G569CS8U [GMT]

CD-RW Laser Diode Current Driver; CD - RW激光二极管电流驱动器
G569CS8U
型号: G569CS8U
厂家: GLOBAL MIXED-MODE TECHNOLOGY INC    GLOBAL MIXED-MODE TECHNOLOGY INC
描述:

CD-RW Laser Diode Current Driver
CD - RW激光二极管电流驱动器

驱动器 驱动程序和接口 二极管 激光二极管 接口集成电路 CD
文件: 总11页 (文件大小:179K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Global Mixed-mode Technology Inc.  
CD-RW Laser Diode Current Driver  
General Description  
G569C  
Features  
„
„
„
„
„
„
„
„
Single +5V supply  
The G569C is a single chip solution for the various  
functions relating to laser diode operation in a CD-RW  
drive. The G569C integrates nine functional blocks in  
one chip. It has five voltage-to-current converters, one  
current-to-voltage converters which is called FSA, one  
OP-AMP, one eight-channels D/A converter, and one  
voltage subtracter with output clamping capability  
called Dalpha.  
Laser diode read current driver  
Laser diode write current driver  
Laser diode Erase current driver  
Deltap circuit to control write current  
FSA circuit to integrate photo diode current  
Cagain circuit to convert Vcagain into current  
Dalpha circuit to perform voltage subtraction  
and limiting  
Three of the five V-to-I converters provide the laser  
diode currents for Read, Write, and Erase operations,  
respectively; another one of the V-I converters  
provides the Cagain current; and the other one  
provides Deltap current which can selectively shunt a  
certain amount of laser diode current for write  
operation. For the Write and Erase operations, the  
voltage to current conversion ratio can be adjusted  
using an external or internal DAC resistor array. The  
FSA circuit performs integration on the output current  
of an external photo diode, and sample-and-hold the  
peak voltage. It is used to monitor the laser diode  
power. The internal eight-channel D/A converter is  
used to provide the input voltage for above functional  
blocks. The G569C is available in a 48-pin SSOP  
surface-mount package.  
„
„
„
3-wire interface to control internal DAC  
A build-in OP-AMP  
48-pin SSOP package  
Applications  
„
CD-RW Drive  
Pin configuration  
Ordering Information  
G569C  
TEMP.  
RANGE  
ORDER ORDER NUMBER  
PACKAGE  
NUMBER  
(Pb free)  
IW_IN  
LS_DELTA  
TST1  
1
2
3
48  
47  
46  
WDB  
LS_WRITE  
PWRITE  
LD  
G569CS8U  
G569CS8Uf  
0°C to 85°C SSOP-48  
Note: S8: SSOP-48  
U: Tape & Reel  
PWO  
DALPHA  
PWO_I  
4
5
6
7
45  
44  
43  
42  
41  
DI  
CLK  
PWB  
PWMAX  
PWMIN  
/RESET  
VSS  
8
9
VOUT  
40 VI-  
10  
39  
38  
37  
36  
35  
VI+  
VSS 11  
VDD  
FSOF  
FSWS  
EDB  
LS_ERASE  
PERASE  
12  
13  
14  
15  
16  
FSCLR  
FSW  
34  
33  
32  
31  
30  
29  
RECORD  
CDR  
IFSA  
17  
18  
19  
20  
21  
S2V9  
FSR  
CAGAIN2  
CAGS_I  
DCAGAIN  
CAGAIN  
FSRS  
VDD  
SELN4_IN  
28 PR_I  
RCAGAIN1 22  
27  
26  
25  
LS_READ  
IR  
23  
RCAGAIN2  
24  
PRCOARSE  
PRFINE  
SSOP-48  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.0  
Oct 02, 2000  
1
Global Mixed-mode Technology Inc.  
G569C  
derate .7mW/°C about 70°C)…………….……… 695mW  
Operating Temperature Range…….…-10°C to +100°C  
Junction Temperature……………………...…….+150°C  
Storage temperature Range…….…….-65°C to +165°C  
Reflow Temperature (soldering, 10sec)………..+260°C  
Absolute Maximum Ratings  
VCC to GND…………………………….……..-0.3V to +6V  
Dalpha to GND………………………………....-3V to +6V  
All other pin to GND…………………………-0.3V to +6V  
ESD protetion (human body model)………………2000V  
Continuous power dissipation (TA=70°C),  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are  
stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the  
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods  
may affect device reliability.  
Recommended Operating Conditions  
PARAMETER  
Supply voltage  
SYMBOL  
MIN  
4.75  
2
TYP  
MAX  
UNITS  
VDD  
VIH  
VIL  
TA  
5
5.5  
V
V
High-level input voltage  
Low-level input voltage  
0.8  
70  
V
Operating free-air temperature  
0
°C  
Electrical Characteristics (VCC = 5V, TA = 0°C to +70°C, unless otherwise noted)  
PARAMETER  
Supply voltage range  
CONDITIONS  
MIN  
4.75  
0
TYP  
MAX  
5.5  
UNITS  
5.0  
V
V
PWO output voltage  
Dalpha input voltage  
PWO_I input voltage  
PWB output voltage  
PWMAX output voltage  
PWMIN output voltage  
IE output current  
VS2V9  
3.5  
-3.0  
0
V
1.5  
V
0
VS2V9  
VS2V9  
VS2V9  
130  
V
0
V
0
V
0
mA  
V
S2V9 input voltage  
VS2V9  
2.9  
Cagain output current  
PRFine output voltage  
PRCoarse output voltage  
IR output current  
0
0
0
0
0
0
0
0
0
0
1.2  
VS2V9  
VS2V9  
160  
2.16  
3.0  
mA  
V
V
mA  
V
PR_I input voltage  
FSR output voltage  
FSW output voltage  
VI- input voltage  
V
3.0  
V
3.5  
V
VI+ input voltage  
3.5  
V
IW output current  
160  
mA  
mA  
Operation current  
41  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.0  
Oct 02, 2000  
2
Global Mixed-mode Technology Inc.  
G569C  
Pin Description  
PIN NO. PIN NAME I/O  
PIN FUNCTION  
A diode of type BAS216 should be connected between this pin and node IW. This pin provides  
the path for sinking IW current.  
1
IW_IN  
I
2
3
LS_DELTA  
TST1  
O
I
Connect a 10Ω resistor from this pin to VSS  
Test pin. Connect to ground for normal operation.  
DAC output, connect to PWO_I through a resistor divider  
Control voltage input  
4
PWO  
O
I
5
DALPHA  
PWO_I  
PWB  
6
I
Control voltage input  
7
O
O
O
I
Voltage output  
8
PWMAX  
PWMIN  
/RESET  
VSS  
Voltage output  
9
Voltage output  
10  
11,42  
12  
13  
14  
15  
16  
17  
Logic input. A Low on this pin reset all DAC latches to 0.  
Ground pin  
I
EDB  
O
I
Connect to the base node of external PNP BJT (Type BC808).  
Connect a 6.8Ω (1206 type) resistor from this pin to VDD  
Connect a DAC resistor array from this pin to VSS  
Logic input, a high indicates in recording mode.  
Logic input, a high indicates in CD-R mode.  
Voltage input. Contribute to current output on CAGAIN pin and provides internal DAC reference  
voltage.  
LS_ERASE  
PERASE  
RECORD  
CDR  
O
I
I
S2V9  
I
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
CAGAIN2  
CAGS_I  
O
I
Tristate output. Connect 62KΩ to pin CAGAIN.  
Logic input, 0~2V swing.  
DCAGAIN  
CAGAIN  
RCAGAIN1  
RCAGAIN2  
PRFINE  
O
O
O
O
O
O
O
I
An optional resistor may be added to modify the output current on CAGAIN  
Current output  
A 16.2KΩ resistor should be connected from this pin to VSS  
A 3.9KΩ resistor should be connected from this pin to VSS  
DAC output, connect to PR_I through a resistor divider  
DAC output, connect to PR_I through a resistor divider  
Read current output for laser diode  
PRCOARSE  
IR  
LS_READ  
PR_I  
Connect two 22Ω (1206 type) resistors from this pin to VDD  
Voltage input which controls the current on IR pin  
Logic input. This pin can be shorted to pin CDR or be connected to the voltage divider formed by  
CDR and SELN4.  
I
SELN4_IN  
I
30,38  
31  
VDD  
I
I
Supply voltage input. Each VDD pin should have a 0.1µF bypass capacitor to VSS.  
Logic input, when FSRS=1, the voltage on pin FSCLR is sampled onto pin FSR, else FSR is in hold  
mode.  
FSRS  
32  
33  
FSR  
O
I
Sampled voltage output, controlled by FSRS  
IFSA  
If internal integration control circuitry is used, connect a photo diode from this pin to +30V. connect it  
to VDD otherwise  
34  
35  
36  
FSW  
FSCLR  
FSWS  
O
O
I
Sampled voltage output, controlled by FSWS  
Sampling capacitors and resistor are connected to this pin.  
Logic input, when FSWS=1, the voltage on pin FSCLR is sampled onto pin FSW, else FSW is in  
hold mode.  
37  
FSOF  
I
If internal integration control circuitry is used, connect the control signal to this pin. A logic low enable  
the current charging on the capacitors on pin FSCLR with the current from IFSA. Connect this pin to  
VDD if internal integration control circuitry is not used.  
Non-inverting input of Op Amp  
39  
40  
41  
43  
44  
45  
46  
47  
48  
VI+  
VI-  
I
I
Inverting input of Op Amp  
VOUT  
CLK  
O
I
Op Amp output  
Clock input of I2S bus  
DI  
I
Data input of I2S bus  
LD  
I
Latch data input of I2S bus  
PWRITE  
LS_WRITE  
WDB  
O
I
Connect a DAC resistor network from this pin to VSS  
Connect a 6.8Ω (1206type) from this pin to VDD  
Connect to the base node of external PNP BJT. (Type BC807-40)  
O
TEL: 886-3-5788833  
Ver: 1.0  
http://www.gmt.com.tw  
Oct 02, 2000  
3
Global Mixed-mode Technology Inc.  
G569C  
Detail Description  
programming of the OTA's transconductance. An  
internal DAC can be enabled through I2S bus to  
replace the external DAC resistor array. The maximum  
RPWRITE is 7.5KΩ. The maximum IW is 130 mA.  
Since IW must flow through the external 6.8Ω resistors  
connected between VDD and LS_WRITE pin, type  
1206 SMD resistors must be used to handle the power  
dissipation.  
The typical application circuit of G569C is shown in Fig.  
1. The block diagram of G569C is shown in Fig. 2. It  
contains nine circuit blocks. The operation of these  
blocks is described below.  
READ Block  
This block is equivalent to an operational  
transconductance amplifier (OTA). The voltage on  
PR_I pin is the input voltage, VPR_I; the output current,  
IR, is delivered on pin IR. The relationship between  
DELTAP Block  
This block is a current sink used to selectively sink the  
IW current. When DP4 is low, the current sink reduces  
the output current on IW by the amount of the  
magnitude of the current sink. The magnitude of the  
current sink, Is, is given by:  
V
PR_I and IR is given by:  
IR = 820 x VPR_I /( R232 R233)  
where IR is in mA, VPR_I is in volt, and R is in Ω. The  
recommended values for R232 and R233 are 22Ω, the  
maximum VPR_I is 2.16 V, thus the maximum IR is  
160mA. Since IR must flow through the two external  
22Ω resistors connected between VDD and LS_READ  
pin, type 1206 SMD resistors must be used to handle  
the power dissipation.  
3
20  
Is =  
x VDELTAP / RLS_DELTA,  
where Is is in mA; VDELTAP, in volt, is an internal DAC  
output; and RLS_DELTA, in KΩ, is the resistance from pin  
LS_DELTA to ground. Type 1206 SMD resistors must  
be used for RLS_DELTA to handle the power dissipation.  
When DP4 is high, the current output on IW current is  
not affected.  
ERASE Block  
This block is also equivalent to an operational  
transconductance amplifier (OTA). The voltage on  
PWD node is the input voltage, VPWD; the output  
voltage, VEDB, can be used to drive an external PNP  
BJT to provides desired IE current. The relationship  
between VPWD and IE is given by:  
DALPHA Block  
The function of this block is a voltage subtracter. The  
voltage on pin PWB, VPWB, is given by:  
VPWB = 2 x VPWO_I - VDALPHA  
,
1800  
R235  
IE =  
x VPWD / RPERASE  
,
where VPWO_I and VDALPHA are the voltages on pins  
PWO_I and DALPHA, respectively. In addition, the  
magnitude of the output voltage VPWB is limited by  
VPWMAX and VPWMIN, which are the voltages on pins  
PWMAX and PWMIN.  
where IE is in mA, VPWD is in volt, and RPERASE, in KΩ,  
is the total resistance from pin PEARSE to ground.  
Typically, a digital-to-analog converter (DAC) resistor  
array is connected at PERASE pin to allow digital  
programming of the OTA's transconductance. The  
maximum RPERASE is 7.5KΩ. An internal DAC can  
be enabled through I2S bus to replace the external  
DAC resistor array. The maximum IE is 130 mA. Since  
IE must flow through the external 6.8Ω resistors  
connected between VDD and LS_ERASE pin, type  
1206 SMD resistors must be used to handle the power  
dissipation.  
When 2xVPWO_I - VDALPHA < VPWMIN, then VPWB = VPWMIN  
.
When 2xVPWO_I - VDALPHA, > VPWMAX, then VPWB  
=
VPWMAX  
.
The input voltage ranges of VPWMAX and VPWMIN are 0 to  
VS2V9 which is the voltage input at S2V9 pin, and the  
condition VPWMAX > VPWMIN must hold. Note that the  
input voltage range of VDALPHA is -3V to +3.5V.  
CAGAIN Block  
WRITE Block  
This block is also an operational transconductance  
amplifier (OTA). The voltage on VCAGAIN pin is the  
input voltage, VVCAGAIN; the output current, ICAGAIN, is  
delivered on pin CAGAIN. Let the voltages on pins  
This block is also an operational transconductance  
amplifier (OTA). The voltage on PWD node is the input  
voltage, VPWD; the output voltage, VWDB, can be used  
to drive an external PNP BJT to provides desired IW  
current. The relationship between VPWD and IW is  
given by:  
CDR, CAGS, CAGAIN and S2V9 be denoted as VCDR  
,
VCAGS, VCAGAIN, VS2V9, respectively. The relationship  
between VVCAGAIN and ICAGAIN is given by:  
1800  
R234  
When VCDR = 5V, VCAGS = 5V  
ICAGAIN = 1.2 x VCAGAIN / (R108R109) + (VS2V9  
IW =  
x VPWD / RPWRITE,  
-
V
CAGAIN) / R195,  
When VCDR = 5V, VCAGS = 0V  
ICAGAIN (VS2V9 - VCAGAIN) / R195  
where IW is in mA, VPWD is in volt, and RPWRITE, in KΩ  
is the total resistance from pin PWRITE to ground.  
Typically, a digital-to-analog converter (DAC) resistor  
array is connected at PWRITE pin to allow digital  
=
TEL: 886-3-5788833  
Ver: 1.0  
http://www.gmt.com.tw  
Oct 02, 2000  
4
Global Mixed-mode Technology Inc.  
G569C  
When VCDR = 0V, VCAGS = 5V, VRECORD = 0V  
CAGAIN = 1.2 x VCAGAIN / R108 + (VS2V9 - VCAGAIN) / R195,  
When VFSOF = 0V, the FSCLR pin is charged by IFSA  
.
I
When VFSOF = 5V, the FSCLR pin is not charged by IFSA  
.
When VCDR = 0V, VCAGS = 5V, VRECORD = 5V  
CAGAIN = 1.2 x VCAGAIN / R108  
The FSCLR, RDGAIN1, RDGAIN2, and RDGAIN3  
pins are driven by an open-drain buffer, i.e., the  
voltages on these pins are either 0V or Hi-Z. The  
capacitance values of the three capacitors connecting  
to the FSCLR may need to be changed if loader other  
than CDL4800 is used.  
I
When VCDR = 0V, VCAGS = 0V, VRECORD = 0V  
ICAGAIN (VS2V9 - VCAGAIN) / R195,  
=
When VCDR = 0V, VCAGS = 0V, VRECORD = 5V  
ICAGAIN = 0 mA,  
When VFSCLR = 0V, the charges on the capacitors are  
discharged to 0V.  
Where ICAGAIN is in mA; all voltages are in volt, and all  
resistance are in KΩ.  
When VFSCLR = Hi-Z, the charging of FSCLR node is  
allowed.  
FSA Block  
The FSOF/FSON control the integration of the  
photodiode current, IFSA, on the capacitors connected  
on pin FSCLR to obtain a voltage. The voltage on  
FSCLR pin is connected to two sample-and-hold  
circuit. The voltages sampled by the control voltage on  
FSWS and FSRS pins are output on FSW and FSR  
pins, respectively. Namely,  
When VRDGAIN1 = 0V, the VFSCLR is given by:  
VFSCLR = IFSA x R187.  
When VRDGAIN1 = Hi-Z, the charging of FSCLR node is  
allowed.  
When VRDGAIN2 = 0V, the capacitor C123 is in parallel  
with C116  
.
When VFSWS = 5V, VFSW = VFSCLR  
,
When VRDGAIN2 = Hi-Z, the capacitor C123 has no effect.  
When VRDGAIN3 = 0V, the capacitor C117 is in parallel  
When VFSWS = 0V, VFSW = the previously sampled  
value;  
with C116  
.
When VFSRS = 5V, VFSR = VFSCLR  
,
When VRDGAIN3 = Hi-Z, the capacitor C117 has no effect.  
When VFSRS = 0V, VFSR = the previously sampled  
value.  
The charging of FSCLR node is controlled by signals  
VFSOF and VFSON.  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.0  
Oct 02, 2000  
5
Global Mixed-mode Technology Inc.  
G569C  
5V  
5V  
IFSA  
R69  
100  
R68  
R71  
100  
R70  
820  
FSOF  
30V  
BF824  
FSON  
820  
5V  
CAGAIN  
CAGAIN (pin 21)  
CAGAIN2 (pin 18)  
VDD (pin 30,38)  
R195  
0.1μF  
62K  
R108  
R187  
22K  
VRDGAIN1  
IFSA (pin 33)  
RCAGAIN1 (pin 22)  
16.2K  
R109  
FSCLR(pin 35)  
RCAGAIN2 (pin 23)  
CDR (pin 16)  
FSCLR (pin 35)  
3.9K  
CDR  
100K  
10K  
C123  
C117  
C116  
2.2nF  
1.5nF  
VRDGAIN3  
VRDGAIN2  
560pF  
SELN4_IN (pin 29)  
CAGS_I (pin 19)  
SELN4  
R67  
CAGS  
12V  
330  
C113  
330pF  
R66  
220  
R234  
(1206)  
R302  
2.2K  
6.8  
LS_WRITE (pin 47)  
5V  
R230  
4.7K  
C127  
R191  
220  
PRCOARSE (pin 25)  
R210  
47  
100nF  
R231  
150K  
BC807_40  
IW  
WDB (pin 48)  
IW_IN (pin 1)  
PRFINE (pin 24)  
PR_I (pin 28)  
BAS216  
R192  
330  
R124  
5V  
R229  
6.8K  
5V  
270  
BC847B  
DP4  
R232  
(1206)  
R232  
(1206)  
22 22  
PWRITE (pin 46)  
C52  
68pF  
LS_READ (pin 27)  
IR (pin 26)  
TST1 (pin 3)  
IR  
5V  
R36  
1M  
12V  
LS_DELTA (pin 2)  
R236  
10  
(1206)  
6.8  
(1206)  
R226  
1.5K  
R235  
LS_ERASE (pin 13)  
R236  
150K  
R92  
220  
PWO (pin 4)  
C135  
100nF  
EDB (pin 12)  
PWO_I (pin 6)  
BC808  
R211  
47  
IE  
150K  
C53  
1nF  
PERASE (pin 14)  
5V  
R96  
1M  
FSOF (pin 37)  
FSOF  
VSS (pin 11,42)  
Fig 1. Typical application circuit  
Note: The circuits in the dotted-line are the suggested circuit when internal integration circuit is not used.  
Please refer to pin description for details.  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.0  
Oct 02, 2000  
6
Global Mixed-mode Technology Inc.  
G569C  
Fig 2. Block Diagram of G569C  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.0  
Oct 02, 2000  
7
Global Mixed-mode Technology Inc.  
G569C  
Internal DAC Digital Format  
12BIT SERIAL DATA  
(LSB)  
1
2
3
4
5
6
7
8
9
10  
D2  
11  
D1  
12  
DATA  
CLK  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D0  
Data Assignment  
D0  
D1  
D9  
D2  
D3  
D4  
D5  
D6  
D7  
: DAC DATA  
(LSB)  
(MSB)  
D8  
D10  
D11  
: DAC SELECT DATA  
(MSB)  
(LSB)  
DAC Select Data  
D8  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
D9  
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
D10  
D11  
0
DAC Selection  
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
Don’t Care  
1
PRCOARSE Selection  
PRFINE Selection  
VCAGAIN Selection  
PWMIN Selection  
PWMAX Selection  
PWO Selection  
DELTAP Selection  
PWD Selection  
WRITE Selection  
ERASE Selection  
Don’t Care  
0
1
0
1
0
1
0
1
0
1
0
Don’t Care  
1
Don’t Care  
0
Don’t Care  
1
Don’t Care  
Digital Data Format for Internal DAC  
D0  
0
D1  
0
D2  
0
D3  
0
D4  
0
D5  
0
D6  
0
D7  
0
DAC Output  
0
1
0
0
0
0
0
0
0
VIN / 256 × 1  
VIN / 256 × 2  
VIN / 256 × 3  
¦
0
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
¦
¦
¦
¦
¦
¦
¦
¦
1
1
1
1
1
1
1
1
VIN / 256 × 255  
Digital Data Format for WRITE and ERASE  
D0  
0
D1  
×
D2  
×
D3  
×
D4  
×
D5  
×
D6  
×
D7  
Comments  
×
Disable Internal R2R Network  
1
0/1  
0/1  
0/1  
0/1  
0/1  
0/1  
0/1 Enable Internal R2R Network D1 is LSB , D7 is MSB  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.0  
Oct 02, 2000  
8
Global Mixed-mode Technology Inc.  
G569C  
Timing Chart  
R
LSB  
D0  
MSB  
D11  
DI  
D9  
D10  
CLK  
LD  
VO  
*Input data carried out LD signal Low besides CLK signal positive edge. CLK, LD is keep generally HIGH level.  
AC Characteristics  
Symbol  
tCKL  
Parameter  
Clock “L” Pulse Width  
Clock “H” Pulse Width  
Clock Rise Time  
Measurement Condition  
Limit  
Unit  
nS  
200  
200  
tCKH  
tCR  
nS  
200  
nS  
tCF  
Clock Fall Time  
tDCH  
tCHD  
tCHL  
tLDC  
tLDH  
tDo  
Data Set Up Time  
Data Hold Time  
60  
100  
200  
100  
100  
70  
nS  
nS  
nS  
nS  
nS  
nS  
LD Set Up Time  
LD Hold Time  
LD “H” Pulse Duration Time  
Data Output Delay Time  
D-A Output Setting Time  
CL=100pF  
350  
300  
tLDD  
CL 100pF,VAO:0.1< = > 2.6V  
This Time Until The Output Becomes The final Value Of 1/2  
LSB  
µS  
Timing Chart  
tCR  
tCF  
tCKH  
CLK  
tCKL  
tLDC  
DI  
tDCH  
tCHD  
tLDH  
tCHL  
LD  
tLDD  
D-A OUTPUT  
Do OUTPUT  
tDo  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.0  
Oct 02, 2000  
9
Global Mixed-mode Technology Inc.  
G569C  
Package Information  
L
E1  
E
h x  
45  
°
D
A
A1  
0.004  
C
SEATING PLANE  
b
e
DIMENSION IN MM  
DIMENSION IN INCH  
SYMBOL  
MIN.  
NOM.  
2.591  
0.305  
MAX.  
2.794  
0.406  
0.343  
0.254  
16.00  
MIN.  
0.095  
0.008  
0.008  
0.005  
0.620  
NOM.  
0.102  
0.012  
MAX.  
0.110  
0.016  
0.0135  
0.010  
0.630  
A
A1  
b
2.413  
0.203  
0.203  
0.127  
15.75  
c
D
e
15.88  
0.625  
0.635 BASIC  
0.025 BASIC  
E
10.033  
7.391  
0.381  
0.508  
0
10.668  
7.595  
0.635  
1.016  
θ
0.395  
0.291  
0.015  
1.020  
0
0.420  
0.289  
0.025  
0.040  
θ
E1  
h
7.493  
0.295  
L
θ
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.0  
Oct 02, 2000  
10  
Global Mixed-mode Technology Inc.  
G569C  
Package Description: SSOP-48  
Quantity /Reel  
Reel Diameter  
: 1000 / Reel  
: 13”  
Carrier Tape (Width)  
Carrier Tape (Pitch)  
: 32mm  
: 16mm  
Mechanical Polarization  
Top View Shown With Cover Tape Removed  
EIA-JEDEC SO Package Outline Style  
Termination No.1  
User Direction of Feed  
GMT Inc. does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and GMT Inc. reserves the right at any time without notice to change said circuitry and specifications.  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.0  
Oct 02, 2000  
11  

相关型号:

G569CS8UF

Interface Circuit
GMT

G570

Dual-Slot PCMCIA/CardBus Power Controller
GMT

G570S4

Dual-Slot PCMCIA/CardBus Power Controller
GMT

G570SA

Dual-Slot PCMCIA/CardBus Power Controller
GMT

G571

Single-Slot PCMCIA/CardBus Power Controllers
ETC

G5719

1MHz, 2A Synchronous Step-Down Regulator
GMT

G5719B

1MHz, 3A Synchronous Step-Down Regulator
GMT

G5719BRC1U

Switching Regulator, Current-mode, 1000kHz Switching Freq-Max, PDSO8, TDFN-8
GMT

G5719BT11U

Switching Regulator, Current-mode, 1000kHz Switching Freq-Max, PDSO5, SOT-23, 5 PIN
GMT

G5719BTB1U

Switching Regulator, Current-mode, 1000kHz Switching Freq-Max, PDSO6, SOT-23, 6 PIN
GMT

G5719C

1MHz, 3A Synchronous Step-Down Regulator
GMT

G571S1

Single-Slot PCMCIA/CardBus Power Controllers
ETC