ICS8431CM-01LFT [IDT]

Clock Generator, 200MHz, PDSO28, 7.5 X 18.05 MM, 2.25 MM HEIGHT, MS-013, MO-119, SOIC-28;
ICS8431CM-01LFT
型号: ICS8431CM-01LFT
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Clock Generator, 200MHz, PDSO28, 7.5 X 18.05 MM, 2.25 MM HEIGHT, MS-013, MO-119, SOIC-28

时钟 光电二极管 外围集成电路 晶体
文件: 总15页 (文件大小:319K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS8431-01  
200MHZ, LOW JITTER,  
CRYSTAL OSCILLATOR-TO-3.3V LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
GENERAL DESCRIPTION  
FEATURES  
The ICS8431-01 is a general purpose clock Fully integrated PLL  
frequency synthesizer for IA64/32 applications  
Differential 3.3V LVPECLoutput  
HiPerClockS™  
and a member of the HiPerClockS™ family of High  
Performance Clock Solutions from ICS. The  
ICS8431-01 consists of one independent low  
Crystal oscillator interface  
Output frequency: 200MHz  
48% to 52% duty cycle  
bandwidth PLL timing channel. A 16.666MHz crystal is used  
as the input to the on-chip oscillator. The M divide is config-  
ured to produce a fixed output frequency of 200MHz.  
Spread Spectrum Clocking (SSC) fixed at 1/2% modulation  
for environments requiring ultra low EMI. Typical10dB EMI  
reduction can be achieved with spread spectrum modulation  
Programmable features of the ICS8431-01 support four  
operational modes. The four modes are spread spectrum  
clocking (SSC), non-spread spectrum clocking and two test  
modes which are controlled by the SSC_CTL[1:0] pins. Un-  
like other synthesizers, the ICS8431-01 can immediately  
change spread-spectrum operation without having to reset  
the device.  
PLLbypass modes supporting in-circuit testing and on-chip  
functional block characterization  
Cycle-to-cycle jitter: 30ps (maximum)  
3.3V supply voltage  
In SSC mode, the output clock is modulated in order to  
achieve a reduction in EMI. In one of the PLL bypass test  
modes, the PLL is disconnected as the source to the  
differential output allowing an external source to be  
connnected to the TEST_I/O pin. This is useful for in-  
circuit testing and allows the differential output to be driven  
at a lower frequency throughout the system clock tree. In the  
other PLL bypass mode, the oscillator divider is used as the  
source to both the M divide and the Fout divide by 2. This is  
useful for characterizing the oscillator and internal dividers.  
0° to 85°C Ambient operating temperature  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
nc  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
nc  
XTAL1  
OSC  
nc  
nc  
2
3
VCC  
XTAL2  
XTAL1  
nc  
XTAL2  
nc  
nc  
4
5
÷ 16  
nc  
nc  
6
7
nc  
VCCA  
VEE  
nc  
8
PLL  
nc  
9
RESERVED  
nc  
PHASE  
DETECTOR  
SSC_CTL0  
SSC_CTL1  
VEE  
10  
11  
12  
13  
14  
VCCO  
FOUT  
nFOUT  
VEE  
VCO  
÷ 2  
TEST_I/O  
VCC  
FOUT  
nFOUT  
÷ M  
ICS8431-01  
TEST_I/O  
28-Lead SOIC  
7.5mm x 18.05mm x 2.25mm package body  
SSC_CTL0  
SSC  
M Package  
Top View  
Control  
SSC_CTL1  
Logic  
8431CM-01  
www.icst.com/products/hiperclocks.html  
REV. B FEBRUARY 3, 2003  
1
ICS8431-01  
200MHZ, LOW JITTER,  
CRYSTAL OSCILLATOR-TO-3.3V LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Unused  
Description  
1-9, 19,  
23, 24, 28  
nc  
No connect.  
SSC_CTL0,  
SSC_CTL1  
10, 11  
12, 15, 21  
13  
Input  
Pullup SSC control pins. LVTTL/LVCMOS interface levels.  
Negative supply pins. Connect all VEE pins to board ground.  
Programmed as defined in Table 3 Function Table.  
Core supply pins.  
VEE  
TEST_ I/O  
VCC  
Power  
Input /  
Output  
14, 27  
16, 17  
Power  
Differential output for the synthesizer. Compatible with terminated  
positive reference LVPECL logic.  
nFOUT, FOUT  
Output  
18  
20  
VCCO  
RESERVED  
VCCA  
Power  
Reserve  
Power  
Input  
Output supply pin.  
Reserve pin.  
22  
Analog supply pin.  
Crystal oscillator inputs.  
25, 26  
XTAL1, XTAL2  
NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
Input Pin Capacitance  
Input Pullup Resistor  
4
pF  
RPULLUP  
51  
KΩ  
TABLE 3. SSC CONTROL INPUT FUNCTION TABLE  
Inputs  
TEST_I/O  
SSC  
Outputs  
Operational Modes  
FOUT,  
Source  
SSC_CTL1 SSC_CTL0  
TEST_I/O  
nFOUT  
fXTAL ÷ 16  
÷ M  
PLL bypass; oscillator, M and N dividers test  
mode. NOTE 1  
0
0
1
1
0
1
0
1
Internal  
PLL  
Disabled fXTAL ÷ 32  
Enabled  
200MHz  
Test Clk  
200MHz  
Hi-Z  
Input  
Hi-Z  
Default SSC; Modulation Factor = ½ Percent  
Diagnostic Mode; NOTE 1  
(1MHz Test Clk 200MHz)  
External Disabled  
PLL Disabled  
No SSC Modulation  
NOTE 1: Used for in house debug and characterization.  
8431CM-01  
www.icst.com/products/hiperclocks.html  
REV. B FEBRUARY 3, 2003  
2
ICS8431-01  
200MHZ, LOW JITTER,  
CRYSTAL OSCILLATOR-TO-3.3V LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device. These ratings are stress specifications only. Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
CC  
Inputs, V  
-0.5V to VCC + 0.5 V  
-0.5V to VCCO + 0.5V  
I
Outputs, VO  
Package Thermal Impedance, θJA 39.7°C/W (0 lfpm)  
Storage Temperature, T -65°C to 150°C  
STG  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V±5%, TA = 0°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VCC  
VCCO  
VCCA  
IEE  
Core Supply Voltage  
3.135  
3.135  
3.135  
3.3  
3.3  
3.3  
3.465  
3.465  
3.465  
140  
V
V
Output Supply Voltage  
Analog Supply Voltage  
Power Supply Current  
V
mA  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V±5%, TA = 0°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VIH  
VIL  
IIH  
Input High Voltage  
2
VCC + 0.3  
V
V
Input Low Voltage  
Input High Curren  
Input Low Current  
-0.3  
0.8  
5
SSC_CTL0,  
SSC_CTL1, TEST_IO  
SSC_CTL0,  
VCC = VIN = 3.465V  
VCC = VIN = 3.465V  
µA  
IIL  
-150  
µA  
SSC_CTL1, TEST_IO  
TABLE 4C. LVPECL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V±5%, TA = 0°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum  
VCCO - 1.4  
VCCO - 2.0  
600  
Typical  
Maximum  
VCCO - 1.0  
VCCO - 1.7  
850  
Units  
V
VOH  
Output High Voltage; NOTE 1  
VOL  
Output Low Voltage; NOTE 1  
V
VSWING  
Peak-to-Peak Output Voltage Swing  
700  
mV  
NOTE 1: Output terminated with 50to VCCO - 2V.  
8431CM-01  
www.icst.com/products/hiperclocks.html  
REV. B FEBRUARY 3, 2003  
3
ICS8431-01  
200MHZ, LOW JITTER,  
CRYSTAL OSCILLATOR-TO-3.3V LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
TABLE 5. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum Typical Maximum  
Units  
Mode of Oscillation  
Frequency  
Fundamental  
16.666  
70  
MHz  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
Series Pin Inductance  
3
3
7
7
pF  
nH  
TABLE 6. AC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V±5%, TA = 0°C TO 85°C  
Symbol  
tPERIOD  
tjit(cc)  
odc  
Parameter  
Test Conditions  
FOUT = 200MHz  
FOUT = 200MHz  
FOUT = 200MHz  
20% to 80%  
Minimum Typical Maximum Units  
Average Output Period; NOTE 2  
Cycle-to-Cycle Jitter; NOTE 2, 3  
Output Duty Cycle; NOTE 2  
Output Rise/ Fall Time; NOTE 1, 2  
Crystal Input Range  
4995  
5005  
30  
ps  
ps  
18  
48  
300  
14  
52  
%
tR / tF  
Fxtal  
450  
600  
18  
ps  
16.666  
MHz  
KHz  
%
Fm  
SSC Modulation Frequency; NOTE 1, 2  
SSC Modulation Factor; NOTE 1, 2  
Spectral Reduction; NOTE 1, 2  
Power-up to Stable Clock Output  
30  
33.33  
0.6  
Fmf  
0.4  
10  
SSCred  
tSTABLE  
7
dB  
ms  
10  
NOTE 1: Spread Spectrum clocking enabled.  
NOTE 2: Outputs terminated with 50to VCCO - 2V.  
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.  
8431CM-01  
www.icst.com/products/hiperclocks.html  
REV. B FEBRUARY 3, 2003  
4
ICS8431-01  
200MHZ, LOW JITTER,  
CRYSTAL OSCILLATOR-TO-3.3V LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
PARAMETER MEASUREMENT INFORMATION  
VCC, VCCA, VCCO = 2V  
nFOUT  
SCOPE  
Qx  
FOUT  
LVPECL  
tcycle n  
tcycle n+1  
nQx  
tjit(cc) = tcycle n tcycle n+1  
1000 Cycles  
VEE = -1.3V ± 0.165V  
3.3V OUTPUT LOAD AC TEST CIRCUIT  
CYCLE-TO-CYCLE JITTER  
nFOUT  
FOUT  
80%  
80%  
VSWING  
20%  
Pulse Width  
20%  
tPERIOD  
Clock Outputs  
t
t
F
R
tPW  
odc =  
tPERIOD  
OUTPUT RISE/FALL TIME  
odc & tPERIOD  
8431CM-01  
www.icst.com/products/hiperclocks.html  
REV. B FEBRUARY 3, 2003  
5
ICS8431-01  
200MHZ, LOW JITTER,  
CRYSTAL OSCILLATOR-TO-3.3V LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
APPLICATION INFORMATION  
CRYSTAL INPUT AND OSCILLATOR INTERFACE  
The ICS8431-01 features an internal oscillator that uses an  
external quartz crystal as the source of its reference frequency.  
A 16.666MHz crystal divided by 16 before being sent to the phase  
detector provides the reference frequency. The oscillator is a  
series resonant, multi-vibrator type design. This design provides  
better stability and eliminates the need for large on chip capacitors.  
Though a series resonant crystal is preferred, a parallel resonant  
crystal can be used. A parallel resonant mode crystal used in a  
series resonant circuit will exhibit a frequency of oscillation a few  
hundred ppm lower than specified. A few hundred ppm translates  
to KHz inaccuracy. In general computing applications this level  
of inaccuracy is irrelevant. If better ppm accuracy is required, an  
external capacitor can be added to a parallel resonant crystal in  
series to pin 25. Figure 1A shows how to interface with a crystal.  
ICS8431-01  
XTAL2  
(Pin 26, SOIC)  
XTAL1  
(Pin 25, SOIC)  
Optional  
Quartz Crystal Selection:  
(1) Raltron Series Resonant:AS-16.66-S-SMD-T-MI  
(2) Raltron Parallel Resonant:AS-16.66-18-SMD-T-MI  
Figures 1A, 1B, and 1C show various crystal parameters which  
are recommended only as guidelines. Figure 1A shows how to  
interface a capacitor with a parallel resonant crystal. Figure 1B  
shows the capacitor value needed for the optimum ppm perfor-  
mance over various parallel resonant crystals. Figure 1C shows  
the recommended tuning capacitance for a 16.666MHz parallel  
resonant crystals.  
FIGURE 1A. CRYSTAL INTERFACE  
FIGURE 1C. Recommended tuning capacitance for 16.666MHz  
FIGURE 1B. Recommended tuning capacitance for various parallel  
parallel resonant crystal.  
resonant crystals.  
16.666MHz  
100  
60  
14.318  
50  
80  
60  
40  
20  
0
15.000  
40  
16.667  
19.440  
30  
20.000  
20  
24.000  
10  
0
10  
20  
30  
40  
50  
60  
-20  
-40  
0
14 15 16 17 18 19 20 21 22 23 24 25  
-60  
Crystal Frequency (MHz)  
-80  
-100  
Series Capacitor, C1 (pF)  
8431CM-01  
www.icst.com/products/hiperclocks.html  
REV. B FEBRUARY 3, 2003  
6
ICS8431-01  
200MHZ, LOW JITTER,  
CRYSTAL OSCILLATOR-TO-3.3V LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
SPREAD SPECTRUM  
Spread-spectrum clocking is a frequency modulation tech- The ICS8431-01 triangle modulation frequency deviation will  
nique for EMI reduction. When spread-spectrum is enabled, a not exceed 0.6% down-spread from the nominal clock fre-  
30KHz triangle waveform is used with 0.5% down-spread  
quency (+0.0%/-0.5%). An example of the amount of down  
(+0.0% / -0.5%) from the nominal 200MHz clock frequency. spread relative to the nominal clock frequency can be seen in  
An example of a triangle frequency modulation profile is shown the frequency domain, as shown in Figure 2A. The ratio of this  
in Figure 2 below. The ramp profile can be expressed as:  
width to the fundamental frequency is typically 0.4%, and will  
not exceed 0.6%. The resulting spectral reduction will be  
greater than 7dB, as shown in Figure 2B. It is important to  
note the ICS8431-01 7dB minimum spectral reduction is the  
component-specific EMI reduction, and will not necessarily  
be the same as the system EMI reduction.  
Fnom = Nominal Clock Frequency in Spread OFF mode  
(200MHz with 16.666MHz IN)  
Fm = Nominal Modulation Frequency (30KHz)  
δ = Modulation Factor (0.5% down spread)  
1
(1 - δ) fnom + 2 fm x δ x fnom x t when 0 < t <  
,
2 fm  
1
1
fm  
(1 - δ) fnom - 2 fm x δ x fnom x t when  
< t <  
2 fm  
∆ − 10 dBm  
Fnom  
A
B
δ = .4%  
(1 - δ) Fnom  
0.5/fm  
1/fm  
FIGURE 2B. 200MHZ CLOCK OUTPUT IN FREQUENCY DOMAIN  
FIGURE 2A. TRIANGLE FREQUENCY MODULATION  
(A) SPREAD-SPECTRUM OFF  
(B) SPREAD-SPECTRUM ON  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS8431-01 provides  
separate power supplies to isolate any high switching noise  
from the outputs to the internal PLL. VCC, VCCA, and VCCO should  
be individually connected to the power supply plane through  
vias, and bypass capacitors should be used for each pin. To  
achieve optimum jitter performance, better power supply iso-  
lation is required. Figure 3 illustrates how a 10along with a  
10µF and a .01µF bypass capacitor should be connected to  
each VCCA pin.  
3.3V  
VCC  
10Ω  
.01µF  
.01µF  
VCCA  
10 µF  
FIGURE 3. POWER SUPPLY FILTERING  
8431CM-01  
www.icst.com/products/hiperclocks.html  
REV. B FEBRUARY 3, 2003  
7
ICS8431-01  
200MHZ, LOW JITTER,  
CRYSTAL OSCILLATOR-TO-3.3V LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
TERMINATION FOR LVPECL OUTPUTS  
The clock layout topology shown below is typical for  
drive 50transmission lines. Matched impedance techniques  
IA64/32 platforms. The two different layouts mentioned are should be used to maximize operating frequency and minimize  
recommended only as guidelines.  
signal distortion. Figures 4Aand 4B show two different layouts  
which are recommended only as guidelines. Other suitable clock  
layouts may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/LVPECLcompatible outputs. Therefore, terminat-  
ing resistors (DC current path to ground) or current sources  
must be used for functionality. These outputs are designed to  
3.3V  
Zo = 50Ω  
5
2
5
Zo  
Zo  
2
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC-2V  
RTT  
1
3
2
3
2
Zo  
RTT =  
Zo  
Zo  
(VOH + VOL / VCC 2) 2  
FIGURE 4A. LVPECL OUTPUT TERMINATION  
FIGURE 4B. LVPECL OUTPUT TERMINATION  
LAYOUT GUIDELINE  
The schematic of the ICS8431-01 layout example used in  
this layout guideline is shown in Figure 5A. The ICS8431-01  
recommended PCB board layout for this example is shown  
in Figure 5B. This layout example is used as a general guide-  
line. The layout in the actual system will depend on the  
selected component types, the density of the components,  
the density of the traces, and the stack up of the P.C. board.  
U1  
C5  
0.01uF  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
nc  
nc  
nc  
nc  
nc  
nc  
nc  
nc  
nc  
VCCI  
XTAL2  
XTAL1  
nc  
nc  
VCCA  
VEE  
nc  
nc  
VCCO  
FOUT  
nFOUT  
VEE  
VCC  
Termination A  
Termination  
B (not shown  
in the layout)  
X1  
R5  
10  
VCCA  
VCC0  
nc  
C3  
0.01uF  
C4  
SSC_CTL0  
SSC_CTL1  
VEE  
TEST_IO  
VCC  
VCC  
10uF  
IN+  
IN-  
R1  
125  
VCC  
Zo = 50 Ohm  
IN+  
TL1  
8431-01  
R3  
125  
R2  
50  
R1  
50  
C1  
0.1uF  
Zo = 50 Ohm  
IN-  
C2  
0.1uF  
TL2  
R2  
84  
R4  
84  
R3  
50  
FIGURE 5A. RECOMMENDED SCHEMATIC LAYOUT  
www.icst.com/products/hiperclocks.html  
8431CM-01  
REV. B FEBRUARY 3, 2003  
8
ICS8431-01  
200MHZ, LOW JITTER,  
CRYSTAL OSCILLATOR-TO-3.3V LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
The differential 50output traces should have same  
length.  
The following component footprints are used in this layout  
example:  
Avoid sharp angles on the clock trace. Sharp angle turns  
cause the characteristic impedance to change on the  
transmission lines.  
All the resistors and capacitors are size 0603.  
The Crystal X1 is Raltron Part #AS-16.666-18-SMD.  
POWER AND GROUNDING  
Keep the clock traces on the same layer. Whenever pos-  
sible, avoid placing vias on the clock traces. Placement  
of vias on the traces can affect the trace characteristic  
impedance and hence degrade signal integrity.  
Place the decoupling capacitors C1, C2, C3, C4, and C5, as  
close as possible to the power pins. If space allows, placment of  
the decoupling capacitor on the component side is preferred. This  
can reduce unwanted inductance between the decoupling ca-  
pacitor and the power pin generated by the via.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow a separation of at least three trace  
widths between the differential clock trace and the other  
signal trace.  
Maximize the power and ground pad sizes and number of vias  
capacitors. This can reduce the inductance between the power  
and ground planes and the component power and ground pins.  
Make sure no other signal traces are routed between the  
clock trace pair.  
The RC filter consisting of R5, C3, and C4 should be placed as  
close to the VCCA pin as possible.  
The matching termination resistors should be located as  
CLOCK TRACES AND TERMINATION  
close to the receiver input pins as possible.  
Poor signal integrity can degrade the system performance or  
cause system failure. In synchronous high-speed digital systems,  
the clock signal is less tolerant to poor signal integrity than other  
signals. Any ringing on the rising or falling edge or excessive ring  
back can cause system failure. The shape of the trace and the  
trace delay might be restricted by the available space on the board  
and the component location. While routing the traces, the clock  
signal traces should be routed first and should be locked prior to  
routing other signal traces.  
The matching termination resistors R1, R2, R3 and R4 should  
be located as close to the receiver input pins as possible.  
Other termination scheme can also be used but is not shown  
in the example.  
CRYSTAL  
The crystal X1 should be located as close as possible to the pins  
25 (XTAL1) and 26 (XTAL2). The trace length between the X1  
and U1 should be kept to a minimum to avoid unwanted parasitic  
inductance and capacitance. Other signal traces should not be  
routed near the crystal traces.  
U1  
ICS8431-01  
GND  
VCC  
C5  
X1  
Signals  
VIA  
C3  
C4  
R5  
Close to the input  
pins of the  
receiver  
R1  
C2  
R2  
TL1 (50 Ohm)  
TL2 (50 Ohm)  
IN+  
IN-  
C1  
R3  
R4  
FIGURE 5B. PCB BOARD LAYOUT FOR ICS8431-01  
www.icst.com/products/hiperclocks.html  
8431CM-01  
REV. B FEBRUARY 3, 2003  
9
ICS8431-01  
200MHZ, LOW JITTER,  
CRYSTAL OSCILLATOR-TO-3.3V LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS8431-01.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS8431-01 is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 140mA= 485.1mW  
Power (outputs)MAX = 30.2mW/Loaded Output pair  
If all outputs are loaded, the total power is 1 * 30.2mW = 30.2mW  
Total Power_MAX (3.465V, with all outputs switching) = 485.1mW + 30.2mW = 515.3mW  
2. Junction Temperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device. The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = Junction Temperature  
θJA = Junction-to-Ambient Thermal Resistance  
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)  
TA =AmbientTemperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 39.7°C/W per Table 7 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.515W * 39.7°C/W = 105.4°C. This is well below the limit of 125°C  
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
Table 7. THERMAL RESISTANCE qJA FOR 28-PIN SOIC, FORCED CONVECTION  
qJA by Velocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
76.2°C/W  
60.8°C/W  
53.2°C/W  
46.2°C/W  
39.7°C/W  
36.8°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
8431CM-01  
www.icst.com/products/hiperclocks.html  
REV. B FEBRUARY 3, 2003  
10  
ICS8431-01  
200MHZ, LOW JITTER,  
CRYSTAL OSCILLATOR-TO-3.3V LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 6.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
FIGURE 6. LVPECL DRIVER CIRCUIT AND TERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50load, and a termination  
voltage of V - 2V.  
CCO  
For logic high, V = V  
= V  
– 1.0V  
OUT  
OH_MAX  
CCO_MAX  
)
= 1.0V  
OH_MAX  
(V  
- V  
CCO_MAX  
For logic low, V = V  
= V  
– 1.7V  
OUT  
OL_MAX  
CCO_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
/R ] * (V  
Pd_H = [(V  
(V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
- V ) =  
OH_MAX  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
_MAX  
OH_MAX  
CCO_MAX  
L
CCO  
L
[(2V - 1V)/50] * 1V = 20.0mW  
))  
/R ] * (V  
Pd_L = [(V  
(V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
L
CCO  
L
[(2V - 1.7V)/50] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30.2mW  
8431CM-01  
www.icst.com/products/hiperclocks.html  
REV. B FEBRUARY 3, 2003  
11  
ICS8431-01  
200MHZ, LOW JITTER,  
CRYSTAL OSCILLATOR-TO-3.3V LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
RELIABILITY INFORMATION  
TABLE 8. θJAVS. AIR FLOW TABLE  
qJA by Velocity (Linear Feet per Minute)  
0
200  
500  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
76.2°C/W  
60.8°C/W  
53.2°C/W  
46.2°C/W  
39.7°C/W  
36.8°C/W  
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS8431-01 is: 5323  
8431CM-01  
www.icst.com/products/hiperclocks.html  
REV. B FEBRUARY 3, 2003  
12  
ICS8431-01  
200MHZ, LOW JITTER,  
CRYSTAL OSCILLATOR-TO-3.3V LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
PACKAGE OUTLINE - M SUFFIX  
TABLE 9. PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
MINIMUM  
MAXIMUM  
N
A
28  
--  
2.65  
--  
A1  
A2  
B
0.10  
2.05  
0.33  
0.18  
17.70  
7.40  
2.55  
0.51  
0.32  
18.40  
7.60  
C
D
E
e
1.27 BASIC  
H
h
10.00  
0.25  
0.40  
0°  
10.65  
0.75  
1.27  
8°  
L
α
REFERENCE DOCUMENT: JEDEC PUBLICATION 95, MS-013, MO-119  
8431CM-01  
www.icst.com/products/hiperclocks.html  
REV. B FEBRUARY 3, 2003  
13  
ICS8431-01  
200MHZ, LOW JITTER,  
CRYSTAL OSCILLATOR-TO-3.3V LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
TABLE 10. ORDERING INFORMATION  
Part/Order Number  
Marking  
Package  
28 Lead SOIC  
Count  
26 Per Tube  
1000  
Temperature  
0°C to 85°C  
0°C to 85°C  
ICS8431CM-01  
ICS8431CM-01T  
ICS8431CM-01  
ICS8431CM-01  
28 Lead SOIC on Tape and Reel  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are  
not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS  
product for use in life support devices or critical medical instruments.  
8431CM-01  
www.icst.com/products/hiperclocks.html  
REV. B FEBRUARY 3, 2003  
14  
ICS8431-01  
200MHZ, LOW JITTER,  
CRYSTAL OSCILLATOR-TO-3.3V LVPECLFREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Incꢀ  
REVISION HISTORY SHEET  
Rev  
Table  
Page  
Description of Change  
Date  
B
T6  
4
9
Updated tjit(cc) row from 13ps Typical to 18ps Typical; 25ps Max. to 30ps Max.  
Updated Figures 8A and 8B, LVPECL Output Termination.  
12/7/01  
B
B
T5  
4
Crystal Characteristics table, ESR row value updated from 50Max. to 70Max.  
1/10/02  
6/17/02  
T1  
T1  
2
2
2
3
5
Pin Description table, revised VEE description.  
Pin Description table, revised VCC description.  
T2  
Pin Characteristics table, deleted RPULLDOWN row.  
T4A  
Power Supply table, changed VCC parameter to correspond with description.  
B
2/3/03  
3.3V Output Load AC Test diagram, corrected VEE equation to read -1.3V±0.165V  
from 1.3V±0.135V.  
8
9
Updated Figure 2B 200MHz Clock Output in Frequency Domain plot.  
Updated Figures 4A & 4B LVPECL Output Termination Diagrams.  
8431CM-01  
www.icst.com/products/hiperclocks.html  
REV. B FEBRUARY 3, 2003  
15  

相关型号:

ICS8431CM-01T

200MHZ, LOW JITTER, LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8431CM-11

255MHZ, LOW JITTER, LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8431CM-11

Clock Generator, 255MHz, PDSO28, 7.50 X 18.05, 2.25 MM HEIGHT, SOIC-28
IDT

ICS8431CM-11LFT

Clock Generator, 255MHz, PDSO28, 7.50 X 18.05, 2.25 MM HEIGHT, SOIC-28
IDT

ICS8431CM-11T

255MHZ, LOW JITTER, LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8431CM-11T

Clock Generator, 255MHz, PDSO28, 7.50 X 18.05, 2.25 MM HEIGHT, SOIC-28
IDT

ICS8431DMI-01

Clock Generator, 200MHz, PDSO28, 7.50 X 18.05 X 2.25 MM, MS-013, MO-119, SOIC-28
IDT

ICS8431DMI-01LF

Clock Generator, 200MHz, PDSO28, 7.50 X 18.05 X 2.25 MM, MS-013, MO-119, SOIC-28
IDT

ICS8431DMI-01LFT

Clock Generator, 200MHz, PDSO28, 7.50 X 18.05 X 2.25 MM, MS-013, MO-119, SOIC-28
IDT

ICS8431DMI-01T

Clock Generator, 200MHz, PDSO28, 7.50 X 18.05 X 2.25 MM, MS-013, MO-119, SOIC-28
IDT

ICS8431EM-01LF

Clock Generator, 200MHz, PDSO28, 7.50 X 18.05 MM, 2.25 MM, MS-013, MO-119, SOIC-28
IDT

ICS8431EM-01LFT

Clock Generator, 200MHz, PDSO28, 7.50 X 18.05 MM, 2.25 MM, MS-013, MO-119, SOIC-28
IDT