8735AY-31LF [IDT]

1:5, Differential-to-3.3V LVPECL Zero Delay Clock Generator;
8735AY-31LF
型号: 8735AY-31LF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

1:5, Differential-to-3.3V LVPECL Zero Delay Clock Generator

驱动 逻辑集成电路
文件: 总21页 (文件大小:424K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1:5, Differential-to-3.3V LVPECL Zero  
Delay Clock Generator  
8735-31  
Data Sheet  
General Description  
Features  
Five differential 3.3V LVPECL output pairs  
Selectable differential clock inputs  
The 8735-31 is a highly versatile 1:5 Differential -to-3.3V LVPECL  
Clock Generator. The 8735-31 has a fully integrated PLL and can  
be configured as zero delay buffer, multiplier or divider, and has an  
output frequency range of 15.625MHz to 350MHz. The reference  
divider, feedback divider and output divider are each  
CLKx/nCLKx pairs can accept the following differential  
input levels: LVPECL, LVDS, LVHSTL, HCSL, SSTL  
Output frequency range: 15.625MHz to 350MHz  
Input frequency range: 15.625MHz to 350MHz  
VCO range: 250MHz to 700MHz  
programmable, thereby allowing for the following output-to-input  
frequency ratios: 8:1, 4:1, 2:1, 1:1, 1:2, 1:4, 1:8. The external  
feedback allows the device to achieve “zero delay” between the  
input clock and the output clocks. The PLL_SEL pin can be used  
to bypass the PLL for system test and debug purposes. In bypass  
mode, the reference clock is routed around the PLL and into the  
internal output dividers.  
External feedback for “zero delay” clock regeneration  
with configurable frequencies  
Programmable dividers allow for the following output-to-input  
frequency ratios: 8:1, 4:1, 2:1, 1:1, 1:2, 1:4, 1:8  
Cycle-to-cycle jitter: 60ps (maximum)  
Output skew: 35ps (maximum)  
Static phase offset: 55ps 125ps  
Full 3.3V supply voltage  
0°C to 70°C ambient operating temperature  
Available in lead-free (RoHS 6) package  
Pin Assignment  
Block Diagram  
Q0  
nQ0  
Q1  
Pullup  
PLL_SEL  
÷16,  
÷32,÷64, ÷128  
÷2, ÷4, ÷8,  
nQ1  
Q2  
32 31 30 29 28 27 26 25  
0
1
1
2
3
4
5
6
7
8
SEL0  
SEL1  
VCCO  
Q3  
24  
23  
22  
21  
Pulldown  
Pullup  
CLK0  
nCLK0  
0
1
nQ2  
Q3  
Pulldown  
Pullup  
CLK1  
nCLK1  
nQ3  
CLK0  
nQ3  
Q4  
nCLK0  
Q2  
PLL  
nQ4  
Pulldown  
CLK_SEL  
CLK1  
20 nQ2  
8:1, 4:1, 2:1, 1:1,  
1:2, 1:4, 1:8  
Q1  
19  
nCLK1  
Pulldown  
Pullup  
FB_IN  
nFB_IN  
CLK_SEL  
nQ1  
18  
17  
VCCO  
MR  
9
10 11 12 13 14 15 16  
Pulldown  
Pulldown  
Pulldown  
Pulldown  
Pulldown  
SEL0  
SEL1  
SEL2  
SEL3  
MR  
8735-31  
32-Lead LQFP  
7mm x 7mm x 1.4mm package body  
Y Package  
Top View  
©2016 Integrated Device Technology, Inc  
1
Revision B January 27, 2016  
8735-31 Data Sheet  
Table 1. Pin Descriptions  
Number  
Name  
Type  
Pulldown  
Description  
1, 2,  
12, 29  
SEL0, SEL1,  
SEL2, SEL3  
Determines output divider values in Table 3.  
LVCMOS / LVTTL interface levels.  
Input  
3
4
5
6
CLK0  
nCLK0  
CLK1  
Input  
Input  
Input  
Input  
Pulldown Non-inverting differential clock input.  
Pullup Inverting differential clock input.  
Pulldown Non-inverting differential clock input.  
nCLK1  
Pullup  
Inverting differential clock input.  
Clock select input. When HIGH, selects CLK1/nCLK1. When LOW, selects  
CLK0/nCLK0. LVCMOS / LVTTL interface levels.  
7
CLK_SEL  
MR  
Input  
Pulldown  
Active HIGH Master Reset. When logic HIGH, the internal dividers are reset  
causing the true outputs Qx to go low and the inverted outputs nQx to go high.  
When logic LOW, the internal dividers and the outputs are enabled.  
LVCMOS / LVTTL interface levels.  
8
Input  
Pulldown  
Pullup  
9, 32  
10  
VCC  
Power  
Input  
Core supply pins.  
Inverting differential feedback input to phase detector for regenerating clocks  
with “zero delay.”  
nFB_IN  
Non-inverted differential feedback input to phase detector for regenerating  
11  
FB_IN  
Input  
Pulldown clocks with  
“zero delay.”  
13, 28  
14, 15  
VEE  
Power  
Output  
Power  
Output  
Output  
Output  
Output  
Power  
Negative supply pins.  
nQ0, Q0  
VCCO  
Differential output pair. LVPECL interface levels.  
Output supply pins.  
16, 17, 24, 25  
18, 19  
nQ1, Q1  
nQ2, Q2  
nQ3, Q3  
nQ4, Q4  
VCCA  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels..  
Differential output pair. LVPECL interface levels.  
Differential output pair. LVPECL interface levels.  
Analog supply pin.  
20, 21  
22, 23  
26, 27  
30  
PLL select. Selects between the PLL and reference clock as the input to the  
dividers. When LOW, selects reference clock. When HIGH, selects PLL.  
LVCMOS/LVTTL interface levels.  
31  
PLL_SEL  
Input  
Pullup  
NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
Table 2. Pin Characteristics  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
pF  
Input Capacitance  
Input Pullup Resistor  
4
RPULLUP  
51  
51  
k  
RPULLDOWN Input Pulldown Resistor  
k  
©2016 Integrated Device Technology, Inc  
2
Revision B January 27, 2016  
8735-31 Data Sheet  
Function Tables  
Table 3A. Control Input Function Table  
Inputs  
Outputs  
PLL_SEL = 1  
PLL Enable Mode  
SEL3  
SEL2  
SEL1  
SEL0  
Reference Frequency Range (MHz)  
125 - 350  
Q0:Q4, nQ0:nQ4  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
÷1  
÷1  
÷1  
÷1  
÷2  
÷2  
÷2  
÷4  
÷4  
÷8  
x2  
x2  
x2  
x4  
x4  
x8  
62.5 - 175  
31.25 - 87.5  
15.625 - 43.75  
125 - 350  
62.5 - 175  
31.25 - 87.5  
125 - 350  
62.5 - 175  
125 - 350  
62.5 - 175  
31.25 - 87.5  
15.625 - 43.75  
31.25 - 87.5  
15.625 - 43.75  
15.625 - 43.75  
©2016 Integrated Device Technology, Inc  
3
Revision B January 27, 2016  
8735-31 Data Sheet  
Table 3B. PLL Bypass Function Table  
Inputs  
Outputs  
PLL_SEL = 0  
PLL Bypass Mode  
SEL3  
SEL2  
SEL1  
SEL0  
Q0:Q4, nQ0:nQ4  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
÷8  
÷8  
÷8  
÷16  
÷16  
÷16  
÷32  
÷32  
÷64  
÷128  
÷4  
÷4  
÷8  
÷2  
÷4  
÷2  
©2016 Integrated Device Technology, Inc  
4
Revision B January 27, 2016  
8735-31 Data Sheet  
Absolute Maximum Ratings  
NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond  
those listed in the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect product reliability.  
Item  
Rating  
Supply Voltage, VCC  
Inputs, VI  
4.6V  
-0.5V to VCC + 0.5V  
Outputs, IO  
Continuos Current  
Surge Current  
50mA  
100mA  
Package Thermal Impedance, JA  
47.9C/W (0 lfpm)  
-65C to 150C  
Storage Temperature, TSTG  
DC Electrical Characteristics  
Table 4A. Power Supply DC Characteristics, VCC = VCCA = VCCO = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
3.135  
Typical  
3.3  
Maximum  
3.465  
3.465  
3.465  
150  
Units  
V
VCC  
VCCA  
VCCO  
IEE  
Core Supply Voltage  
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
3.135  
3.3  
V
3.135  
3.3  
V
mA  
mA  
ICCA  
15  
Table 4B. LVCMOS/LVTTL DC Characteristics, VCC = VCCA = VCCO = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
VCC + 0.3  
0.8  
Units  
VIH  
VIL  
Input High Voltage  
2
V
V
Input Low Voltage  
-0.3  
CLK_SEL,  
SEL[0:3], MR  
V
CC = VIN = 3.465V  
150  
5
µA  
µA  
µA  
µA  
IIH  
Input High Current  
PLL_SEL  
VCC = VIN = 3.465V  
CLK_SEL,  
SEL[0:3], MR  
VCC = 3.465V, VIN = 0V  
VCC = 3.465V, VIN = 0V  
-5  
IIL  
Input Low Current  
PLL_SEL  
-150  
©2016 Integrated Device Technology, Inc  
5
Revision B January 27, 2016  
8735-31 Data Sheet  
Table 4C. Differential DC Characteristics, VCC = VCCA = VCCO = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum  
Units  
FB_IN,  
CLK0, CLK1  
V
CC = VIN = 3.465V  
150  
5
µA  
IIH  
Input High Current  
nFB_IN,  
nCLK0, nCLK1  
VCC = VIN = 3.465V  
µA  
µA  
µA  
FB_IN,  
CLK0, CLK1  
VCC = 3.465V,  
-5  
VIN = 0V  
IIL  
Input Low Current  
nFB_IN,  
nCLK0, nCLK1  
VCC = 3.465V,  
VIN = 0V  
-150  
VPP  
Peak-to-Peak Voltage; NOTE 1  
0.15  
1.3  
V
V
VCMR  
Common Mode Input Voltage; NOTE 1, 2  
VEE + 0.5  
VCC – 0.85  
NOTE 1: VIL should not be less than -0.3V.  
NOTE 2: Common mode input voltage is defined as VIH.  
Table 4D. LVPECL DC Characteristics, VCC = VCCA = VCCO = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol Parameter  
Test Conditions  
Minimum  
VCCO – 1.4  
VCCO – 2.0  
0.6  
Typical  
Maximum  
VCCO – 0.9  
VCCO – 1.7  
1.0  
Units  
VOH  
Output High Voltage; NOTE 1  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50to VCCO – 2V.  
Table 5. Input Frequency Characteristics, VCC = VCCA = VCCO = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol  
Parameter  
Test Conditions  
PLL_SEL = 1  
PLL_SEL = 0  
Minimum  
Typical  
Maximum  
350  
Units  
MHz  
MHz  
15.625  
CLK0/nCLK0,  
CLK1/nCLK1  
fIN  
Input Frequency  
700  
©2016 Integrated Device Technology, Inc  
6
Revision B January 27, 2016  
8735-31 Data Sheet  
AC Electrical Characteristics  
Table 6. AC Characteristics, VCC = VCCA = VCCO = 3.3V 5%, VEE = 0V, TA = 0°C to 70°C  
Symbol Parameter  
fMAX Output Frequency  
tPD  
Test Conditions  
PLL_SEL = 0, f 350MHz  
PLL_SEL = 1  
Minimum  
Typical  
Maximum  
Units  
MHz  
ns  
350  
5.1  
35  
Propagation Delay; NOTE 1  
Output Skew; NOTE 2, 3  
Static Phase Offset; NOTE 3, 4  
Cycle-to-Cycle Jitter; NOTE 3  
PLL Lock Time  
3.8  
tsk(o)  
tsk(Ø)  
tjit(cc)  
tL  
ps  
-70  
55  
+180  
60  
ps  
ps  
1
ms  
ps  
tR / tF  
odc  
Output Rise/Fall Time  
20% to 80%  
200  
47  
750  
53  
Output Duty Cycle  
%
NOTE: Electrical parameters are guaranteed over the specified ambient operating temperature range, which is established when the  
device is mounted in a test socket with maintained transverse airflow greater than 500 lfpm. The device will meet specifications after  
thermal equilibrium has been reached under these conditions.  
NOTE 1: Measured from the differential input crossing point to the differential output crossing point.  
NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at the output differential  
cross points.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 4: Defined as the time difference between the input reference clock and the averaged feedback input signal across all conditions,  
when the PLL is locked and the input reference frequency is stable.  
©2016 Integrated Device Technology, Inc  
7
Revision B January 27, 2016  
8735-31 Data Sheet  
Parameter Measurement Information  
2V  
V
CC  
SCOPE  
V
V
V
nCLK0,  
nCLK1  
Qx  
CC,  
CCA,  
CCO  
VPP  
VCMR  
Cross Points  
CLK0,  
CLK1  
nQx  
VEE  
V
EE  
1.3V 0.165V  
3.3V Output Load AC Test Circuit  
Differential Input Level  
nCLK0,  
nCLK1  
VOH  
VOL  
nQx  
Qx  
CLK0,  
CLK1  
VOH  
VOL  
nFB_IN  
nQy  
Qy  
FB_IN  
t(Ø)  
Phase Jitter and Static Phase Offset  
Output Skew  
nQ[0:4]  
Q[0:4]  
nQ[0:4]  
Q[0:4]  
tcycle n  
tcycle n+1  
tjit(cc) = tcycle n – tcycle n+1  
|
|
1000 Cycles  
Cycle-to-Cycle Jitter  
Output Rise/Fall Time  
©2016 Integrated Device Technology, Inc  
8
Revision B January 27, 2016  
8735-31 Data Sheet  
Parameter Measurement Information, continued  
nQ[0:4]  
nCLK0,  
nCLK1  
Q[0:4]  
CLK0,  
CLK1  
nQ[0:4]  
Q[0:4]  
tPD  
Output Duty Cycle/Pulse Width/Period  
Application Information  
Propagation Delay  
Recommendations for Unused Input and Output Pins  
Inputs:  
Outputs:  
LVCMOS Control Pins  
LVPECL Outputs  
All control pins have internal pullups or pulldowns; additional  
resistance is not required but can be added for additional protection.  
A 1kresistor can be used.  
All unused LVPECL outputs can be left floating. We recommend that  
there is no trace attached. Both sides of the differential output pair  
should either be left floating or terminated.  
CLK/nCLK Inputs  
For applications not requiring the use of the differential input, both  
CLK and nCLK can be left floating. Though not required, but for  
additional protection, a 1kresistor can be tied from CLK to ground.  
FB_IN/nFB_IN Inputs  
For applications not requiring the use of the differential input, both  
FB_IN and nFB_IN can be left floating. Though not required, but for  
additional protection, a 1kresistor can be tied from FB_IN to  
ground.  
©2016 Integrated Device Technology, Inc  
9
Revision B January 27, 2016  
8735-31 Data Sheet  
Power Supply Filtering Technique  
As in any high speed analog circuitry, the power supply pins are  
vulnerable to random noise. To achieve optimum jitter perform- ance,  
power supply isolation is required. The 8735-31 provides separate  
power supplies to isolate any high switching noise from the outputs  
to the internal PLL. VCC, VCCA and VCCO should be individually  
connected to the power supply plane through vias, and 0.01µF  
bypass capacitors should be used for each pin. Figure 1 illustrates  
this for a generic VCC pin and also shows that VCCA requires that an  
additional 10resistor along with a 10F bypass capacitor be  
connected to the VCCA pin. The 10resistor can also be replaced by  
a ferrite bead.  
3.3V  
0.01µF  
VCC  
VCCA  
0.01µF 10µF  
Figure 1. Power Supply Filtering  
Wiring the Differential Input to Accept Single Ended Levels  
Figure 2 shows how the differential input can be wired to accept  
single ended levels. The reference voltage V_REF = VCC/2 is  
generated by the bias resistors R1, R2 and C1. This bias circuit  
should be located as close as possible to the input pin. The ratio of  
R1 and R2 might need to be adjusted to position the V_REF in the  
center of the input voltage swing. For example, if the input clock swing  
VCC  
R1  
1K  
Single Ended Clock Input  
is only 2.5V and VCC = 3.3V, V_REF should be 1.25V and R2/R1 =  
0.609.  
CLKx  
V_REF  
nCLKx  
C1  
0.1u  
R2  
1K  
Figure 2. Single-Ended Signal Driving Differential Input  
©2016 Integrated Device Technology, Inc  
10  
Revision B January 27, 2016  
8735-31 Data Sheet  
Differential Clock Input Interface  
The CLK /nCLK accepts LVDS, LVPECL, LVHSTL, SSTL, HCSL  
and other differential signals. Both VSWING and VOH must meet the  
VPP and VCMR input requirements. Figures 3A to 3F show interface  
examples for the HiPerClockS CLK/nCLK input driven by the most  
common driver types. The input interfaces suggested here are  
examples only. Please consult with the vendor of the driver  
component to confirm the driver termination requirements. For  
example, in Figure 3A, the input termination applies for IDT  
HiPerClockS open emitter LVHSTL drivers. If you are using an  
LVHSTL driver from another vendor, use their termination  
recommendation.  
3.3V  
1.8V  
Zo = 50Ω  
CLK  
Zo = 50Ω  
nCLK  
Differential  
Input  
LVHSTL  
R1  
50Ω  
R2  
50Ω  
IDT  
LVHSTL Driver  
Figure 3A. HiPerClockS CLK/nCLK Input  
Driven by an IDT Open Emitter  
HiPerClockS LVHSTL Driver  
Figure 3B. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V LVPECL Driver  
Figure 3C. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V LVPECL Driver  
Figure 3D. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V LVDS Driver  
2.5V  
3.3V  
3.3V  
3.3V  
2.5V  
R3  
R4  
120Ω  
120Ω  
*R3  
Zo = 60Ω  
Zo = 60Ω  
CLK  
CLK  
nCLK  
nCLK  
Differential  
Input  
Differential  
Input  
*R4  
SSTL  
HCSL  
R1  
R2  
120Ω  
120Ω  
Figure 3E. HiPerClockS CLK/nCLK Input  
Driven by a 3.3V HCSL Driver  
Figure 3F. HiPerClockS CLK/nCLK Input  
Driven by a 2.5V SSTL Driver  
©2016 Integrated Device Technology, Inc  
11  
Revision B January 27, 2016  
8735-31 Data Sheet  
Termination for 3.3V LVPECL Outputs  
The clock layout topology shown below is a typical termination for  
LVPECL outputs. The two different layouts mentioned are  
recommended only as guidelines.  
transmission lines. Matched impedance techniques should be  
used to maximize operating frequency and minimize signal  
distortion. Figures 4A and 4B show two different layouts which are  
recommended only as guidelines. Other suitable clock layouts  
may exist and it would be recommended that the board designers  
simulate to guarantee compatibility across all printed circuit and  
clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECL compatible outputs. Therefore, terminating  
resistors (DC current path to ground) or current sources must be  
used for functionality. These outputs are designed to drive 50  
3.3V  
R3  
R4  
125  
125  
3.3V  
3.3V  
Zo = 50  
Zo = 50  
+
_
Input  
R1  
84  
R2  
84  
Figure 4A. 3.3V LVPECL Output Termination  
Figure 4B. 3.3V LVPECL Output Termination  
©2016 Integrated Device Technology, Inc  
12  
Revision B January 27, 2016  
8735-31 Data Sheet  
Layout Guideline  
The schematic of the 8735-31 layout example is shown in Figure 5A.  
The 8735-31 recommended PCB board layout for this example is  
shown in Figure 5B. This layout example is used as a general  
guideline. The layout in the actual system will depend on the  
selected component types, the density of the components, the  
density of the traces, and the stacking of the P.C. board.  
Figure 5A. 8735-31 LVPECL Zero Delay Buffer Schematic Example  
VCC  
SP = Space (i.e. not intstalled)  
R7  
VCC  
VCCA  
RU2  
SP  
RU3  
1K  
RU4  
1K  
RU5  
SP  
RU6  
1K  
RU7  
SP  
SEL[3:0] = 0101,  
Divide by 2  
10  
C11  
CLK_SEL  
0.01u  
C16  
10u  
PLL_SEL  
SEL0  
SEL1  
SEL2  
SEL3  
Zo = 50 Ohm  
Zo = 50 Ohm  
(77.76 MHz)  
+
-
RD2  
1K  
RD3  
SP  
RD4  
SP  
RD5  
1K  
RD6  
SP  
RD7  
1K  
VCC  
VCCO  
LVPECL_input  
R5  
50  
R4  
50  
U1  
3.3V  
(155.52 MHz)  
Zo = 50 Ohm  
Output  
Termination  
Example  
SEL0  
SEL1  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
SEL0  
SEL1  
VCCO  
R6  
50  
Q3  
nQ3  
Q2  
nQ2  
Q1  
CLK0  
nCLK0  
CLK1  
nCLK1  
CLK_SEL  
MR  
Zo = 50 Ohm  
CLK_SEL  
nQ1  
VCCO  
3.3V PECL Driver  
Bypass capacitor located near the power pins  
R8  
50  
R9  
50  
(U1-9)  
(U1-32)  
VCC  
8735-31  
VCC=3.3V  
C1  
0.1uF  
C6  
0.1uF  
VCCO=3.3V  
R10  
50  
SEL2  
(U1-16)  
(U1-17)  
(U1-24)  
(U1-25)  
VCCO  
R2  
50  
R1  
50  
C2  
0.1uF  
C4  
0.1uF  
C5  
0.1uF  
C7  
0.1uF  
R3  
50  
©2016 Integrated Device Technology, Inc  
13  
Revision B January 27, 2016  
8735-31 Data Sheet  
The following component footprints are used in this layout  
example. All the resistors and capacitors are size 0603.  
clock signal traces should be routed first and should be locked  
prior to routing other signal traces.  
Power and Grounding  
• The differential 50output traces should have the  
same length.  
Place the decoupling capacitors C1, C6, C2, C4, C5, and C7, as  
close as possible to the power pins. If space allows, placement of  
the decoupling capacitor on the component side is preferred. This  
can reduce unwanted inductance between the decoupling  
capacitor and the power pin caused by the via.  
• Avoid sharp angles on the clock trace. Sharp angle  
turns cause the characteristic impedance to change on  
the transmission lines.  
• Keep the clock traces on the same layer. Whenever  
possible, avoid placing vias on the clock traces.  
Placement of vias on the traces can affect the trace  
characteristic impedance and hence degrade signal  
integrity.  
Maximize the power and ground pad sizes and number of vias  
capacitors. This can reduce the inductance between the power  
and ground planes and the component power and ground pins.  
The RC filter consisting of R7, C11, and C16 should be placed as  
close to the VCCA pin as possible.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow a separation of at least three trace  
widths between the differential clock trace and the other  
signal trace.  
Clock Traces and Termination  
Poor signal integrity can degrade the system performance or  
cause system failure. In synchronous high-speed digital systems,  
the clock signal is less tolerant to poor signal integrity than other  
signals. Any ringing on the rising or falling edge or excessive ring  
back can cause system failure. The shape of the trace and the  
trace delay might be restricted by the available space on the  
board and the component location. While routing the traces, the  
• Make sure no other signal traces are routed between  
the clock trace pair.  
• The matching termination resistors should be located  
as close to the receiver input pins as possible.  
GND  
R7  
C16 C11  
C7  
VCCO  
VCC  
C6  
C5  
U1  
Pin 1  
VCCA  
VIA  
50 Ohm  
Traces  
C4  
C1  
C2  
Figure 5B. PCB Board Layout for 8735-31  
©2016 Integrated Device Technology, Inc  
14  
Revision B January 27, 2016  
8735-31 Data Sheet  
Power Considerations  
This section provides information on power dissipation and junction temperature for the 8735-31.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the 8735-31 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * ICC_MAX = 3.465V * 150mA = 519.75mW  
Power (outputs)MAX = 30mW/Loaded output pair  
If all outputs are loaded, the total power is 5 * 30mW = 150mW  
Total Power_MAX = (3.465V, with all outputs switching) = 519.75mW + 150mW = 669.75mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device.  
The maximum recommended junction temperature for HiPerClockS devices is 125°C.  
The equation for Tj is as follows: Tj = JA * Pd_total + TA  
Tj = Junction Temperature  
JA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance JA must be used. Assuming no air flow  
and a multi-layer board, the appropriate value is 42.1°C/W per Table 7 below.  
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:  
70°C + 0.670W * 42.1°C/W = 98.2°C. This is well below the limit of 125°C.  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow and the type  
of board (multi-layer).  
Table 7. Thermal Resistance JA for 32 Lead LQFP, Forced Convection  
JA vs. Air Flow  
Linear Feet per Minute  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
55.9°C/W  
42.1°C/W  
50.1°C/W  
39.4°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
©2016 Integrated Device Technology, Inc  
15  
Revision B January 27, 2016  
8735-31 Data Sheet  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 6.  
VCCO  
Q1  
VOUT  
RL  
50Ω  
VCCO - 2V  
Figure 6. LVPECL Driver Circuit and Termination  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination voltage of  
VCCO – 2V.  
For logic high, VOUT = VOH_MAX = VCCO_MAX – 0.9V  
(VCCO_MAX – VOH_MAX) = 0.9V  
For logic low, VOUT = VOL_MAX = VCCO_MAX – 1.7V  
(VCCO_MAX – VOL_MAX) = 1.7V  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
Pd_H = [(VOH_MAX – (VCCO_MAX – 2V))/RL] * (VCCO_MAX – VOH_MAX) = [(2V – (VCCO_MAX – VOH_MAX))/RL] * (VCCO_MAX – VOH_MAX) =  
[(2V – 0.9V)/50] * 0.9V = 19.8mW  
Pd_L = [(VOL_MAX – (VCCO_MAX – 2V))/RL] * (VCCO_MAX – VOL_MAX) = [(2V – (VCCO_MAX – VOL_MAX))/RL] * (VCCO_MAX – VOL_MAX) =  
[(2V – 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
©2016 Integrated Device Technology, Inc  
16  
Revision B January 27, 2016  
8735-31 Data Sheet  
Reliability Information  
Table 8. JA vs. Air Flow Table for a 32 Lead LQFP  
JA vs. Air Flow  
Linear Feet per Minute  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
67.8°C/W  
47.9°C/W  
55.9°C/W  
42.1°C/W  
50.1°C/W  
39.4°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
Transistor Count  
The transistor count for 8735-31 is: 2969  
©2016 Integrated Device Technology, Inc  
17  
Revision B January 27, 2016  
8735-31 Data Sheet  
Package Outline and Package Dimensions  
Package Outline - M Suffix for 32 Lead LQFP  
Table 6. Package Dimensions for 32 Lead LQFP  
JEDEC Variation: BBC - HD  
All Dimensions in Millimeters  
Symbol  
Minimum  
Nominal  
Maximum  
N
32  
A
1.60  
0.15  
1.45  
0.45  
0.20  
A1  
0.05  
1.35  
0.30  
0.09  
0.10  
1.40  
0.37  
A2  
b
c
D & E  
D1 & E1  
D2 & E2  
e
9.00 Basic  
7.00 Basic  
5.60 Ref.  
0.80 Basic  
0.60  
L
0.45  
0°  
0.75  
7°  
ccc  
0.10  
Reference Document: JEDEC Publication 95, MS-026  
©2016 Integrated Device Technology, Inc  
18  
Revision B January 27, 2016  
8735-31 Data Sheet  
Ordering Information  
Table 10. Ordering Information  
Part/Order Number  
8735AY-31LF  
8735AY-31LFT  
Marking  
ICS8735AY31LF  
ICS8735AY31LF  
Package  
“Lead-Free” 32 Lead LQFP  
“Lead-Free” 32 Lead LQFP  
Shipping Packaging  
Tray  
Temperature  
0C to 70C  
0C to 70C  
Tape & Reel  
©2016 Integrated Device Technology, Inc  
19  
Revision B January 27, 2016  
8735-31 Data Sheet  
Revision History Sheet  
Rev  
Table  
Page  
Description of Change  
Date  
A
T10  
16  
Ordering Information Table - added Lead-Free marking.  
12/19/07  
9
Added Recommendations for Unused Input and Output Pins section.  
Updated Differential Clock input Interface section.  
A
11  
19  
2/11/08  
T10  
Ordering Information Table - deleted “ICS” from Part/Order Number.  
1
Pin Assignment -due to format conversion dated February 11, 2008 datasheet,  
corrected typo on pin 19 from nQ1 to Q1 and, pin 10 from FB_IN to nFB_IN.  
B
B
2/18/09  
7/16/15  
T10  
T10  
19  
Ordering Information - removed leaded devices.  
Updated datasheet format.  
1
Features Section - removed reference to leaded packages.  
Ordering Information - Deleted LF note below table.  
Updated header and footer.  
B
19  
1/27/16  
©2016 Integrated Device Technology, Inc  
20  
Revision B January 27, 2016  
8735-31 Data Sheet  
Corporate Headquarters  
6024 Silver Creek Valley Road  
San Jose, CA 95138 USA  
www.IDT.com  
Sales  
Tech Support  
www.idt.com/go/support  
1-800-345-7015 or 408-284-8200  
Fax: 408-284-2775  
www.IDT.com/go/sales  
DISCLAIMER Integrated Device Technology, Inc. (IDT) reserves the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance specifications  
and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein  
is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability,  
or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.  
IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably  
expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property of  
IDT or their respective third party owners.  
For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary.  
Copyright ©2016 Integrated Device Technology, Inc. All rights reserved.  

相关型号:

8735AY-31LFT

1:5, Differential-to-3.3V LVPECL Zero Delay Clock Generator
IDT

8735AYI-01

PLL Based Clock Driver, 8735 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026BBA, LQFP-32
IDT

8735AYI-01LF

PLL Based Clock Driver, 8735 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026BBA, LQFP-32
IDT

8735AYI-01LFT

PLL Based Clock Driver, 8735 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, MS-026BBA, LQFP-32
IDT

8735AYI-01T

PLL Based Clock Driver, 8735 Series, 5 True Output(s), 0 Inverted Output(s), PQFP32, 7 X 7 MM, 1.40 MM HEIGHT, MS-026BBA, LQFP-32
IDT

8735AYI-31

Clock Driver, PQFP32
IDT

8735AYI-31LF

Clock Driver, PQFP32
IDT

8735AYI-31LFT

Clock Driver, PQFP32
IDT

8735AYI-31T

Clock Driver, PQFP32
IDT

87368-0824

2.00mm (.079") Pitch Milli-Grid Receptacle, Surface Mount, Side Entry
MOLEX

87368-0825

2.00mm (.079") Pitch Milli-Grid Receptacle, Surface Mount, Side Entry, 0.76um (30u") Gold (Au) Plating
MOLEX

87368-1024

2.00mm (.079) Pitch Milli-Grid™ Receptacle, Surface Mount, Side Entry, 0.38μm (15μ) Gold (Au) Plating, 10 Circuits, Leadfree
MOLEX