ICS8431CM-11 [ICSI]

255MHZ, LOW JITTER, LVPECL FREQUENCY SYNTHESIZER; 255MHZ ,低抖动, LVPECL频率合成器
ICS8431CM-11
型号: ICS8431CM-11
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

255MHZ, LOW JITTER, LVPECL FREQUENCY SYNTHESIZER
255MHZ ,低抖动, LVPECL频率合成器

文件: 总13页 (文件大小:2096K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS8431-11  
255MHZ, LOW JITTER,  
Integrated  
Circuit  
Systems, Incꢀ  
LVPECLFREQUENCY SYNTHESIZER  
GENERAL DESCRIPTION  
FEATURES  
Fully integrated PLL  
The ICS8431-11 is a general purpose clock  
frequency synthesizer for IA64/32 application and  
a member of the HiPerClockS™ family of High  
Performance Clock Solutions from ICS. The VCO  
operates at a frequency range of 190MHz to  
Differential 3.3V LVPECLoutput  
HiPerClockS™  
Programmable PLL loop divider for generating a variety of  
output frequencies.  
510MHz providing an output frequency range of 95MHz to  
255MHz. The output frequency can be programmed using the  
parallel interface, M0 thru M8, to the configuration logic.  
Spread spectrum clocking is programmed via the control  
inputs SSC_CTL0 and SSC_CTL1.  
Crystal oscillator interface  
Spread Spectrum Clocking (SSC) fixed at 1/2% modulation  
for environments requiring ultra low EMI  
Typical RMS cycle-to-cycle jitter 2.6 ps  
LVTTL / LVCMOS control inputs  
Programmable features of the ICS8431-11 support four  
operational modes. The four modes are spread spectrum  
clocking (SSC), non-spread spectrum clock and two test  
modes which are controlled by the SSC_CTL[1:0] pins. Un-  
like other synthesizers, the ICS8431-11 can immediately  
change spread-spectrum operation without having to reset  
the device.  
PLL bypass modes supporting in-circuit testing and on-chip  
functional block characterization  
3.3V supply voltage  
28 lead SOIC  
0°C to 85°C ambient operating temperature  
In SSC mode, the output clock is modulated in order to  
achieve a reduction in EMI. In one of the PLL bypass test  
modes, the PLL is disconnected as the source to the  
differential output allowing an external source to be  
connnected to the TEST_I/O pin. This is useful for in-  
circuit testing and allows the differential output to be driven  
at a lower frequency throughout the system clock tree. In the  
other PLL bypass mode, the oscillator divider is used as the  
source to both the M and the Fout divide by 2. This is useful  
for characterizing the oscillator and internal dividers.  
BLOCK DIAGRAM  
PIN ASSIGNMENT  
M0  
M1  
M2  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
nP_LOAD  
VDDI  
XTAL2  
XTAL1  
nc  
XTAL1  
2
3
OSC  
XTAL2  
M3  
4
M4  
M5  
5
6
÷ 16  
nc  
M6  
M7  
7
8
VDDA  
VEE  
PLL  
M8  
9
MR  
nc  
PHASE  
DETECTOR  
SSC_CTL0  
SSC_CTL1  
VEE  
TEST_I/O  
VDD  
10  
11  
12  
13  
14  
VDDO  
FOUT  
nFOUT  
VEE  
VCO  
÷ 2  
FOUT  
nFOUT  
÷ M  
ICS8431-11  
28-Lead SOIC  
M Package  
TEST_I/O  
Top View  
SSC  
Control  
Logic  
Configuration  
Logic  
M0:M8  
nP_LOAD  
SSC_CTL0 SSC_CTL1  
ICS8431CM-11  
www.icst.com/products/hiperclocks.html  
REV. A JULY 11, 2001  
1
ICS8431-11  
255MHZ, LOW JITTER,  
Integrated  
Circuit  
Systems, Incꢀ  
LVPECLFREQUENCY SYNTHESIZER  
TABLE 1. PIN DESCRIPTIONS  
Number  
Name  
Type  
Pulldown  
Description  
M divider inputs. Data latched on LOW-to-HIGH transistion of  
nP_LOAD input. LVCMOS / LVTTL pins interface levels.  
M divider inputs. Data latched on LOW-to-HIGH transistion of  
nP_LOAD input. LVCMOS / LVTTL pins interface levels.  
1 - 5  
M0-M6  
Input  
Input  
6 - 8  
M7-M8  
Pullup  
Pullup  
SSC CTL0,  
SSC CTL1  
10, 11  
12  
Input  
SCC control pins. LVTTL / LVCMOS interface levels.  
Ground pin for core and test output.  
VEE  
Power  
Input /  
Output  
13  
TEST I/O  
Programmed as input in PLL bypass mode.  
14  
15  
VDD  
VEE  
Power  
Power  
Power supply pin for core and test output.  
Ground pin for output.  
These differential outputs are main output drivers for the synthesizer.  
They are compatible with terminated positive referenced LVPECL  
logic.  
16, 17  
nFOUT, FOUT  
Output  
18  
19, 23, 24  
20  
VDDO  
nc  
Power  
Unused  
Input  
Power supply pin for output.  
No connection.  
MR  
Pulldown Reset M counter. Forces FOUT low.  
Ground pin.  
21  
VEE  
Power  
Power  
Input  
22  
VDDA  
PLL power supply pin.  
25, 26  
27  
XTAL1, XTAL2  
VDDI  
Crystal oscillator input.  
Power  
Input  
Power supply pin for core.  
28  
nP_LOAD  
Pulldown M divider latch enable input. LVTTL / LVCMOS interface levels.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
CIN  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
Input Pin Capacitance  
Input Pullup Resistor  
4
pF  
KΩ  
KΩ  
RPULLUP  
51  
51  
RPULLDOWN Input Pulldown Resistor  
ICS8431CM-11  
www.icst.com/products/hiperclocks.html  
REV. A JULY 11, 2001  
2
ICS8431-11  
255MHZ, LOW JITTER,  
Integrated  
Circuit  
Systems, Incꢀ  
LVPECLFREQUENCY SYNTHESIZER  
TABLE 3A. SSC CONTROL INPUT FUNCTION TABLE  
Inputs  
TEST_I/O  
SSC  
Outputs  
FOUT,  
nFOUT  
Operational Modes  
Source  
SSC_CTL1 SSC_CTL0  
TEST_I/O  
fXTAL ÷ 16 PLL bypass; Oscillator, oscillator, M and N  
0
0
1
1
0
1
0
1
Internal  
PLL  
Disabled fXTAL ÷ 32  
÷ M  
dividers test mode. NOTE 1  
fXTAL x M  
Enabled  
32  
Hi-Z  
Default SSC; Modulation Factor = ½ Percent  
PLL Bypass Mode,  
(1MHzTest Clk 200MHz); NOTE 1  
External Disabled  
PLL Disabled  
Test Clk  
Input  
Hi-Z  
fXTAL x M  
32  
No SSC Modulation  
NOTE 1: Used for in house debug and characterization.  
TABLE 3B. PROGRAMMABLE VCO FREQUENCY FUNCTION TABLE (NOTE 1)  
256  
M8  
0
128  
M7  
1
64  
M6  
0
32  
M5  
1
16  
M4  
1
8
M3  
1
4
M2  
1
2
M1  
1
1
M0  
0
VCO Frequency  
(MHz)  
M Count  
190  
191  
192  
193  
190  
191  
192  
193  
0
1
0
1
1
1
1
1
1
0
1
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
1
508  
509  
510  
508  
509  
510  
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
0
NOTE 1: Assumes a 16MHz crystal.  
ICS8431CM-11  
www.icst.com/products/hiperclocks.html  
REV. A JULY 11, 2001  
3
ICS8431-11  
255MHZ, LOW JITTER,  
Integrated  
Circuit  
Systems, Incꢀ  
LVPECLFREQUENCY SYNTHESIZER  
ABSOLUTE MAXIMUM RATINGS  
Supply Voltage  
4.6V  
Inputs  
Outputs  
Ambient Operating Temperature  
Storage Temperature  
-0.5V to VDD + 0.5V  
-0.5V to VDDO + 0.5V  
0°C to 85°C  
-65°C to 150°C  
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings  
are stress specifications only and functional operation of product at these condition or any conditions beyond those listed in  
the DC Characteristics or AC Characteristics is not implied. Exposure to absolute maximum rating conditions for extended  
periods may affect product reliability.  
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VDD = VDDA = VDDI = VDDO = 3.3V±5%, TA = 0°C TO 85°C  
Symbol Parameter  
Test Conditions  
Minimum Typical Maximum Units  
VDD  
VDDO  
VDDA  
VDDI  
IEE  
Power Supply Voltage  
3.135  
3.135  
3.135  
3.135  
3.3  
3.3  
3.3  
3.3  
3.465  
3.465  
3.465  
3.465  
140  
V
V
Output Power Supply Voltage  
Analog Power Supply Voltage  
Input Power Supply Voltage  
V
V
mA  
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VDD = VDDA = VDDI = VDDO = 3.3V±5%, TA = 0°C TO 85°C  
Symbol  
Parameter  
M0:M8, SSC_CTL0,  
Test Conditions  
Minimum Typical Maximum Units  
VIH  
Input High Voltage SSC_CTL1, MR,  
TEST_I/O, nP_LOAD  
M0:M8, SSC_CTL0,  
Input Low Voltage SSC_CTL1, MR,  
TEST_I/O, nP_LOAD  
3.135V VDD 3.465V  
2
VDD + 0.3  
0.8  
V
V
VIL  
IIH  
3.135V VDD 3.465V  
-0.3  
M7, M8, SSC_CTL0,  
VDD = VIN = 3.465V  
VDD = VIN = 3.465V  
5
µA  
µA  
µA  
µA  
SSC_CTL1, TEST_IO  
Input High Current  
M0:M6,  
150  
nP_LOAD, MR  
M7, M8, SSC_CTL0,  
VDD = 3.465V, VIN = 0V  
VDD = 3.465V, VIN = 0V  
-150  
-5  
SSC_CTL1, TEST_IO  
IIL  
Input Low Current  
M0:M6,  
nP_LOAD, MR  
TABLE 4C. LVPECL DC CHARACTERISTICS, VDD = VDDA = VDDI = VDDO = 3.3V±5%, TA = 0°C TO 85°C  
Symbol  
VOH  
Parameter  
Test Conditions  
Minimum  
VDDO - 1.28  
VDDO - 2.0  
600  
Typical  
Maximum  
VDDO - 0.98  
VDDO - 1.7  
850  
Units  
V
Output High Voltage; NOTE 1  
Output Low Voltage; NOTE 1  
VOL  
V
VSWING Peak-to-Peak Output Voltage Swing  
700  
mV  
NOTE 1: Output terminated with 50to VDDO - 2V.  
ICS8431CM-11  
www.icst.com/products/hiperclocks.html  
REV. A JULY 11, 2001  
4
ICS8431-11  
255MHZ, LOW JITTER,  
Integrated  
Circuit  
Systems, Incꢀ  
LVPECLFREQUENCY SYNTHESIZER  
TABLE 5. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum Typical Maximum  
Units  
Mode of Oscillation  
Frequency  
Fundamental  
16.0  
MHz  
ppm  
ppm  
µW  
Frequency Tolerance  
Frequency Stability  
Drive Level  
-50  
+50  
+100  
100  
50  
-100  
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
Load Capacitance  
Series Pin Inductance  
Operating Temperature Range  
Aging  
3
10  
3
7
pF  
18  
32  
pF  
7
nH  
0
70  
°C  
Per year @25°C  
-5  
+5  
ppm  
TABLE 6. AC CHARACTERISTICS, VDD = VDDA = VDDI = VDDO = 3.3V±5%, TA = 0°C TO 85°C, 16MHZ CRYSTAL  
Symbol  
Parameter  
Test Conditions  
Minimum Typical Maximum Units  
Fave  
Average Output Frequency; NOTE 4  
-750  
+750  
30  
ppm  
ps  
FOUT = 200 MHz  
18  
Cycle-to-Cycle Jitter; NOTE 2  
t
jit(cc)  
35  
ps  
odc  
tR  
Output Duty Cycle; NOTE 2  
Output Rise Time; NOTE 1, 2  
Output Fall Time; NOTE 1, 2  
Crystal Input Range; NOTE 3  
47  
300  
300  
14  
53  
%
20% to 80%  
20% to 80%  
450  
450  
16  
600  
600  
20  
ps  
tF  
ps  
Fxtal  
MHz  
SSC Modulation Frequency;  
NOTE 1, 2  
SSC Modulation Factor;  
NOTE 1, 2  
Fm  
30  
33.33  
0.6  
KHz  
%
Fmf  
0.4  
10  
SSCred  
Spectral Reduction; NOTE 1, 2  
Power-up to Stable Clock Output  
7
dB  
ms  
tSTABLE  
10  
NOTE 1: Spread Spectrum clocking enabled.  
NOTE 2: Outputs terminated with 50to VDDO - 2V.  
NOTE 3: Only valid within the VCO operating range.  
NOTE 4: Without external crystal components.  
t
jit(cc), tR, tF, odc conform to JEDEC JESD65 definitions.  
ICS8431CM-11  
www.icst.com/products/hiperclocks.html  
REV. A JULY 11, 2001  
5
ICS8431-11  
255MHZ, LOW JITTER,  
Integrated  
Circuit  
Systems, Incꢀ  
LVPECLFREQUENCY SYNTHESIZER  
PARAMETER MEASUREMENT INFORMATION  
80%  
80%  
Vswing  
20%  
20%  
Clock Inputs  
and Outputs  
trise  
tfall  
FIGURE 1 INPUT AND OUTPUT SLEW RATES  
FOUT  
nFOUT  
tcycle n+1  
tcycle n  
tjit(cc) = tcycle n tcycle n+1  
FIGURE 2 — CYCLE-TO-CYCLE JITTER  
nFOUT  
FOUT  
Pulse Width (tPW  
)
tPERIOD  
tPW  
odc =  
tPERIOD  
FIGURE 3 odc & tPERIOD  
ICS8431CM-11  
www.icst.com/products/hiperclocks.html  
REV. A JULY 11, 2001  
6
ICS8431-11  
255MHZ, LOW JITTER,  
Integrated  
Circuit  
Systems, Incꢀ  
LVPECLFREQUENCY SYNTHESIZER  
FUNCTIONAL DESCRIPTION  
The ICS8431-11 features a fully integrated PLL and therefore requires no external components for setting the loop bandwidth.  
A16MHz series-resonant, fundamental crystal is used as the input to the on-chip oscillator. The output of the oscillator is divided by  
16 prior to the phase detector. With a 16MHz crystal this provides a 1MHz reference frequency. The VCO of the PLLoperates over  
a range of 190 to 510MHz. The output of the loop divider is also applied to the phase detector.  
The phase detector and the loop filter force the VCO output frequency to be M times the reference frequency by adjusting the  
VCO control voltage. Note that for some values of M (either too high or too low) the PLL will not achieve lock. The output of the  
VCO is scaled by a divider prior to being sent to the LVPECL output buffer. The divider provides a 50% output duty cycle.  
The programmable features of the ICS8431-11 support four output operational modes and a programmable PLL loop divider.  
The four output operational modes are spread spectrum clocking (SSC), non-spread spectrum clock and two test modes and  
are controlled by the SSC_CTL[1:0] pins.  
The PLL loop divider or M divider is programmed by using inputs M0 through M8. While the nP_LOAD input is held LOW, the  
data present at M0:M8 is transparent to the M-divider. On the LOW-to-HIGH transition of nP_LOAD, the M0:M8 data is latched  
into the M-divider and any further changes at the M0:M8 inputs will not be seen by the M-divider until the next LOW transition  
on nP_LOAD.  
The relationship between the VCO frequency, the crystal frequency and the loop counter/divider is defined as follows:  
fxtal  
x
fVCO =  
M
16  
The M count and the required values of M0:M8 for programming the VCO are shown in Table 3B, Programmable VCO Frequency  
Function Table. The frequency out is defined as follows:  
fVCO fxtal x M  
FOUT  
=
=
2
32  
For the ICS8431-11, the output divider equals 2. Valid M values for which the PLL will achieve lock are defined as 190 M 510.  
ICS8431CM-11  
www.icst.com/products/hiperclocks.html  
REV. A JULY 11, 2001  
7
ICS8431-11  
255MHZ, LOW JITTER,  
Integrated  
Circuit  
Systems, Incꢀ  
LVPECLFREQUENCY SYNTHESIZER  
CRYSTAL INPUT AND OSCILLATOR INTERFACE  
The ICS8431-11 features an internal oscillator that uses an  
external quartz crystal as the source of its reference frequency.  
A 16MHz crystal divided by 16 before being sent to the phase  
detector provides the reference frequency. The oscillator is a  
series resonant, multi-vibrator type design. This design provides  
better stability and eliminates the need for large on chip capacitors.  
Though a series resonant crystal is preferred, a parallel resonant  
crystal can be used. A parallel resonant mode crystal used in a  
series resonant circuit will exhibit a frequency of oscillation a few  
hundred ppm lower than specified. A few hundred ppm translates  
to KHz inaccuracy. In general computing applications this level  
of inaccuracy is irrelevant. If better ppm accuracy is required, an  
external capacitor can be added to a parallel resonant crystal in  
series to pin 25. Figure 1A shows how to interface with a crystal.  
ICS8431-11  
XTAL2  
(Pin 26, SOIC)  
XTAL1  
(Pin 25, SOIC)  
Optional  
FIGURE 1A. CRYSTAL INTERFACE  
Figures 1A, 1B, and 1C show various crystal parameters  
which are recommended only as guidelines. Figure 1A shows  
how to interface a capacitor with a parallel resonant crystal.  
Figure 1B shows the capacitor value needed for the optimum  
PPM performance over various parallel resonant crystals.  
Figure 1C shows the recommended tuning capacitance for a  
various parallel resonant crystal.  
FIGURE 1B. Recommended tuning capacitance for various parallel FIGURE 1C. Recommended tuning capacitance for various  
resonant crystals.  
parallel resonant crystal.  
60  
100  
80  
60  
40  
20  
0
14.318  
50  
15.000  
40  
30  
20  
10  
0
16.667  
19.440  
20.000  
-20  
-40  
24.000  
0
10  
20  
30  
40  
50  
60  
-60  
-80  
14 15 16 17 18 19 20 21 22 23 24 25  
Crystal Frequency (MHz)  
-100  
19.44MHz  
16MHz  
Series Capacitor, C1 (pF)  
15.00MHz  
ICS8431CM-11  
www.icst.com/products/hiperclocks.html  
REV. A JULY 11, 2001  
8
ICS8431-11  
255MHZ, LOW JITTER,  
Integrated  
Circuit  
Systems, Incꢀ  
LVPECLFREQUENCY SYNTHESIZER  
SPREAD SPECTRUM  
Spread-spectrum clocking is a frequency modulation tech- The ICS8431-11 triangle modulation frequency deviation will  
nique for EMI reduction. When spread-spectrum is enabled, a  
not exceed 0.6% down-spread from the nominal clock fre-  
30KHz triangle waveform is used with 0.5% down-spread quency (+0.0%/-0.5%). An example of the amount of down  
(+0.0% / -0.5%) from the nominal 200MHz clock frequency. spread relative to the nominal clock frequency can be seen in  
An example of a triangle frequency modulation profile is shown the frequency domain, as shown in Figure 3. The ratio of this  
in Figure 2 below. The ramp profile can be expressed as:  
width to the fundamental frequency is typically 0.4%, and will  
not exceed 0.6%. The resulting spectral reduction will be  
greater than 7dB, as shown in Figure 3. It is important to note  
the ICS8431-11 7dB minimum spectral reduction is the com-  
ponent-specific EMI reduction, and will not necessarily be the  
same as the system EMI reduction.  
Fnom = Nominal Clock Frequency in Spread OFF mode  
(200MHz with 16MHz IN)  
Fm = Nominal Modulation Frequency (30KHz)  
δ = Modulation Factor (0.5% down spread)  
1
(1 - δ) fnom + 2 fm x δ x fnom x t when 0 < t <  
,
2 fm  
1
1
fm  
(1 - δ) fnom - 2 fm x δ x fnom x t when  
< t <  
2 fm  
Fnom  
∆ − 10 dBm  
A
B
(1 - δ) Fnom  
δ = .4%  
1/fm  
0.5/fm  
FIGURE 3. 200MHZ CLOCK OUTPUT IN FREQUENCY DOMAIN  
FIGURE 2. TRIANGLE FREQUENCY MODULATION  
(A) SPREAD-SPECTRUM OFF  
(B) SPREAD-SPECTRUM ON  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS8431-11 provides  
separate power supplies to isolate any high switching noise  
from the outputs to the internal PLL. VDD, VDDI, VDDA, and  
VDDO should be individually connected to the power supply  
plane through vias, and bypass capacitors should be used  
for each pin. To achieve optimum jitter performance, better  
power supply isolation is required. Figure 4 illustrates how a  
10along with a 10µF and a .01µF bypass capacitor should  
be connected to each power supply pin.  
3.3V  
VDD  
.01µF  
.01µF  
10Ω  
VDDA  
10 µF  
FIGURE 4. POWER SUPPLY FILTERING  
ICS8431CM-11  
www.icst.com/products/hiperclocks.html  
REV. A JULY 11, 2001  
9
ICS8431-11  
255MHZ, LOW JITTER,  
Integrated  
Circuit  
Systems, Incꢀ  
LVPECLFREQUENCY SYNTHESIZER  
TERMINATION FOR PECL OUTPUTS  
drive 50transmission lines. Matched impedance techniques  
should be used to maximize operating frequency and mini-  
mize signal distortion. There are a few simple termination  
schemes. Figures 5A and 5B show two different layouts which  
are recommended only as guidelines. Other suitable clock lay-  
outs may exist and it would be recommended that the board  
designers simulate to guarantee compatibility across all printed  
circuit and clock component process variations.  
The clock layout topology shown below is typical for  
IA64/32 platforms. The two different layouts mentioned are  
recommended only as guidelines.  
FOUT and nFOUT are low impedance follower outputs that  
generate ECL/PECL compatible outputs. Therefore, terminat-  
ing resistors (DC current path to ground) or current sources  
must be used for functionality. These outputs are designed to  
3.3V  
Zo = 50Ω  
Zo = 50Ω  
5
2
5
Zo  
Zo  
2
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
Zo = 50Ω  
Zo = 50Ω  
VCC-2V  
RTT  
1
3
2
3
Zo  
RTT =  
Zo  
Zo  
2
(VOH + VOL / VCC 2) 2  
FIGURE 5A. LVPECLOUTPUT TERMINATION  
FIGURE 5B. LVPECLOUTPUT TERMINATION  
LAYOUT GUIDELINE  
The schematic of the ICS8431-11 layout example used in this layout guideline is shown in Figure 6A. The ICS8431-11 recommended  
PCB board layout for this example is shown in Figure 6B. This layout example is used as a general guideline. The layout in the actual  
system will depend on the selected component types, the density of the components, the density of the traces, and the stacking of  
the P.C. board.  
U1  
C6  
0.01uF  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
M0  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
nP_LOAD  
VDDI  
XTAL1  
XTAL2  
NC  
NC  
VDDA  
NC  
NC  
NC  
VDDO  
FOUT  
nFOUT  
GND  
VDD  
Termination A  
Termination  
B (not shown  
in the layout)  
X1  
R5  
10  
VDDA  
VDD0  
M8  
C3  
0.01uF  
C4  
SSC_CTL0  
SSC_CTL1  
GND  
TEST_IO  
VDD  
VDD  
10uF  
IN+  
IN-  
R1  
125  
VDD  
Zo = 50 Ohm  
IN+  
TL1  
8431-11  
R3  
125  
R2  
50  
R1  
50  
C1  
0.1uF  
Zo = 50 Ohm  
IN-  
C2  
0.1uF  
TL2  
R2  
84  
R4  
84  
R3  
50  
FIGURE 6A. RECOMMENDED SCHEMATIC LAYOUT  
www.icst.com/products/hiperclocks.html  
10  
ICS8431CM-11  
REV. A JULY 11, 2001  
ICS8431-11  
255MHZ, LOW JITTER,  
Integrated  
Circuit  
Systems, Incꢀ  
LVPECLFREQUENCY SYNTHESIZER  
The following component footprints are used in this layout  
example:  
traces should be routed first and should be locked prior to routing  
other signals traces.  
The traces with 50transmission lines TL1 and TL2 at  
FOUT and nFOUT should have equal delay and run ad-  
jacent to each other.Avoid sharp angles on the clock trace.  
Sharp angle turns cause the characteristic impedance to  
change on the transmission lines.  
All the resistors and capacitors are size 0603.  
POWER AND GROUNDING  
Place the decoupling capacitors C1, C2 and C3, C4, C5, C6 as  
close as possible to the power pins. If space allows, placing the  
decoupling capacitor at the component side is preferred. This can  
reduce unwanted inductance between the decoupling capacitor  
and the power pin generated by the via.  
Keep the clock trace on same layer. Whenever possible,  
avoid any vias on the clock traces. Any via on the trace  
can affect the trace characteristic impedance and hence  
degrade signal quality.  
Maximize the pad size of the power (ground) at the decoupling  
capacitor. Maximize the number of vias between power (ground)  
and the pads. This can reduce the inductance between the power  
(ground) plane and the component power (ground) pins.  
To prevent cross talk, avoid routing other signal traces in  
parallel with the clock traces. If running parallel traces is  
unavoidable, allow more space between the clock trace  
and the other signal trace.  
If VDDAshares the same power supply with VDD, insert the RC  
filter R5, C3, and C4 in between. Place this RC filter as close to  
the VDDAas possible.  
Make sure no other signal trace is routed between the  
clock trace pair.  
The matching termination resistors R1, R2, R3 and R4 should be  
located as close to the receiver input pins as possible. Other termi-  
nation scheme can also be used but is not shown in this example.  
CLOCK TRACES AND TERMINATION  
The component placements, locations and orientations should  
be arranged to achieve the best clock signal quality. Poor clock  
signal quality can degrade the system performance or cause  
system failure. In the synchronous high-speed digital system,  
the clock signal is less tolerable to poor signal quality than other  
signals. Any ringing on the rising or falling edge or excessive ring  
back can cause system failure. The trace shape and the trace  
delay might be restricted by the available space on the board and  
the component location. While routing the traces, the clock signal  
CRYSTAL  
The crystal X1 should be located as close as possible to the pins  
26 (XTAL1) and 25 (XTAL2). The trace length between the X1  
and U1 should be kept to a minimum to avoid unwanted parasitic  
inductance and capacitance. Other signal traces should not be  
routed near the crystal traces.  
U1  
ICS8431-11  
GND  
VDD  
C6  
X1  
Signals  
VIA  
C3  
C4  
R5  
Close to the input  
pins of the  
receiver  
R1  
C2  
R2  
TL1 (50 Ohm)  
TL2 (50 Ohm)  
IN+  
IN-  
C1  
R3  
R4  
FIGURE 6B. PCB BOARD LAYOUT FOR ICS8431-11  
ICS8431CM-11  
www.icst.com/products/hiperclocks.html  
REV. A JULY 11, 2001  
11  
ICS8431-11  
255MHZ, LOW JITTER,  
Integrated  
Circuit  
Systems, Incꢀ  
LVPECLFREQUENCY SYNTHESIZER  
PACKAGE OUTLINE - M SUFFIX  
C
N
28  
15  
14  
L
E
H
1
h x 45º  
α
D
A2  
A
e
A1  
SEATING  
PLANE  
B
.10 (.004)  
TABLE 7. PACKAGE DIMENSIONS  
Millimeters  
SYMBOL  
Inches  
MIN  
MAX  
MIN  
MAX  
N
A
28  
--  
2.65  
--  
--  
0.104  
--  
A1  
A2  
B
0.10  
2.05  
0.33  
0.18  
17.70  
7.40  
0.0040  
0.081  
0.013  
0.007  
0.697  
0.291  
2.55  
0.51  
0.32  
18.40  
7.60  
0.100  
0.020  
0.013  
0.724  
0.299  
C
D
E
e
1.27 BASIC  
0.050 BASIC  
H
h
10.00  
0.25  
0.40  
0°  
10.65  
0.75  
1.27  
8°  
0.394  
0.010  
0.016  
0°  
0.419  
0.029  
0.050  
8°  
L
α
REFERENCE DOCUMENT: JEDEC PUBLICATION 95, MS-013, MO-119  
ICS8431CM-11  
www.icst.com/products/hiperclocks.html  
REV. A JULY 11, 2001  
12  
ICS8431-11  
255MHZ, LOW JITTER,  
Integrated  
Circuit  
Systems, Incꢀ  
LVPECLFREQUENCY SYNTHESIZER  
TABLE 8. ORDERING INFORMATION  
Part/Order Number  
ICS8431CM-11  
Marking  
Package  
28 Lead SOIC  
Count  
26 Per Tube  
1000  
Temperature  
0°C to 70°C  
0°C to 70°C  
ICS8431CM-11  
ICS8431CM-11  
ICS8431CM-11T  
28 Lead SOIC on Tape and Reel  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are  
not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS  
product for use in life support devices or critical medical instruments.  
ICS8431CM-11  
www.icst.com/products/hiperclocks.html  
REV. A JULY 11, 2001  
13  

相关型号:

ICS8431CM-11LFT

Clock Generator, 255MHz, PDSO28, 7.50 X 18.05, 2.25 MM HEIGHT, SOIC-28
IDT

ICS8431CM-11T

255MHZ, LOW JITTER, LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS8431CM-11T

Clock Generator, 255MHz, PDSO28, 7.50 X 18.05, 2.25 MM HEIGHT, SOIC-28
IDT

ICS8431DMI-01

Clock Generator, 200MHz, PDSO28, 7.50 X 18.05 X 2.25 MM, MS-013, MO-119, SOIC-28
IDT

ICS8431DMI-01LF

Clock Generator, 200MHz, PDSO28, 7.50 X 18.05 X 2.25 MM, MS-013, MO-119, SOIC-28
IDT

ICS8431DMI-01LFT

Clock Generator, 200MHz, PDSO28, 7.50 X 18.05 X 2.25 MM, MS-013, MO-119, SOIC-28
IDT

ICS8431DMI-01T

Clock Generator, 200MHz, PDSO28, 7.50 X 18.05 X 2.25 MM, MS-013, MO-119, SOIC-28
IDT

ICS8431EM-01LF

Clock Generator, 200MHz, PDSO28, 7.50 X 18.05 MM, 2.25 MM, MS-013, MO-119, SOIC-28
IDT

ICS8431EM-01LFT

Clock Generator, 200MHz, PDSO28, 7.50 X 18.05 MM, 2.25 MM, MS-013, MO-119, SOIC-28
IDT

ICS8431EM-11LF

Clock Generator, 255MHz, PDSO28, 7.50 X 18.05 MM, 2.25 MM HEIGHT, LEAD FREE, MS-013, MO-119, SOIC-28
IDT

ICS8431EM-11LFT

Clock Generator, 255MHz, PDSO28, 7.50 X 18.05 MM, 2.25 MM HEIGHT, LEAD FREE, MS-013, MO-119, SOIC-28
IDT

ICS8431EM-11T

Clock Generator, 255MHz, PDSO28, 7.50 X 18.05 MM, 2.25 MM HEIGHT, MS-013, MO-119, SOIC-28
IDT