
10.00  
H
h
10.65  
0.75  
1.27  
7°  
0.25  
0.40  
0°  
L
α
Reference Document: JEDEC Publication 95, MS-013, MS-119  
IDT™ / ICS™ 3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
17  
ICS8735AM-21 REV. A JULY 31, 2008  
ICS8735-21  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
Package Outline - K Suffix for 32 Lead VFQFN  
(Ref.)  
Seating Plane  
(N -1)x e  
N & N  
(Ref.)  
Even  
A1  
IndexArea  
L
A3  
e
2
N
N
(Ty p.)  
If N & N  
are Even  
Anvil  
Singulation  
1
2
(N -1)x e  
E2  
OR  
(Ref.)  
E2  
2
TopView  
D
b
(Ref.)e  
N &N  
Odd  
Thermal  
Base  
A
D2  
2
0. 08  
C
Chamfer 4x  
0.6 x 0.6 max  
OPTIONAL  
D2  
C
The following package mechanical drawing is a generic drawing that applies to any pin count VFQFN package. This drawing is not  
intended to convey the actual pin count or pin layout of this device. The pin count and pinout are shown on the front page. The package  
dimensions are in Table 9B below.  
Table 9B. Package Dimensions for 32 Lead VFQFN  
JEDEC Variation: VHHD-2/-4  
All Dimensions in Millimeters  
Symbol  
Minimum  
Nominal  
Maximum  
N
32  
A
0.80  
0
1.00  
0.05  
A1  
A3  
0.25 Ref.  
0.25  
b
ND & NE  
D & E  
D2 & E2  
e
0.18  
0.30  
8
5.00 Basic  
3.0  
3.3  
0.50 Basic  
0.40  
L
0.30  
0.50  
Reference Document: JEDEC Publication 95, MO-220  
IDT™ / ICS™ 3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
18  
ICS8735AM-21 REV. A JULY 31, 2008  
ICS8735-21  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
Ordering Information  
Table 10. Ordering Information  
Part/Order Number  
8735AM-21  
8735AM-21T  
8735AM-21LF  
8735AM-21LFT  
8735AK-21LF  
8735AK-21LFT  
Marking  
Package  
20 Lead SOIC  
20 Lead SOIC  
Shipping Packaging  
Tube  
1000 Tape & Reel  
Tube  
1000 Tape & Reel  
Tray  
2500 Tape & Reel  
Temperature  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
0°C to 70°C  
ICS8735AM-21  
ICS8735AM-21  
ICS8735AM-21LF  
ICS8735AM-21LF  
ICS8735A21L  
“Lead-Free” 20 Lead SOIC  
“Lead-Free” 20 Lead SOIC  
“Lead-Free” 32 Lead VFQFN  
“Lead-Free” 32 Lead VFQFN  
ICS8735A21L  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for  
the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications, such as those requiring extended temperature ranges, high reliability or other extraordinary environmental requirements  
are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any  
IDT product for use in life support devices or critical medical instruments.  
IDT™ / ICS™ 3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
19  
ICS8735AM-21 REV. A JULY 31, 2008  
ICS8735-21  
700MHZ, DIFFERENTIAL-TO-3.3V LVPECL ZERO DELAY CLOCK GENERATOR  
Contact Information:  
www.IDT.com  
Corporate Headquarters  
Sales  
Technical Support  
Integrated Device Technology, Inc.  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
Fax: 408-284-2775  
netcom@idt.com  
+480-763-2056  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
United States  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
www.IDT.com/go/contactIDT  
© 2008 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device  
Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered  
trademarks used to identify products or services of their respective owners.  
www.IDT.com  
Printed in USA  

相关型号:

8735AMI-21

PLL Based Clock Driver, 8735 Series, 1 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 MM X 12.80 MM, 2.30 MM HEIGHT, MS-013, MO-119, SOIC-20
IDT

8735AMI-21LF

PLL Based Clock Driver, 8735 Series, 1 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 MM X 12.80 MM, 2.30 MM HEIGHT, ROHS COMPLIANT, MS-013, MO-119, SOIC-20
IDT

8735AMI-21LFT

PLL Based Clock Driver, 8735 Series, 1 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 MM X 12.80 MM, 2.30 MM HEIGHT, ROHS COMPLIANT, MS-013, MO-119, SOIC-20
IDT

8735AMI-21T

PLL Based Clock Driver, 8735 Series, 1 True Output(s), 0 Inverted Output(s), PDSO20, 7.50 MM X 12.80 MM, 2.30 MM HEIGHT, MS-013, MO-119, SOIC-20
IDT

8735AY-01

PLL Based Clock Driver, 8735 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026BBA, LQFP-32
IDT

8735AY-01LF

PLL Based Clock Driver, 8735 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026BBA, LQFP-32
IDT

8735AY-01T

PLL Based Clock Driver, 8735 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026BBA, LQFP-32
IDT

8735AY-31LF

1:5, Differential-to-3.3V LVPECL Zero Delay Clock Generator
IDT

8735AY-31LFT

1:5, Differential-to-3.3V LVPECL Zero Delay Clock Generator
IDT

8735AYI-01

PLL Based Clock Driver, 8735 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026BBA, LQFP-32
IDT

8735AYI-01LF

PLL Based Clock Driver, 8735 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026BBA, LQFP-32
IDT

8735AYI-01LFT

PLL Based Clock Driver, 8735 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026BBA, LQFP-32
IDT