ICS843002AGILF [ICSI]

FEMTOCLOCKS-TM CRYSTAL-TO-3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER; FEMTOCLOCKS -TM CRYSTAL - TO- 3.3V , 2.5V LVPECL频率合成器
ICS843002AGILF
型号: ICS843002AGILF
厂家: INTEGRATED CIRCUIT SOLUTION INC    INTEGRATED CIRCUIT SOLUTION INC
描述:

FEMTOCLOCKS-TM CRYSTAL-TO-3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER
FEMTOCLOCKS -TM CRYSTAL - TO- 3.3V , 2.5V LVPECL频率合成器

文件: 总16页 (文件大小:211K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ICS843002I  
FEMTOCLOCKS™ CRYSTAL-TO-3.3V, 2.5V  
LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
GENERAL DESCRIPTION  
FEATURES  
The ICS843002I is a 2 output LVPECL synthesizer  
Two 3.3V or 2.5V LVPECL outputs  
ICS  
HiPerClockS™  
optimized to generate Fibre Channel reference  
clock frequencies and is a member of the  
HiPerClocksTM family of high performance clock  
solutions from ICS. Using a 26.5625MHz, 18pF  
• Selectable crystal oscillator interface  
or LVCMOS/LVTTL single-ended input  
• Supports the following output frequencies: 212.5MHz,  
187.5MHz, 159.375MHz, 106.25MHz and 53.125MHz  
parallel resonant crystal, the following frequencies can be  
generated based on the 2 frequency select pins (F_SEL[1:0]):  
212.5MHz, 187.5MHz, 159.375MHz, 106.25MHz, and  
53.125MHz. The ICS843002I uses ICS’ FemtoClockTM low  
phase noise VCO technology and can achieve 1ps or lower  
typical rms phase jitter, easily meeting Fibre Channel jitter  
requirements. The ICS843002I is packaged in a small 20-pin  
TSSOP package.  
• VCO range: 560MHz - 680MHz  
• RMS phase jitter @212.5MHz (2.55MHz - 20MHz):  
0.50ps (typical)  
• Full 3.3V or 2.5V supply modes  
• -40°C to 85°C ambient operating temperature  
• Available in both standard and lead-free RoHS compliant  
packages  
FREQUENCY SELECT FUNCTION TABLE  
PIN ASSIGNMENT  
Inputs  
Output  
Frequency  
(MHz)  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
nc  
VCCO  
VCCO  
2
3
4
5
6
7
8
9
Q1  
nQ1  
VEE  
VCC  
nXTAL_SEL  
REF_CLK  
XTAL_IN  
XTAL_OUT  
F_SEL1  
Input  
Frequency  
M Divider N Divider  
M/N  
Divider Value  
F_SEL1 F_SEL0  
Q0  
nQ0  
MR  
nPLL_SEL  
nc  
VCCA  
F_SEL0  
VCC  
Value  
24  
Value  
3
26.5625  
26.5625  
26.5625  
26.5625  
23.4375  
0
0
1
1
0
0
1
0
1
0
8
6
4
2
8
212.5  
159.375  
106.25  
53.125  
187.5  
24  
24  
24  
24  
4
6
12  
3
10  
ICS843002I  
20-LeadTSSOP  
6.5mm x 4.4mm x 0.92mm  
BLOCK DIAGRAM  
package body  
G Package  
Top View  
Pulldown  
2
F_SEL[1:0]  
Pulldown  
nPLL_SEL  
Q0  
F_SEL[1:0]  
nQ0  
0 0 ÷3  
0 1 ÷4  
1 0 ÷6  
1 1 ÷12  
Pulldown  
REF_CLK  
1
0
1
0
26.5625MHz  
XTAL_IN  
OSC  
Q1  
VCO  
637.5MHz  
(w/26.5625MHz  
Reference)  
Phase  
Detector  
nQ1  
XTAL_OUT  
Pulldown  
nXTAL_SEL  
M = 24 (fixed)  
Pulldown  
MR  
843002AGI  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 4, 2006  
1
ICS843002I  
FEMTOCLOCKS™ CRYSTAL-TO-3.3V, 2.5V  
LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 1. PIN DESCRIPTIONS  
Number  
1, 7  
Name  
nc  
Type  
Unused  
Description  
No connect.  
2, 20  
3, 4  
VCCO  
Power  
Ouput  
Output supply pins.  
Q0, nQ0  
Differential output pair. LVPECL interface levels.  
Active HIGH Master Reset. When logic HIGH, the internal dividers are  
reset causing the true outputs Qx to go low and the inverted outputs nQx  
to go high. When logic LOW, the internal dividers and the outputs are  
enabled. LVCMOS/LVTTL interface levels.  
Determines whether synthesizer is in PLL or bypass mode.  
LVCMOS/LVTTL interface levels.  
5
MR  
Input  
Pulldown  
Pulldown  
6
nPLL_SEL  
VCCA  
Input  
Power  
Input  
8
Analog supply pin.  
F_SEL0,  
F_SEL1  
9, 11  
10, 16  
12, 13  
14  
Pulldown Frequency select pins. LVCMOS/LVTTL interface levels.  
Core supply pin.  
VCC  
Power  
Input  
XTAL_OUT,  
XTAL_IN  
Parallel resonant crystal interface. XTAL_OUT is the output,  
XTAL_IN is the input.  
REF_CLK  
Input  
Pulldown LVCMOS/LVTTL reference clock input.  
Selects between crystal or REF_CLK inputs as the the PLL Reference  
Pulldown source. Selects XTAL inputs when LOW. Selects REF_CLK when HIGH.  
LVCMOS/LVTTL interface levels.  
15  
nXTAL_SEL  
Input  
17  
VEE  
Power  
Output  
Negative supply pins.  
18, 19  
nQ1, Q1  
Differential output pair. LVPECL interface levels.  
NOTE: Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.  
TABLE 2. PIN CHARACTERISTICS  
Symbol  
Parameter  
Test Conditions  
Minimum  
Typical  
Maximum Units  
CIN  
Input Capacitance  
4
pF  
RPULLDOWN Input Pulldown Resistor  
51  
kΩ  
843002AGI  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 4, 2006  
2
ICS843002I  
FEMTOCLOCKS™ CRYSTAL-TO-3.3V, 2.5V  
LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
ABSOLUTE MAXIMUM RATINGS  
SupplyVoltage, V  
4.6V  
NOTE: Stresses beyond those listed under Absolute  
Maximum Ratings may cause permanent damage to the  
device.These ratings are stress specifications only.Functional  
operation of product at these conditions or any conditions be-  
yond those listed in the DC Characteristics or AC Character-  
istics is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect product reliability.  
CC  
Inputs, V  
-0.5V to VCC + 0.5V  
I
Outputs, IO  
Continuous Current  
Surge Current  
50mA  
100mA  
PackageThermal Impedance, θ  
73.2°C/W (0 lfpm)  
-65°C to 150°C  
JA  
StorageTemperature, T  
STG  
TABLE 3A. POWER SUPPLY DC CHARACTERISTICS, VCC =VCCA =VCCO = 3.3V 10ꢀ, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical  
Maximum Units  
VCC  
VCCA  
VCCO  
IEE  
Core Supply Voltage  
2.97  
2.97  
2.97  
3.3  
3.3  
3.3  
3.63  
3.63  
3.63  
130  
13  
V
V
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
V
mA  
mA  
ICCA  
TABLE 3B. POWER SUPPLY DC CHARACTERISTICS, VCC =VCCA =VCCO = 2.5V 5ꢀ,TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical  
Maximum Units  
VCC  
VCCA  
VCCO  
IEE  
Core Supply Voltage  
2.375  
2.375  
2.375  
2.5  
2.5  
2.5  
2.625  
2.625  
2.625  
115  
V
V
Analog Supply Voltage  
Output Supply Voltage  
Power Supply Current  
Analog Supply Current  
V
mA  
mA  
ICCA  
12  
TABLE 3C. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 10ꢀ OR 2.5V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
VCC = 3.3V  
Minimum Typical Maximum Units  
2
VCC + 0.3  
VCC + 0.3  
0.8  
V
V
V
V
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
VCC = 2.5V  
1.7  
-0.3  
-0.3  
VCC = 3.3V  
VCC = 2.5V  
0.7  
REF_CLK, MR,  
F_SEL0, F_SEL1,  
nPLL_SEL, nXTAL_SEL  
Input  
High Current  
IIH  
VCC = VIN = 3.63V or 2.625V  
150  
µA  
µA  
REF_CLK, MR,  
F_SEL0, F_SEL1,  
nPLL_SEL, nXTAL_SEL  
V
CC = 3.63V or 2.625V,  
VIN = 0V  
Input  
Low Current  
IIL  
-150  
843002AGI  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 4, 2006  
3
ICS843002I  
FEMTOCLOCKS™ CRYSTAL-TO-3.3V, 2.5V  
LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 3D. LVPECL DC CHARACTERISTICS, VCC = VCCA = VCCO = 3.3V 10ꢀ OR 2.5V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter Test Conditions Minimum Typical Maximum Units  
VOH  
Output High Voltage; NOTE 1  
VCCO - 1.4  
VCCO - 2.0  
0.6  
VCCO - 0.9  
VCCO - 1.7  
1.0  
V
V
V
VOL  
Output Low Voltage; NOTE 1  
VSWING  
Peak-to-Peak Output Voltage Swing  
NOTE 1: Outputs terminated with 50Ω to VCCO - 2V.  
TABLE 4. CRYSTAL CHARACTERISTICS  
Parameter  
Test Conditions  
Minimum  
Typical Maximum Units  
Fundamental  
26.5625  
Mode of Oscillation  
Frequency  
23.33  
28.33  
MHz  
Ω
Equivalent Series Resistance (ESR)  
Shunt Capacitance  
Drive Level  
50  
7
pF  
1
mW  
NOTE: Characterized using an 18pF parallel resonant crystal.  
TABLE 5A. AC CHARACTERISTICS, VCC =VCCA =VCCO = 3.3V 10ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
F_SEL[1:0] = 00  
F_SEL[1:0] = 01  
F_SEL[1:0] = 10  
F_SEL[1:0] =11  
Minimum Typical Maximum Units  
186.67  
140  
226.67  
170  
MHz  
MHz  
MHz  
MHz  
ps  
fOUT  
Output Frequency  
93.33  
46.67  
113.33  
56.67  
30  
tsk(o)  
tjit(Ø)  
Output Skew; NOTE 1, 2  
212.5MHz, (2.55MHz - 20MHz)  
159.375MHz, (1.875MHz - 20MHz)  
106.25MHz, (637kHz - 5MHz)  
53.125MHz, (637kHz - 5MHz)  
20ꢀ to 80ꢀ  
0.50  
0.54  
0.68  
0.70  
ps  
ps  
RMS Phase Jitter (Random);  
NOTE 3  
ps  
ps  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
350  
49  
650  
51  
ps  
F_SEL[1:0] 00  
F_SEL[1:0] = 00  
43  
57  
NOTE 1: Defined as skew between outputs at the same supply voltages and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 3: Measured using crystal input.  
843002AGI  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 4, 2006  
4
ICS843002I  
FEMTOCLOCKS™ CRYSTAL-TO-3.3V, 2.5V  
LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 5B. AC CHARACTERISTICS, VCC =VCCA =VCCO = 2.5V 5ꢀ, TA = -40°C TO 85°C  
Symbol Parameter  
Test Conditions  
F_SEL[1:0] = 00  
F_SEL[1:0] = 01  
F_SEL[1:0] = 10  
F_SEL[1:0] =11  
Minimum Typical Maximum Units  
186.67  
140  
226.67  
170  
MHz  
MHz  
MHz  
MHz  
ps  
fOUT  
Output Frequency  
93.33  
46.67  
113.33  
56.67  
30  
tsk(o)  
tjit(Ø)  
Output Skew; NOTE 1, 2  
212.5MHz, (2.55MHz - 20MHz)  
159.375MHz, (1.875MHz - 20MHz)  
106.25MHz, (637kHz - 5MHz)  
53.125MHz, (637kHz - 5MHz)  
20ꢀ to 80ꢀ  
0.50  
0.55  
0.75  
0.76  
ps  
ps  
RMS Phase Jitter (Random);  
NOTE 3  
ps  
ps  
tR / tF  
odc  
Output Rise/Fall Time  
Output Duty Cycle  
350  
49  
650  
51  
ps  
F_SEL[1:0] 00  
F_SEL[1:0] = 00  
43  
57  
NOTE 1: Defined as skew between outputs at the same supply voltages and with equal load conditions.  
Measured at the output differential cross points.  
NOTE 2: This parameter is defined in accordance with JEDEC Standard 65.  
NOTE 3: Measured using crystal input.  
843002AGI  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 4, 2006  
5
ICS843002I  
FEMTOCLOCKS™ CRYSTAL-TO-3.3V, 2.5V  
LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
TYPICAL PHASE NOISE AT 212.5MHZ @ 3.3V  
0
-10  
-20  
-30  
-40  
-50  
-60  
212.5MHz  
RMS Phase Jitter (Random)  
2.55MHz to 20MHz = 0.50ps (typical)  
-70  
-80  
Fibre Channel Jitter Filter  
Raw Phase Noise Data  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
-190  
Phase Noise Result by adding  
Fibre Channel Filter to raw data  
100  
1k  
10k  
100k  
1M  
10M  
100M  
OFFSET FREQUENCY (HZ)  
843002AGI  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 4, 2006  
6
ICS843002I  
FEMTOCLOCKS™ CRYSTAL-TO-3.3V, 2.5V  
LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
PARAMETER MEASUREMENT INFORMATION  
2V  
2V  
SCOPE  
SCOPE  
Qx  
Qx  
VCC  
,
VCC,  
VCCA, VCCO  
VCCA, VCCO  
LVPECL  
LVPECL  
nQx  
nQx  
VEE  
VEE  
-1.3V 0.33V  
-0.5V 0.125V  
3.3V CORE/3.3V OUTPUT LOAD ACTEST CIRCUIT  
2.5V CORE/2.5V OUTPUT LOAD AC TEST CIRCUIT  
nQx  
Qx  
REF_CLK  
nQ0, nQ1  
nQy  
Q0, Q1  
Qy  
tPD  
tsk(o)  
OUTPUT SKEW  
PROPAGATION DELAY  
Phase Noise Plot  
nQ0, nQ1  
Q0, Q1  
tPW  
tPERIOD  
Phase Noise Mask  
tPW  
odc =  
x 100%  
tPERIOD  
Offset Frequency  
f1  
f2  
RMS Jitter = Area Under the Masked Phase Noise Plot  
RMS PHASE JITTER  
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD  
80%  
tF  
80%  
tR  
VSWING  
20%  
Clock  
Outputs  
20%  
OUTPUT RISE/FALL TIME  
843002AGI  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 4, 2006  
7
ICS843002I  
FEMTOCLOCKS™ CRYSTAL-TO-3.3V, 2.5V  
LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
APPLICATION INFORMATION  
POWER SUPPLY FILTERING TECHNIQUES  
As in any high speed analog circuitry, the power supply pins  
are vulnerable to random noise. The ICS843002I provides  
separate power supplies to isolate any high switching  
noise from the outputs to the internal PLL.VCC, VCCA, and VCCO  
should be individually connected to the power supply  
plane through vias, and bypass capacitors should be  
used for each pin. To achieve optimum jitter performance,  
power supply isolation is required. Figure 1 illustrates how  
a 10Ω resistor along with a 10µF and a .01μF bypass  
capacitor should be connected to each VCCA. The 10Ω resis-  
tor can also be replaced by a ferrite bead.  
3.3V or 2.5V  
VCC  
.01μF  
.01μF  
10Ω  
VCCA  
10μF  
FIGURE 1. POWER SUPPLY FILTERING  
RECOMMENDATIONS FOR UNUSED INPUT AND OUTPUT PINS  
INPUTS:  
OUTPUTS:  
CRYSTAL INPUT:  
LVPECL OUTPUT  
For applications not requiring the use of the crystal oscillator All unused LVPECL outputs can be left floating. We  
input, both XTAL_IN and XTAL_OUT can be left floating. recommend that there is no trace attached. Both sides of the  
Though not required, but for additional protection, a 1kΩ differential output pair should either be left floating or  
resistor can be tied from XTAL_IN to ground.  
terminated.  
REF_CLK INPUT:  
For applications not requiring the use of the reference clock,  
it can be left floating. Though not required, but for additional  
protection, a 1kΩ resistor can be tied from the REF_CLK to  
ground.  
LVCMOS CONTROL PINS:  
All control pins have internal pull-ups or pull-downs; additional  
resistance is not required but can be added for additional  
protection. A 1kΩ resistor can be used.  
843002AGI  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 4, 2006  
8
ICS843002I  
FEMTOCLOCKS™ CRYSTAL-TO-3.3V, 2.5V  
LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
CRYSTAL INPUT INTERFACE  
The ICS843002I has been characterized with 18pF parallel below were determined using a 26.5625MHz, 18pF parallel  
resonant crystals. The capacitor values shown in Figure 2 resonant crystal and were chosen to minimize the ppm error.  
XTAL_OUT  
C1  
33p  
X1  
18pF Parallel Crystal  
XTAL_IN  
C2  
27p  
ICS843002I  
Figure 2. CRYSTAL INPUt INTERFACE  
TERMINATION FOR 3.3V LVPECL OUTPUT  
The clock layout topology shown below is a typical ter-  
mination for LVPECL outputs. The two different layouts  
mentioned are recommended only as guidelines.  
outputs are designed to drive 50Ω transmission lines.  
Matched impedance techniques should be used to maxi-  
mize operating frequency and minimize signal distor-  
tion. Figures 3A and 3B show two different layouts which  
are recommended only as guidelines. Other suitable  
clock layouts may exist and it would be recommended  
that the board designers simulate to guarantee compat-  
ibility across all printed circuit and clock component pro-  
cess variations.  
FOUT and nFOUT are low impedance follower outputs  
that generate ECL/LVPECL compatible outputs. There-  
fore, terminating resistors (DC current path to ground)  
or current sources must be used for functionality. These  
3.3V  
Z
o = 50Ω  
125Ω  
125Ω  
FOUT  
FIN  
Zo = 50Ω  
Zo = 50Ω  
Zo = 50Ω  
FOUT  
FIN  
50Ω  
50Ω  
VCC - 2V  
1
RTT =  
Zo  
RTT  
((VOH + VOL) / (VCC – 2)) – 2  
84Ω  
84Ω  
FIGURE 3A. LVPECL OUTPUTT ERMINATION  
FIGURE 3B. LVPECL OUTPUTTERMINATION  
843002AGI  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 4, 2006  
9
ICS843002I  
FEMTOCLOCKS™ CRYSTAL-TO-3.3V, 2.5V  
LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
TERMINATION FOR 2.5V LVPECL OUTPUT  
Figure 4A and Figure 4B show examples of termination for close to ground level. The R3 in Figure 4B can be eliminated  
2.5V LVPECL driver.These terminations are equivalent to ter- and the termination is shown in Figure 4C.  
minating 50Ω to VCC - 2V. For VCCO = 2.5V, the VCCO - 2V is very  
2.5V  
2.5V  
2.5V  
VCCO=2.5V  
VCCO=2.5V  
R1  
250  
R3  
250  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
Zo = 50 Ohm  
+
-
+
-
2,5V LVPECL  
Driver  
2,5V LVPECL  
Driv er  
R1  
50  
R2  
50  
R2  
62.5  
R4  
62.5  
R3  
18  
FIGURE 4A. 2.5V LVPECL DRIVERT ERMINATION EXAMPLE  
FIGURE 4B. 2.5V LVPECL DRIVERT ERMINATION EXAMPLE  
2.5V  
VCCO=2.5V  
Zo = 50 Ohm  
+
Zo = 50 Ohm  
-
2,5V LVPECL  
Driver  
R1  
50  
R2  
50  
FIGURE 4C. 2.5V LVPECLTERMINATION EXAMPLE  
843002AGI  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 4, 2006  
10  
ICS843002I  
FEMTOCLOCKS™ CRYSTAL-TO-3.3V, 2.5V  
LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
LAYOUT GUIDELINE  
18pF parallel resonant 26.5625MHz crystal is used. The  
C1=27pF and C2=33pF are recommended for frequency ac-  
curacy. For different board layout, the C1 and C2 may be  
slightly adjusted for optimizing frequency accuracy.  
Figure 5A shows a schematic example of the ICS843002I. An  
example of LVEPCL termination is shown in this schematic.  
Additional LVPECL termination approaches are shown in the  
LVPECL Termination Application Note. In this example, an  
3.3V  
VCC  
VCCA  
R3  
R5  
133  
133  
R2  
10  
Zo = 50 Ohm  
Zo = 50 Ohm  
C3  
10uF  
C4  
0.01u  
+
-
VCC  
VCCO  
U1  
C6  
0.1u  
C7  
0.1u  
Logic Control Input Examples  
R4  
R6  
82.5  
82.5  
Set Logic  
Input to  
'1'  
Set Logic  
Input to  
'0'  
ICS843002i  
VCC  
VCC  
VCC=3.3V  
RU1  
1K  
RU2  
Not Install  
VCCO=3.3V  
Zo = 50 Ohm  
Zo = 50 Ohm  
To Logic  
Input  
pins  
To Logic  
Input  
pins  
+
-
RD1  
RD2  
1K  
VCCO  
Not Install  
C8  
0.1u  
R7  
50  
R8  
50  
ICS843002I  
X1  
C2  
33pF  
26.5625MHz  
18pF  
R9  
50  
C9  
0.1u  
C1  
27pF  
Optional Termination  
FIGURE 5A. ICS843002I SCHEMATIC EXAMPLE  
PC BOARD LAYOUT EXAMPLE  
Figure 5B shows an example of ICS843002I P.C. board layout.  
The crystal X1 footprint shown in this example allows installa-  
tion of either surface mount HC49S or through-hole HC49 pack-  
age.The footprints of other components in this example are listed  
in the Table 6. There should be at least one decoupling capacitor  
per power pin.The decoupling capacitors should be located as  
close as possible to the power pins. The layout assumes that  
the board has clean analog power ground plane.  
TABLE 6. FOOTPRINT TABLE  
Reference  
Size  
0402  
0805  
0603  
0603  
C1, C2  
C3  
C4, C5, C6, C7, C8  
R2  
NOTE: Table 6, lists component sizes  
shown in this layout example.  
FIGURE 5B. ICS843002I PC BOARD LAYOUT EXAMPLE  
843002AGI  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 4, 2006  
11  
ICS843002I  
FEMTOCLOCKS™ CRYSTAL-TO-3.3V, 2.5V  
LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
POWER CONSIDERATIONS  
This section provides information on power dissipation and junction temperature for the ICS843002I.  
Equations and example calculations are also provided.  
1. Power Dissipation.  
The total power dissipation for the ICS843002I is the sum of the core power plus the power dissipated in the load(s).  
The following is the power dissipation for VCC = 3.3V + 10ꢀ = 3.63V, which gives worst case results.  
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.  
Power (core)MAX = VCC_MAX * IEE_MAX = 3.63V * 130mA = 471.9mW  
Power (outputs)MAX = 30mW/Loaded Output pair  
If all outputs are loaded, the total power is 2 * 30mW = 60mW  
Total Power_MAX (3.63V, with all outputs switching) = 471.9mW + 60mW = 531.9mW  
2. JunctionTemperature.  
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the  
device.The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.  
The equation for Tj is as follows: Tj = θJA * Pd_total + TA  
Tj = JunctionTemperature  
θJA = Junction-to-AmbientThermal Resistance  
Pd_total =Total Device Power Dissipation (example calculation is in section 1 above)  
TA = Ambient Temperature  
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA must be used. Assuming a  
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 66.6°C/W perTable 7 below.  
Therefore, Tj for an ambient temperature of 85°C with all outputs switching is:  
85°C + 0.532W * 66.6°C/W = 120.4°C. This is below the limit of 125°C.  
This calculation is only an example.Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,  
and the type of board (single layer or multi-layer).  
TABLE 7. THERMAL RESISTANCE θJA FOR 20-PINTSSOP, FORCED CONVECTION  
θ
JA by Velocity (Linear Feet per Minute)  
0
200  
98.0°C/W  
66.6°C/W  
500  
88.0°C/W  
63.5°C/W  
Single-Layer PCB, JEDEC Standard Test Boards  
Multi-Layer PCB, JEDEC Standard Test Boards  
114.5°C/W  
73.2°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
843002AGI  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 4, 2006  
12  
ICS843002I  
FEMTOCLOCKS™ CRYSTAL-TO-3.3V, 2.5V  
LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
3. Calculations and Equations.  
The purpose of this section is to derive the power dissipated into the load.  
LVPECL output driver circuit and termination are shown in Figure 6.  
VCCO  
Q1  
VOUT  
R L  
50  
VCCO - 2V  
FIGURE 6. LVPECL DRIVER CIRCUIT ANDT ERMINATION  
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination  
voltage ofV - 2V.  
CCO  
For logic high, VOUT = V  
= V  
– 0.9V  
OH_MAX  
CCO_MAX  
)
= 0.9V  
OH_MAX  
(V  
- V  
CCO_MAX  
For logic low, VOUT = V  
= V  
– 1.7V  
CCO_MAX  
OL_MAX  
)
= 1.7V  
OL_MAX  
(V  
- V  
CCO_MAX  
Pd_H is power dissipation when the output drives high.  
Pd_L is the power dissipation when the output drives low.  
))  
Pd_H = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
- V  
- V  
/R ] * (V  
- V  
) =  
OH_MAX  
CCO_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
CCO_MAX  
OH_MAX  
L
L
[(2V - 0.9V)/50Ω] * 0.9V = 19.8mW  
))  
Pd_L = [(V  
– (V  
- 2V))/R ] * (V  
- V  
) = [(2V - (V  
/R ] * (V  
- V  
) =  
OL_MAX  
CCO_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
CCO_MAX  
OL_MAX  
L
L
[(2V - 1.7V)/50Ω] * 1.7V = 10.2mW  
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW  
843002AGI  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 4, 2006  
13  
ICS843002I  
FEMTOCLOCKS™ CRYSTAL-TO-3.3V, 2.5V  
LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
RELIABILITY INFORMATION  
TABLE 8. θJAVS. AIR FLOWT ABLE FOR 20 LEADTSSOP  
θJA byVelocity (Linear Feet per Minute)  
0
200  
98.0°C/W  
66.6°C/W  
500  
88.0°C/W  
63.5°C/W  
Single-Layer PCB, JEDEC StandardTest Boards  
Multi-Layer PCB, JEDEC StandardTest Boards  
114.5°C/W  
73.2°C/W  
NOTE: Most modern PCB designs use multi-layered boards.The data in the second row pertains to most designs.  
TRANSISTOR COUNT  
The transistor count for ICS843002I is: 2578  
843002AGI  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 4, 2006  
14  
ICS843002I  
FEMTOCLOCKS™ CRYSTAL-TO-3.3V, 2.5V  
LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
PACKAGE OUTLINE - G SUFFIX FOR 20 LEAD TSSOP  
TABLE 9. PACKAGE DIMENSIONS  
Millimeters  
MAX  
SYMBOL  
MIN  
N
A
20  
--  
1.20  
A1  
A2  
b
0.05  
0.80  
0.19  
0.09  
6.40  
0.15  
1.05  
0.30  
c
0.20  
D
6.60  
E
6.40 BASIC  
4.50  
E1  
e
4.30  
0.65 BASIC  
0.75  
L
0.45  
0°  
α
8°  
aaa  
--  
0.10  
Reference Document: JEDEC Publication 95, MO-153  
843002AGI  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 4, 2006  
15  
ICS843002I  
FEMTOCLOCKS™ CRYSTAL-TO-3.3V, 2.5V  
LVPECL FREQUENCY SYNTHESIZER  
Integrated  
Circuit  
Systems, Inc.  
TABLE 10. ORDERING INFORMATION  
Part/Order Number  
Marking  
Package  
Shipping Packaging  
tube  
Temperature  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
-40°C to 85°C  
ICS843002AGI  
ICS843002AGIT  
ICS843002AGILF  
ICS843002AGILFT  
ICS843002AGI  
ICS843002AGI  
20 Lead TSSOP  
20 Lead TSSOP  
2500 tape & reel  
tube  
ICS843002AGILF  
ICS843002AGILF  
20 Lead "Lead-Free" TSSOP  
20 Lead "Lead-Free" TSSOP  
2500 tape & reel  
NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.  
The aforementioned trademarks, HiPerClockS and FEMTOCLOCKS are trademarks of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.  
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use  
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use  
in normal commercial and industrial applications. Any other applications such as those requiring high reliability or other extraordinary environmental requirements are not  
recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS product  
for use in life support devices or critical medical instruments.  
843002AGI  
www.icst.com/products/hiperclocks.html  
REV.A JANUARY 4, 2006  
16  

相关型号:

ICS843002AGILFT

FEMTOCLOCKS-TM CRYSTAL-TO-3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843002AGIT

FEMTOCLOCKS-TM CRYSTAL-TO-3.3V, 2.5V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843002AGLF

FEMTOCLOCKS⑩ CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843002AGLFT

FEMTOCLOCKS⑩ CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843002AGT

FEMTOCLOCKS⑩ CRYSTAL-TO-3.3V LVPECL FREQUENCY SYNTHESIZER
ICSI

ICS843002AKI-40

175MHZ, FEMTOCLOCKS-TM VCXO BASED SONET/SDH JITTER ATTENUATOR
ICSI

ICS843002AKI-40LF

Clock Generator, 175MHz, 3 X 3 MM, 0.95 MM HEIGHT, ROHS COMPLIANT, MO-220VHHD, VFQFN-32
IDT

ICS843002AKI-40LFT

Clock Generator, 175MHz, 3 X 3 MM, 0.95 MM HEIGHT, ROHS COMPLIANT, MO-220VHHD, VFQFN-32
IDT

ICS843002AKI-40T

175MHZ, FEMTOCLOCKS-TM VCXO BASED SONET/SDH JITTER ATTENUATOR
ICSI

ICS843002AKI-41

700MHz, FEMTOCLOCKS-TM VCXO BASED SONET/SDH JITTER ATTENUATOR
ICSI

ICS843002AKI-41LF

Clock Generator, 700MHz, 3 X 3 MM, 0.95 MM HEIGHT, ROHS COMPLIANT, MO-220VHHD, VFQFN-32
IDT

ICS843002AKI-41LFT

Clock Generator, 700MHz, 3 X 3 MM, 0.95 MM HEIGHT, ROHS COMPLIANT, MO-220VHHD, VFQFN-32
IDT