ICS8431CM-01 [ICSI]

200MHZ, LOW JITTER, LVPECL FREQUENCY SYNTHESIZER; 200MHZ ,低抖动, LVPECL频率合成器
ICS8431CM-01
型号: ICS8431CM-01
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

200MHZ, LOW JITTER, LVPECL FREQUENCY SYNTHESIZER
200MHZ ,低抖动, LVPECL频率合成器

文件: 总11页 (文件大小:2085K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS8431-01  
200MHZ, LOW JITTER,  
LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
GENERAL DESCRIPTION  
FEATURES  
The ICS8431-01 is a general purpose clock Fully integrated PLL  
,&6  
frequency synthesizer for IA64/32 application and  
Differential 3.3V LVPECLoutput  
HiPerClockS™  
a member of the HiPerClockS™ family of High  
Performance Clock Solutions from ICS. The  
ICS8431-01 consists of one independent low  
200MHz output frequency  
48% to 52% duty cycle  
Crystal oscillator interface  
bandwidth PLL timing channel. A 16.666MHz crystal is used  
as the input to the on-chip oscillator. The M is configured to  
produce a fixed output frequency of 200MHz.  
Spread Spectrum Clocking (SSC) fixed at 1/2% modulation  
for environments requiring ultra low EMI. Typical10dB EMI  
reduction can be achieved with spread spectrum modulation  
Programmable features of the ICS8431-01 support four  
operational modes. The four modes are spread spectrum  
clocking (SSC), non-spread spectrum clock and two test  
modes which are controlled by the SSC_CTL[1:0] pins. Un-  
like other synthesizers, the ICS8431-01 can immediately  
change spread-spectrum operation without having to reset  
the device.  
LVTTL/ LVCMOS control inputs  
PLL bypass modes supporting in-circuit testing and on-chip  
functional block characterization  
28 lead SOIC  
In SSC mode, the output clock is modulated in order to  
achieve a reduction in EMI. In one of the PLL bypass test  
modes, the PLL is disconnected as the source to the  
differential output allowing an external source to be  
connnected to the TEST_I/O pin. This is useful for in-  
circuit testing and allows the differential output to be driven  
at a lower frequency throughout the system clock tree. In the  
other PLL bypass mode, the oscillator divider is used as the  
source to both the M and the Fout divide by 2. This is useful  
for characterizing the oscillator and internal dividers.  
RMS cycle-to-cycle jitter of 2ps  
Typical cycle-to-cycle jitter of 18ps  
0° to 85°C ambiant operating temperature  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
nc  
nc  
nc  
nc  
1
2
3
4
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
nc  
XTAL1  
OSC  
VDDI  
XTAL2  
XTAL1  
nc  
nc  
VDDA  
VEE  
XTAL2  
÷ 16  
nc  
nc  
nc  
nc  
nc  
5
6
7
8
PLL  
9
RESERVED  
nc  
PHASE  
DETECTOR  
SSC_CTL0  
SSC_CTL1  
VEE  
TEST_I/O  
VDD  
10  
11  
12  
13  
14  
VDDO  
FOUT  
nFOUT  
VEE  
VCO  
÷ 2  
FOUT  
nFOUT  
÷ M  
ICS8431-01  
28-Lead SOIC  
M Package  
TEST_I/O  
SSC_CTL0  
SSC  
Top View  
Control  
SSC_CTL1  
Logic  
ICS8431CM-01  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 5, 2001  
1
ICS8431-01  
200MHZ, LOW JITTER,  
LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Unused  
Description  
1-9, 19,  
23, 24, 28  
nc  
Unused pins.  
SSC_CTL0,  
SSC_CTL1  
10, 11  
12  
Input  
Pullup SSC control pins. LVTTL/LVCMOS interface levels.  
Ground pin for core and test output.  
GND  
Power  
Input /  
Output  
13  
TEST_ I/O  
Programmed as defined in Table 3 Function Table..  
14, 27  
15  
VDD  
GND  
Power  
Power  
Power supply pin for core and test output.  
Ground pin for output.  
These differential outputs are main output drivers for the synthesizer.  
They are compatible with terminated positive referenced LVPECL  
logic.  
16, 17  
nFOUT, FOUT  
Output  
18  
20  
VDDO  
RESERVED  
VEE  
Power  
Reserve  
Power  
Power  
Input  
Power supply pin for output.  
Reserve pin.  
21  
Ground pin.  
22  
VDDA  
PLL power supply pin.  
25, 26  
27  
XTAL1, XTAL2  
VDDI  
Crystal oscillator input.  
Input and core power supply pin. Connect to 3.3V.  
Power  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
Input Pin Capacitance  
Input Pullup Resistor  
4
pF  
KΩ  
KΩ  
RPULLUP  
51  
51  
RPULLDOWN Input Pulldown Resistor  
TABLE 3. SSC CONTROL INPUTS FUNCTION TABLE  
Inputs  
TEST_I/O  
SSC  
Outputs  
FOUT,  
nFOUT  
Operational Modes  
Source  
SSC_CTL1 SSC_CTL0  
TEST_I/O  
fXTAL ÷ 16  
÷ M  
PLL bypass; Oscillator, oscillator, M and N  
dividers test mode. NOTE 1  
0
0
1
1
0
1
0
1
Internal  
PLL  
Disabled fXTAL ÷ 32  
Enabled  
200MHz  
Test Clk  
200MHz  
Hi-Z  
Input  
Hi-Z  
Default SSC; Modulation Factor = ½ Percent  
Diagnostic Mode; NOTE 1  
(1MHz Test Clk 200MHz)  
External Disabled  
PLL Disabled  
No SSC Modulation  
NOTE 1: Used for in house debug and characterization.  
ICS8431CM-01  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 5, 2001  
2
ICS8431-01  
200MHZ, LOW JITTER,  
LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage  
4.6V  
Inputs  
Outputs  
Ambient Operating Temperature  
Storage Temperature  
-0.5V to VDD + 0.5V  
-0.5V to VDDO + 0.5V  
0°C to 85°C  
-65°C to 150°C  
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings  
are stress specifications only and functional operation of product at these condition or any conditions beyond those listed in  
the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended  
periods may affect product reliability.  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VDD = VDDA = VDDI = VDDO = 3.3V±5%, TA = 0°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VDD  
VDDO  
VDDA  
VDDI  
IEE  
Power Supply Voltage  
3.135  
3.135  
3.135  
3.135  
3.3  
3.3  
3.3  
3.3  
3.465  
3.465  
3.465  
3.465  
140  
V
V
Output Power Supply Voltage  
Analog Power Supply Voltage  
Input Power Supply Voltage  
V
V
mA  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VDD = VDDA = VDDI = VDDO = 3.3V±5%, TA = 0°C TO 85°C  
Symbol  
Parameter  
SSC_CTL0,  
Test Conditions  
Minimum Typical Maximum Units  
VIH  
Input High Voltage SSC_CTL1,  
TEST_I/O  
SSC_CTL0,  
Input Low Voltage SSC_CTL1,  
TEST_I/O  
SSC_CTL0,  
Input High Current SSC_CTL1,  
TEST_IO  
SSC_CTL0,  
Input Low Current SSC_CTL1,  
TEST_IO  
3.135V VDD 3.465V  
2
VDD + 0.3  
V
V
VIL  
IIH  
IIL  
3.135V VDD 3.465V  
VDD = VIN = 3.465V  
-0.3  
0.8  
5
µA  
µA  
VDD = 3.465V, VIN = 0V  
-150  
TABLE 4C. LVPECL DC CHARACTERISTICS, VDD = VDDA = VDDI = VDDO = 3.3V±5%, TA = 0°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
VDDO - 1.28  
VDDO - 2.0  
600  
Typical  
Maximum  
VDDO - 0.980  
VDDO - 1.7  
850  
Units  
V
VOH  
VOL  
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
V
VSWING Peak-to-Peak Output Voltage Swing  
700  
mV  
NOTE 1: Output terminated with 50to VDDO - 2V.  
ICS8431CM-01  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 5, 2001  
3
ICS8431-01  
200MHZ, LOW JITTER,  
LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
TABLE 5. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum Typical Maximum  
Fundamental  
Units  
Mode of Oscillation  
Frequency  
16.666  
MHz  
ppm  
ppm  
µW  
Frequency Tolerance  
Frequency Stability  
Drive Level  
-50  
+50  
+100  
100  
50  
-100  
Equivalent Series Resistance (ESR)  
Shunt Capacitiance  
Load Capacitiance  
Series Pin Inductance  
Operating Temperature Range  
Aging  
3
10  
3
7
pF  
18  
32  
pF  
7
nH  
0
70  
°C  
Per year @25°C  
-5  
+5  
ppm  
TABLE 6. AC CHARACTERISTICS, VDD = VDDA = VDDI = VDDO = 3.3V±5%, TA = 0°C TO 85°C, 16.666MHZ CRYSTAL  
Symbol  
Parameter  
Test Conditions  
FOUT = 200 MHz  
FOUT = 200 MHz  
FOUT = 200 MHz  
20% to 80%  
Minimum Typical Maximum Units  
tPERIOD  
Average Output Period; NOTE 2  
Cycle-to-Cycle Jitter; NOTE 2  
Output Duty Cycle; NOTE 2  
Output Rise Time; NOTE 1, 2  
Output Fall Time; NOTE 1, 2  
Crystal Input Range  
4995  
5005  
30  
ps  
ps  
18  
t
jit(cc)  
odc  
tR  
48  
300  
300  
14  
52  
%
450  
450  
600  
600  
18  
ps  
tF  
20% to 80%  
ps  
Fxtal  
16.666  
MHz  
SSC Modulation Frequency;  
NOTE 1, 2  
SSC Modulation Factor;  
NOTE 1, 2  
Fm  
30  
33.33  
0.6  
KHz  
%
Fmf  
0.4  
10  
SSCred  
Spectral Reduction; NOTE 1, 2  
Power-up to Stable Clock Output  
7
dB  
ms  
tSTABLE  
10  
NOTE 1: Spread Spectrum clocking enabled.  
NOTE 2: Outputs terminated with 50to VDDO - 2V.  
t
jit(cc), tR, tF, odc conform to JEDEC JESD65 definitions.  
ICS8431CM-01  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 5, 2001  
4
ICS8431-01  
200MHZ, LOW JITTER,  
LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
PARAMETER MEASUREMENT INFORMATION  
80%  
80%  
Vswing  
20%  
20%  
Clock Inputs  
and Outputs  
trise  
tfall  
FIGURE 1 — INPUT AND OUTPUT SLEW RATES  
X_CLK, 1X_FOUT  
nX_CLK, n1X_FOUT  
tcycle n+1  
tcycle n  
tjit(cc) = tcycle n tcycle n+1  
FIGURE 2 — CYCLE-TO-CYCLE JITTER  
nX_CLK, n1X_FOUT  
X_CLK, 1X_FOUT  
Pulse Width (tpw)  
tPERIOD  
tpw  
tPERIOD  
odc =  
FIGURE 3 — odc & tPERIOD  
ICS8431CM-01  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 5, 2001  
5
ICS8431-01  
200MHZ, LOW JITTER,  
LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
CRYSTAL INPUT AND OSCILLATOR INTERFACE  
The ICS8431-01 features an internal oscillator that uses an  
external quartz crystal as the source of its reference frequency.  
A 16.666 MHz crystal divided by 16 before being sent to the phase  
detector provides the reference frequency. The oscillator is a  
series resonant, multi-vibrator type design. This design provides  
better stability and eliminates the need for large on chip capacitors.  
Though a series resonant crystal is preferred, a parallel resonant  
crystal can be used. A parallel resonant mode crystal used in a  
series resonant circuit will exhibit a frequency of oscillation a few  
hundred ppm lower than specified. A few hundred ppm translates  
to KHz inaccuracy. In general computing applications this level  
of inaccuracy is irrelevant. If better ppm accuracy is required, an  
external capacitor can be added to a parallel resonant crystal in  
series to pin 25. Figure 1A shows how to interface with a crystal.  
ICS8431-01  
XTAL2  
(Pin 26, SOIC)  
XTAL1  
(Pin 25, SOIC)  
Optional  
Quartz Crystal Selection:  
(1) Raltron Series Resonant:AS-16.66-S-SMD-T-MI  
(2) Raltron Parallel Resonant:AS-16.66-18-SMD-T-MI  
Figures 1A, 1B, and 1C show various crystal parameters  
which are recommended only as guidelines. Figure 1A shows  
how to interface a capacitor with a parallel resonant crystal.  
Figure 1B shows the capacitor value needed for the optimum  
PPM performance over various parallel resonant crystals.  
Figure 1C shows the recommended tuning capacitance for a  
16.666MHz parallel resonant crystal.  
FIGURE 1A. CRYSTAL INTERFACE  
FIGURE 1B. Recommended tuning capacitance for various parallel  
FIGURE 1C. Recommended tuning capacitance for 16.666MHz  
parallel resonant crystal.  
resonant crystals.  
16.666MHz  
100  
60  
14.318  
50  
80  
60  
40  
20  
0
15.000  
40  
16.667  
19.440  
30  
20.000  
20  
24.000  
10  
0
10  
20  
30  
40  
50  
60  
-20  
-40  
0
14 15 16 17 18 19 20 21 22 23 24 25  
-60  
Crystal Frequency (MHz)  
-80  
-100  
Series Capacitor, C1 (pF)  
ICS8431CM-01  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 5, 2001  
6
ICS8431-01  
200MHZ, LOW JITTER,  
LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
SPREAD SPECTRUM  
Spread-spectrum clocking is a frequency modulation tech- The ICS8431-01 triangle modulation frequency deviation will  
nique for EMI reduction. When spread-spectrum is enabled, a not exceed 0.6% down-spread from the nominal clock fre-  
30KHz triangle waveform is used with 0.5% down-spread quency (+0.0%/-0.5%). An example of the amount of down  
(+0.0% / -0.5%) from the nominal 200MHz clock frequency. spread relative to the nominal clock frequency can be seen in  
An example of a triangle frequency modulation profile is shown the frequency domain, as shown in Figure 3. The ratio of this  
in Figure 2 below. The ramp profile can be expressed as:  
width to the fundamental frequency is typically 0.4%, and will  
not exceed 0.6%. The resulting spectral reduction will be  
greater than 7dB, as shown in Figure 3. It is important to note  
the ICS8431-01 7dB minimum spectral reduction is the com-  
ponent-specific EMI reduction, and will not necessarily be the  
same as the system EMI reduction.  
Fnom = Nominal Clock Frequency in Spread OFF mode  
(200MHz with 16.666MHz IN)  
Fm = Nominal Modulation Frequency (30KHz)  
δ = Modulation Factor (0.5% down spread)  
1
(1 - δ) fnom + 2 fm x δ x fnom x t when 0 < t <  
,
2 fm  
1
1
fm  
(1 - δ) fnom - 2 fm x δ x fnom x t when  
< t <  
2 fm  
Fnom  
∆ − 10 dBm  
A
B
(1 - δ) Fnom  
δ = .4%  
1/fm  
0.5/fm  
FIGURE 3. 200MHZ CLOCK OUTPUT IN FREQUENCY DOMAIN  
FIGURE 2. TRIANGLE FREQUENCY MODULATION  
(A) SPREAD-SPECTRUM OFF  
(B) SPREAD-SPECTRUM ON  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS8431-01 provides  
separate power supplies to isolate any high switching noise  
from the outputs to the internal PLL. VDD, VDDI, VDDA, and  
VDDO should be individually connected to the power supply  
plane through vias, and bypass capacitors should be used  
for each pin. To achieve optimum jitter performance, better  
power supply isolation is required. Figure 4 illustrates how a  
10along with a 10µF and a .01µF bypass capacitor should  
be connected to each power supply pin.  
3.3V  
VDD  
.01µF  
.01µF  
10Ω  
VDDA  
10 µF  
FIGURE 4. POWER SUPPLY FILTERING  
ICS8431CM-01  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 5, 2001  
7
ICS8431-01  
200MHZ, LOW JITTER,  
LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
TERMINATION FOR PECL OUTPUTS  
drive 50transmission lines. Matched impedance techniques  
should be used to maximize operating frequency and mini-  
mize signal distortion. There are a few simple termination  
schemes. Figures 5A and 5B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
The clock layout topology shown below is typical for  
IA64/32 platforms. The two different layouts mentioned are  
recommended only as guidelines.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/PECL compatible outputs. Therefore, terminat-  
ing resistors (DC current path to ground) or current sources  
must be used for functionality. These outputs are designed to  
3.3V  
Zo = 50Ω  
Zo = 50Ω  
5
2
5
Zo  
Zo  
2
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
Zo = 50Ω  
Zo = 50Ω  
VCC-2V  
RTT  
1
3
2
3
Zo  
RTT =  
Zo  
Zo  
2
(VOH + VOL / VCC 2) 2  
FIGURE 5A. LVPECL OUTPUT TERMINATION  
FIGURE 5B. LVPECL OUTPUT TERMINATION  
LAYOUT GUIDELINE  
The schematic of the ICS8431-01 layout example used in this layout guideline is shown in Figure 6A. The ICS8431-01 recommended  
PCB board layout for this example is shown in Figure 6B. This layout example is used as a general guideline. The layout in the actual  
system will depend on the selected component types, the density of the components, the density of the traces, and the stacking of  
the P.C. board.  
U1  
C6  
0.01uF  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
nc  
nc  
nc  
nc  
nc  
nc  
nc  
nc  
nc  
VDDI  
XTAL2  
XTAL1  
nc  
nc  
VDDA  
VEE  
nc  
nc  
VDDO  
FOUT  
nFOUT  
VEE  
VDD  
Termination A  
Termination  
B (not shown  
in the layout)  
X1  
R5  
10  
VDDA  
VDD0  
nc  
C3  
0.01uF  
C4  
SSC_CTL0  
SSC_CTL1  
VEE  
TEST_IO  
VDD  
VDD  
10uF  
IN+  
IN-  
R1  
125  
VDD  
Zo = 50 Ohm  
IN+  
TL1  
8431-01  
R3  
125  
R2  
50  
R1  
50  
C1  
0.1uF  
Zo = 50 Ohm  
IN-  
C2  
0.1uF  
TL2  
R2  
84  
R4  
84  
R3  
50  
FIGURE 6A. RECOMMENDED SCHEMATIC LAYOUT  
ICS8431CM-01  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 5, 2001  
8
ICS8431-01  
200MHZ, LOW JITTER,  
LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
The following component footprints are used in this layout  
example:  
the component location. While routing the traces, the clock signal  
traces should be routed first and should be locked prior to routing  
other signals traces.  
All the resistors and capacitors are size 0603.  
The traces with 50transmission lines TL1 and TL2 at  
FOUT and nFOUT should have equal delay and run ad-  
jacent to each other.Avoid sharp angles on the clock trace.  
Sharp angle turns cause the characteristic impedance to  
change on the transmission lines.  
The Crystal X1 is Raltron Part #AS-16.666-18-SMD.  
POWER AND GROUNDING  
Place the decoupling capacitors C1, C2 and C3, C4, C5, C6 as  
close as possible to the power pins. If space allows, placing the  
decoupling capacitor at the component side is preferred. This can  
reduce unwanted inductance between the decoupling capacitor  
and the power pin generated by the via.  
Keep the clock trace on same layer. Whenever possible,  
avoid any vias on the clock traces. Any via on the trace  
can affect the trace characteristic impedance and hence  
degrade signal quality.  
Maximize the pad size of the power (ground) at the decoupling  
capacitor. Maximize the number of vias between power (ground)  
and the pads. This can reduce the inductance between the power  
(ground) plane and the component power (ground) pins.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow more space between the clock trace  
and the other signal trace.  
If VDDAshares the same power supply with VDD, insert the RC  
filter R5, C3, and C4 in between. Place this RC filter as close to  
the VDDAas possible.  
Make sure no other signal trace is routed between the  
clock trace pair.  
The matching termination resistors R1, R2, R3 and R4 should be  
located as close to the receiver input pins as possible. Other termi-  
nation scheme can also be used but is not shown in this example.  
CLOCK TRACES AND TERMINATION  
The component placements, locations and orientations should  
be arranged to achieve the best clock signal quality. Poor clock  
signal quality can degrade the system performance or cause  
system failure. In the synchronous high-speed digital system,  
the clock signal is less tolerable to poor signal quality than other  
signals. Any ringing on the rising or falling edge or excessive ring  
back can cause system failure. The trace shape and the trace  
delay might be restricted by the available space on the board and  
CRYSTAL  
The crystal X1 should be located as close as possible to the pins  
26 (XTAL1) and 25 (XTAL2). The trace length between the X1  
and U1 should be kept to a minimum to avoid unwanted parasitic  
inductance and capacitance. Other signal traces should not be  
routed near the crystal traces.  
U1  
ICS8431-01  
GND  
VDD  
C6  
X1  
Signals  
VIA  
C3  
C4  
R5  
Close to the input  
pins of the  
receiver  
R1  
C2  
R2  
TL1 (50 Ohm)  
TL2 (50 Ohm)  
IN+  
IN-  
C1  
R3  
R4  
FIGURE 6B. PCB BOARD LAYOUT FOR ICS8431-01  
ICS8431CM-01  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 5, 2001  
9
ICS8431-01  
200MHZ, LOW JITTER,  
LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
PACKAGE OUTLINE - M SUFFIX  
C
N
28  
15  
14  
L
E
H
1
h x 45º  
α
D
A2  
A
e
A1  
SEATING  
PLANE  
B
.10 (.004)  
TABLE 7. PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
Inches  
MIN  
MAX  
MIN  
MAX  
N
A
28  
--  
2.65  
--  
--  
0.104  
--  
A1  
A2  
B
0.10  
2.05  
0.33  
0.18  
17.70  
7.40  
0.0040  
0.081  
0.013  
0.007  
0.697  
0.291  
2.55  
0.51  
0.32  
18.40  
7.60  
0.100  
0.020  
0.013  
0.724  
0.299  
C
D
E
e
1.27 BASIC  
0.050 BASIC  
H
h
10.00  
0.25  
0.40  
0°  
10.65  
0.75  
1.27  
8°  
0.394  
0.010  
0.016  
0°  
0.419  
0.029  
0.050  
8°  
L
α
REFERENCE DOCUMENT: JEDEC PUBLICATION 95, MS-013, MO-119  
ICS8431CM-01  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 5, 2001  
10  
ICS8431-01  
200MHZ, LOW JITTER,  
LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
TABLE 8. ORDERING INFORMATION  
Part/Order Number  
ICS8431CM-01  
Marking  
Package  
28 Lead SOIC  
Count  
26 Per Tube  
1000  
Temperature  
0°C to 85°C  
0°C to 85°C  
ICS8431CM-01  
ICS8431CM-01  
ICS8431CM-01T  
28 Lead SOIC on Tape and Reel  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are  
not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS  
product for use in life support devices or critical medical instruments.  
ICS8431CM-01  
www.icst.com/products/hiperclocks.html  
REV. A JUNE 5, 2001  
11  

相关型号:

ICS8431CM-01LFT

Clock Generator, 200MHz, PDSO28, 7.5 X 18.05 MM, 2.25 MM HEIGHT, MS-013, MO-119, SOIC-28
IDT

ICS8431CM-01T

200MHZ, LOW JITTER, LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8431CM-11

255MHZ, LOW JITTER, LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8431CM-11

Clock Generator, 255MHz, PDSO28, 7.50 X 18.05, 2.25 MM HEIGHT, SOIC-28
IDT

ICS8431CM-11LFT

Clock Generator, 255MHz, PDSO28, 7.50 X 18.05, 2.25 MM HEIGHT, SOIC-28
IDT

ICS8431CM-11T

255MHZ, LOW JITTER, LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8431CM-11T

Clock Generator, 255MHz, PDSO28, 7.50 X 18.05, 2.25 MM HEIGHT, SOIC-28
IDT

ICS8431DMI-01

Clock Generator, 200MHz, PDSO28, 7.50 X 18.05 X 2.25 MM, MS-013, MO-119, SOIC-28
IDT

ICS8431DMI-01LF

Clock Generator, 200MHz, PDSO28, 7.50 X 18.05 X 2.25 MM, MS-013, MO-119, SOIC-28
IDT

ICS8431DMI-01LFT

Clock Generator, 200MHz, PDSO28, 7.50 X 18.05 X 2.25 MM, MS-013, MO-119, SOIC-28
IDT

ICS8431DMI-01T

Clock Generator, 200MHz, PDSO28, 7.50 X 18.05 X 2.25 MM, MS-013, MO-119, SOIC-28
IDT

ICS8431EM-01LF

Clock Generator, 200MHz, PDSO28, 7.50 X 18.05 MM, 2.25 MM, MS-013, MO-119, SOIC-28
IDT