G1422F2U [GMT]

2W Stereo Audio Amplifier; 2W立体声音频放大器
G1422F2U
型号: G1422F2U
厂家: GLOBAL MIXED-MODE TECHNOLOGY INC    GLOBAL MIXED-MODE TECHNOLOGY INC
描述:

2W Stereo Audio Amplifier
2W立体声音频放大器

音频放大器
文件: 总15页 (文件大小:300K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
G1422  
Global Mixed-mode Technology Inc.  
2W Stereo Audio Amplifier  
Features  
General Description  
„
Depop Circuitry Integrated  
The G1422 is a stereo audio power amplifier in 20pin  
TSSOP thermal pad package. It can drive 2W con-  
tinuous RMS power into 4Ω load per channel in  
Bridge-Tied Load (BTL) mode at 5V supply voltage. Its  
THD is smaller than 1% under the above operation  
condition. To simplify the audio system design in the  
notebook application, the G1422 supports the Bridge-  
Tied Load (BTL) mode for driving the speakers, Sin-  
gle-End (SE) mode for driving the headphone. For the  
low current consumption applications, the SHDN mode  
is supported to disable the G1422 when it is idle. The  
current consumption can be further reduced to below  
2µA.  
„
Output Power at 1% THD+N, VDD=5V  
--2W/CH (typical) into a 4Ω Load  
--1.2W/CH (typical) into a 8Ω Load  
Bridge-Tied Load (BTL), Single-Ended (SE)  
Shutdown Control Available  
Thermal protection  
„
„
„
„
Surface-Mount Power Package  
20-Pin TSSOP-P  
Applications  
„
Stereo Power Amplifiers for Notebooks or  
Desktop Computers  
„
„
Multimedia Monitors  
Stereo Power Amplifiers for Portable Audio  
Systems  
Ordering Information  
ORDER  
NUMBER  
G1422F2U  
ORDER NUMBER  
TEMP.  
RANGE  
MARKING  
G1422  
PACKAGE  
(Pb free)  
G1422F2Uf  
-40°C to +85°C  
TSSOP-20 (FD)  
Note:F2: TSSOP-20 (FD)  
U: Tape & Reel  
Pin Configuration  
G1422  
SHUTDOWN  
GND/HS  
1
2
3
4
5
6
HP-IN  
20  
19  
18  
GND/HS  
+OUTB  
+OUTA  
VDD  
-OUTA  
-INA  
17 VDD  
-OUTB  
16  
15  
Thermal  
-INB  
Pad  
GND/HS  
BYPASS  
+INB  
14  
13  
12  
7
8
9
+INA  
GND/HS  
GND/HS  
GND/HS  
GND/HS  
10  
11  
Top View  
Bottom View  
TSSOP-20 (FD)  
Note: Recommend connecting the Thermal Pad to the GND for excellent power dissipation.  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.2  
Jun 29, 2005  
1
G1422  
Global Mixed-mode Technology Inc.  
Absolute Maximum Ratings  
Supply Voltage, VCC…………………..…...…….……...6V  
Operating Ambient Temperature Range  
Power Dissipation (1)  
TA 25°C………………………………………….2.7W  
TA 70°C………………………………………….1.7W  
TA 85°C………………….………………………1.4W  
Electrostatic Discharge, VESD  
TA…….…………………………….……….-40°C to +85°C  
Maximum Junction Temperature, TJ…..……….….150°C  
Storage Temperature Range, TSTG….…-65°C to+150°C  
Reflow Temperature (soldering, 10sec)….……..260°C  
Human body mode..………………….…-3000 to 3000(2)  
Note:  
(1) : Recommended PCB Layout  
(2) : Human body model : C = 100pF, R = 1500Ω, 3 positive pulses plus 3 negative pulses  
Electrical Characteristics  
DC Electrical Characteristics, VDD = 5.0V, TA=+25°C, unless otherwise noted  
PARAMETER  
Supply Current  
SYMBOL  
CONDITION  
Stereo BTL  
STEREO SE  
MIN TYP MAX UNIT  
---  
---  
---  
---  
4
8.5  
4
15  
8
IDD  
VDD = 5V  
mA  
DC Differential Output Voltage  
IDD in Shutdown  
VO(DIFF)  
ISD  
VDD = 5V,Gain = 2  
VDD = 5V  
5
50  
2
mV  
µA  
V
0.1  
---  
---  
Headphone High Input Voltage  
Headphone Low Input Voltage  
VIH  
---  
0.8  
VIL  
---  
V
(AC Operation Characteristics, VDD = 5.0V, TA=+25°C, RL = 4Ω, unless otherwise noted)  
PARAMETER  
SYMBOL  
CONDITION  
THD = 1%, BTL, RL = 4Ω  
THD = 1%, BTL, RL = 8Ω  
THD = 10%, BTL, RL = 4Ω  
THD = 10%, BTL, RL = 8Ω  
THD = 1%, SE, RL = 4Ω  
THD = 1%, SE, RL = 8Ω  
THD = 10%, SE, RL = 4Ω  
THD = 10%, SE, RL L = 8Ω  
THD = 0.5%, SE, RL = 32Ω  
PO = 1.6W, BTL, RL = 4Ω  
PO = 1W, BTL, RL = 8Ω  
PO = 75mW, SE, RL = 32Ω  
VI = 1V, RL = 10KΩ, G = 1, SE  
G = 1, THD = 1%  
MIN TYP MAX UNIT  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
2
1.25  
2.5  
1.6  
550  
340  
700  
440  
92  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
W
Output power (each channel) see Note  
P(OUT)  
mW  
300  
100  
15  
Total harmonic distortion plus noise  
THD+N  
m%  
2.5  
20  
Maximum output power bandwidth  
Phase margin  
BOM  
kHz  
°
RL = 4Ω, Open Load  
65  
Power supply ripple rejection  
Channel-to-channel output separation  
Input separation  
PSRR  
f = 120Hz  
75  
dB  
f = 1kHz  
80  
dB  
80  
dB  
BTL attenuation in SE mode  
Input impedance  
85  
dB  
ZI  
2
MΩ  
dB  
Signal-to-noise ratio  
PO = 500mW, BTL  
90  
Output noise voltage  
Vn  
Output noise voltage  
55  
µV (rms)  
Note :Output power is measured at the output terminals of the IC at 1kHz.  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.2  
Jun 29, 2005  
2
G1422  
Global Mixed-mode Technology Inc.  
Typical Characteristics  
Table of Graphs  
FIGURE  
vs Frequency  
2,4,6,9,11,15,17  
THD +N Total harmonic distortion plus noise  
Output noise voltage  
vs Output Power  
vs Frequency  
1,3,5,7,8,10,12,13,14,16,18  
20  
Supply ripple rejection ratio  
vs Frequency  
19  
Vn  
Crosstalk  
vs Frequency  
22,23  
21  
Open loop response  
IDD Supply current  
vs Frequency  
Vs Supply Voltage  
vs Load Resistance  
Vs Load Resistance  
vs Output Power  
24  
25,26  
27,28  
29,30,31,32  
PO  
PD  
Output power  
Power dissipation  
Total Harmonic Distortion Plus  
Noise vs Output Power  
Total Harmonic Distortion Plus  
Noise vs Frequency  
10  
5
10  
5
20kHz  
2
1
2
1
Po=1.8W  
1kHz  
0.5  
0.5  
%
%
0.2  
0.1  
0.2  
0.1  
VDD=5V  
RL=3Ω  
BTL  
20 Hz  
VDD=5V  
RL=3Ω  
BTL  
0.05  
0.05  
Av=-2V/V  
0.02  
0.01  
0.02  
0.01  
Av=-2V/V  
3m  
5m  
10m  
20m  
50m  
100m  
200m  
500m  
1
2
3
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
W
Hz  
Figure 1  
Figure 2  
Total Harmonic Distortion Plus  
Noise vs Output Power  
Total Harmonic Distortion Plus  
Noise vs Frequency  
10  
5
10  
5
20kHz  
Av=-4V/V  
2
1
2
1
Av=-2V/V  
0.5  
0.5  
1kHz  
%
%
0.2  
0.1  
0.2  
0.1  
VDD=5V  
RL=4Ω  
BTL  
Av=-1V/V  
VDD=5V  
RL=4Ω  
BTL  
20 Hz  
0.05  
0.05  
Po=2W  
Av=-2V/V  
0.02  
0.01  
0.02  
0.01  
3m  
5m  
10m  
20m  
50m  
100m  
W
200m  
500m  
1
2
3
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Hz  
Figure 3  
Figure 4  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.2  
Jun 29, 2005  
3
G1422  
Global Mixed-mode Technology Inc.  
Total Harmonic Distortion Plus  
Total Harmonic Distortion Plus  
Noise vs Output Power  
Noise vs Frequency  
10  
5
10  
VDD=5V  
RL=8Ω  
BTL  
5
VDD=5V  
RL=8Ω  
BTL  
20kHz  
2
1
2
1
Av=-2V/V  
Po=1W  
Av=-4V/V  
0.5  
0.5  
%
%
%
%
%
%
1kHz  
0.2  
0.1  
0.2  
0.1  
Av=-2V/V  
20 Hz  
0.05  
0.05  
Av=-1V/V  
0.02  
0.01  
0.02  
0.01  
2m  
5m  
10m  
20m  
50m  
100m  
200m  
500m  
1
2
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
W
Hz  
Figure 6  
Figure 5  
Total Harmonic Distortion Plus  
Noise vs Output Power  
Total Harmonic Distortion Plus  
Noise vs Frequency  
10  
5
10  
5
VDD=5V  
RL=32Ω  
BTL  
20kH  
2
1
2
1
Av=-2V/V  
20kHz  
1kHz  
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
1kHz  
VDD=3.3V  
RL=4Ω  
BTL  
0.05  
0.05  
20 Hz  
Av=-2V/V  
20 Hz  
0.02  
0.01  
0.02  
0.01  
1m  
2m  
5m  
10m  
20m  
50m  
100m  
200m  
500m  
1
1m  
2m  
5m  
10m  
20m  
50m  
100m  
200m  
500m  
1
W
W
Figure 7  
Figure 8  
Total Harmonic Distortion Plus  
Noise vs Frequency  
Total Harmonic Distortion Plus  
Noise vs Output Power  
10  
5
10  
5
VDD=3.3V  
RL=4Ω  
BTL  
Av=-4V/V  
20kHz  
2
1
2
1
Po=0.75W  
0.5  
0.5  
1kHz  
Av=-2V/V  
0.2  
0.1  
0.2  
0.1  
VDD=3.3V  
RL=8Ω  
0.05  
0.05  
20 Hz  
BTL  
Av=-2V/V  
Av=-1V/V  
0.02  
0.01  
0.02  
0.01  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k  
20k  
1m  
2m  
5m  
10m  
20m  
50m  
100m  
200m  
500m  
1
W
Figure 9  
Figure 10  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.2  
Jun 29, 2005  
4
G1422  
Global Mixed-mode Technology Inc.  
Total Harmonic Distortion Plus  
Total Harmonic Distortion Plus  
Noise vs Frequency  
Noise vs Output Power  
10  
5
10  
VDD=5V  
RL=4Ω  
SE  
VDD=3.3V  
RL=8Ω  
BTL  
5
2
1
2
1
20kHz  
1kHz  
Av=-2V/V  
Po=0.45W  
Av=-4V/V  
0.5  
0.5  
%
%
0.2  
0.1  
0.2  
0.1  
Av=-2V/V  
Av=-1V/V  
0.05  
0.05  
100Hz  
0.02  
0.01  
0.02  
0.01  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
1m  
2m  
5m  
10m  
20m  
50m  
100m  
200m  
500m  
1
Hz  
W
Figure 11  
Figure 12  
Total Harmonic Distortion Plus  
Noise vs Output Power  
Total Harmonic Distortion Plus  
Noise vs Output Power  
10  
5
10  
5
VDD=5V  
VDD=5V  
RL=16Ω  
SE  
RL=8Ω  
SE  
Av=-2V/V  
2
1
2
1
Av=-2V/V  
20kHz  
0.5  
0.5  
20kHz  
20 Hz  
%
%
0.2  
0.1  
0.2  
0.1  
1kHz  
0.05  
0.05  
0.02  
0.01  
0.02 100kHz  
1kHz  
0.01  
1m  
2m  
5m  
10m  
20m  
50m  
100m  
200m  
500m  
1m  
2m  
5m  
10m  
20m  
50m  
W
100m  
200m  
500m  
1
W
Figure 13  
Figure 14  
Total Harmonic Distortion Plus  
Noise vs Frequency  
Total Harmonic Distortion Plus  
Noise vs Output Power  
10  
10  
5
5
VDD=5V  
RL=32Ω  
SE  
VDD=5V  
RL=16Ω  
SE  
2
1
2
1
Av=-2V/V  
Po=150mW  
0.5  
0.5  
20kHz  
%
%
Av=-4V/V  
0.2  
0.1  
0.2  
0.1  
Av=-2V/V  
0.05  
0.05  
1kHz  
20 Hz  
0.02  
0.01  
0.02  
0.01  
Av=-1V/V  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
1m  
2m  
5m  
10m  
20m  
50m  
W
100m  
200m  
500m  
1
Hz  
Figure 15  
Figure 16  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.2  
Jun 29, 2005  
5
G1422  
Global Mixed-mode Technology Inc.  
Total Harmonic Distortion Plus  
Noise vs Frequency  
Total Harmonic Distortion Plus  
Noise vs Output Power  
10  
5
10  
5
VDD=5V  
VDD=3.3V  
RL=32  
RL=32  
2
2
Ω
Ω
SE  
SE  
1
1
Po=75mW  
Av=-2V/V  
20kHz  
0.5  
0.5  
Av=-4V/V  
0.2  
0.1  
0.2  
0.1  
%
%
0.05  
0.05  
20 Hz  
Av=-2V/V  
0.02  
0.01  
0.02  
0.01  
1kHz  
0.005  
0.005  
Av=-1V/V  
0.002  
0.001  
0.002  
0.001  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
1m  
2m  
5m  
10m  
W
20m  
50m  
100m  
Hz  
Figure 17  
Figure 18  
Output Noise Voltage  
vs Frequency  
Supply Ripple Rejection Ratio  
vs Frequency  
+0  
100u  
90u  
T
-10  
80u  
70u  
VDD=5V RL=4  
BTL Mode 20kHz LP  
VDD=5V  
Ω
RL=4  
Ω
-20  
-30  
-40  
-50  
60u  
50u  
CB=4.7µF  
Vripple=0.5Vpp  
40u  
30u  
d
B
V
SE Mode  
-60  
-70  
-80  
VDD=5V RL=32  
SE Mode BW<32kHz  
Ω
20u  
BTL Mode  
-90  
-100  
10u  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k  
20 k  
20  
50  
100  
200  
500  
1k  
2k  
5k  
10k  
20k  
Hz  
Figure 19  
Figure 20  
Open Loop Response  
Channel Separation  
-30  
-35  
VDD=5V  
Po=1.5W  
-40  
-45  
-50  
RL=4  
BTL  
Ω
-55  
-60  
d
B
Channel A to B  
-65  
-70  
-75  
-80  
-85  
-90  
Channel B to A  
-95  
-100  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k  
20k  
Figure 22  
Figure 21  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.2  
Jun 29, 2005  
6
G1422  
Global Mixed-mode Technology Inc.  
Channel Separation  
Supply Current vs Supply Voltage  
-30  
-35  
9
Stereo BTL  
VDD=5V  
Po=75mW  
-40  
-45  
-50  
8
RL=32  
SE  
Ω
7
6
5
4
3
2
-55  
-60  
d
B
-65  
-70  
-75  
Channel A to B  
Channel B to A  
-80  
-85  
-90  
Stereo SE  
-95  
-100  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k  
20k  
3
4
5
6
Supply Voltage(V)  
Figure 23  
Figure 24  
Output Power vs Supply Voltage  
Output Power vs Supply Voltage  
0.25  
0.2  
0.15  
0.1  
0.05  
0
3
THD+N=1%  
SE  
Each Channel  
THD+N=1%  
BTL  
Each Channel  
2.5  
2
RL=4  
Ω
RL=3  
Ω
RL=16  
Ω
1.5  
1
RL=8  
Ω
RL=32  
Ω
0.5  
0
2.5  
3.5  
4.5  
5.5  
6.5  
2.5  
3.5  
4.5  
5.5  
6.5  
Supply Voltage(V)  
Supply Voltage(V)  
Figure 26  
Figure 25  
Output Power vs Load Resistance  
Output Power vs Loard Resistance  
2.5  
2
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
THD+N=1%  
BTL  
Each Channel  
THD+N=1%  
SE  
Each Channel  
VDD=5V  
VDD=5V  
1.5  
1
0.5  
0
VDD=3.3V  
VDD=3.3V  
4
8
12  
16  
20  
24  
28  
32  
0
10  
20  
30  
40  
Load Resistance()  
Load Resistance()  
Figure 27  
Figure 28  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.2  
Jun 29, 2005  
7
G1422  
Global Mixed-mode Technology Inc.  
Power Dippipation vs Output Power  
Power Dissipation vs Output Power  
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
RL=3  
Ω
RL=3  
Ω
RL=4  
Ω
RL=4  
Ω
VDD=5V  
BTL  
Each Channel  
0.8  
0.6  
0.4  
0.2  
0
VDD=3.3V  
BTL  
Each Channel  
RL=8  
0.5  
Ω
RL=8  
Ω
0
1
1.5  
2
2.5  
0
0.5  
1
1.5  
Po-Output Pow er(W)  
Po-Output Pow er(W)  
Figure 29  
Figure 30  
Power Dissipation vs Output Power  
Power Dissipation vs Output Power  
0.35  
0.3  
0.16  
0.14  
0.12  
0.1  
RL=4  
Ω
RL=4  
Ω
0.25  
0.2  
VDD=3.3V  
SE  
RL=8  
Ω
RL=8  
Ω
Each Channel  
0.08  
0.06  
0.04  
0.02  
0
0.15  
0.1  
VDD=5V  
SE  
Each Channel  
RL=32  
Ω
RL=32  
Ω
0.05  
0
0
0.2  
0.4  
0.6  
0.8  
0
0.1  
0.2  
0.3  
Po-Output Pow er(W)  
Po-Output Pow er(W)  
Figure 32  
Figure 31  
Recommended Minimum Footprint  
TSSOP-20 (FD)  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.2  
Jun 29, 2005  
8
G1422  
Global Mixed-mode Technology Inc.  
Pin Description  
PIN  
NAME  
I/O  
FUNCTION  
1
SHUTDOWN  
I
Shutdown mode control signal input, places entire IC in shutdown mode when held  
high, IDD is below 2µA.  
2,7,9,10,11,12,19  
GND/HS  
+OUTA  
VDD  
Ground connection for circuitry, directly connected to thermal pad.  
A channel + output in BTL mode, high impedance state in SE mode  
Supply voltage for circuitry.  
3
4,17  
5
O
O
-OUTA  
A channel - output in BTL mode, - output in SE mode.  
6
-INA  
+INA  
I
I
I
A channel input signal I, selected when MUXCTRL is held low.  
A channel positive input of OPAMP, biasing DC operation of OPAMP  
B channel positive input of OPAMP, biasing DC operation of OPAMP  
Connect to voltage divider for internal mid-supply bias.  
8
13  
+INB  
14  
BYPASS  
-INB  
15  
I
B channel input signal I, selected when MUXCTRL is held low.  
B channel - output in BTL mode, - output in SE mode.  
16  
-OUTB  
+OUTB  
HP-IN  
O
O
I
18  
20  
B channel + output in BTL mode, high impedance state in SE mode  
Mode control signal input, hold low for BTL mode, hold high for SE mode.  
Recommend connecting the Thermal Pad to the GND for excellent power dissipation.  
Thermal Pad  
TEL: 886-3-5788833  
Ver: 1.2  
http://www.gmt.com.tw  
Jun 29, 2005  
9
G1422  
Global Mixed-mode Technology Inc.  
Block Diagram  
20k  
6
8
-INA  
_
+
5
3
-OUT  
+OUT  
+INA  
14 BYPASS  
VDD 4,17  
HP-IN 20  
BIAS CIRCUITS  
MODES CONTROL  
CIRCUITS  
1
SHUTDOWN  
+INB  
13  
+
_
+OUTB 18  
16  
-INB  
-OUTB  
15  
20k  
Parameter Measurement Information  
1
SHUTDOWN  
20  
HP-IN  
14  
8
BYPASS  
+INA  
4,17  
VDD  
RL 4/8/32Ω  
CB  
4.7µF  
-OUTA  
+OUTA  
5
3
+
_
CI  
6
-INA  
AC source  
RI  
RF  
BTL Mode Test Circuit  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.2  
Jun 29, 2005  
10  
G1422  
Global Mixed-mode Technology Inc.  
Parameter Measurement Information (Continued)  
1
SHUTDOWN  
VDD  
20  
HP-IN  
14 BYPASS  
VDD 4,17  
8
6
+INA  
-INA  
CB  
4.7µF  
-OUTA  
+OUTA  
5
3
+
_
CI  
AC source  
RI  
RL 32Ω  
RF  
SE Mode Test Circuit  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.2  
Jun 29, 2005  
11  
G1422  
Global Mixed-mode Technology Inc.  
Application Circuits  
PHONEJACK  
R2  
1K  
R1  
1K  
COB  
100µF  
COA  
100µF  
R4  
1
20  
19  
SHUTDOWN  
HP-IN  
GND  
100K  
0.1µF  
R3  
100K  
2
3
GND  
SPEAKER  
SPEAKER  
18  
+OUTA  
+OUTB  
VDD  
17  
16  
15  
14  
4
5
6
VDD  
-OUTA  
-INA  
RFB1  
20K  
CS  
1µF  
RFA1  
20K  
-OUTB  
-INB  
CB1  
1µF  
RB1  
20K  
CA1  
1µF  
RA1  
20K  
G1422  
RCA  
RCA  
7
8
9
BYPASS  
+INB  
GND  
CB  
0.33µF  
13  
12  
11  
+INA  
GND  
GND  
GND  
10  
GND  
Logical Truth Table  
INPUTS  
AMPLIFIER STATES  
HP-IN  
X
Shutdown  
High  
A/B Out-  
----  
A/B Out+  
----  
Mode  
Mute  
BTL  
BTL  
Low  
Low  
High  
High  
Low  
Low  
Low  
Low  
BTL  
BTL  
SE  
Output  
BTL  
Output  
BTL  
Output  
SE  
Output  
----  
----  
Output  
SE  
SE  
Output  
TEL: 886-3-5788833  
Ver: 1.2  
http://www.gmt.com.tw  
Jun 29, 2005  
12  
G1422  
Global Mixed-mode Technology Inc.  
Application Information  
Single Ended Mode Operation  
Bridged-Tied Load Mode Operation  
The G1422 can drive clean, low distortion SE output  
power into headphone loads (generally 16Ω or 32Ω)  
as in Figure A. Please refer to Electrical Characteris-  
tics to see the performances. A coupling capacitor is  
needed to block the dc offset voltage, allowing pure ac  
signals into headphone loads. Choosing the coupling  
capacitor will also determine the 3 dB point of the  
high-pass filter network, as Figure B.  
The G1422 has two linear amplifiers to drive both ends  
of the speaker load in Bridged-Tied Load (BTL) mode  
operation. Figure C shows the BTL configuration. The  
differential driving to the speaker load means that  
when one side is slewing up, the other side is slewing  
down, and vice versa. This configuration in effect will  
double the voltage swing on the load as compared to a  
ground reference load. In BTL mode, the peak-to-peak  
voltage VO(PP) on the load will be two times than a  
ground reference configuration. The voltage on the  
load is doubled, this will also yield 4 times output  
power on the load at the same power supply rail and  
loading. Another benefit of using differential driving  
configuration is that BTL operation cancels the dc off-  
sets, which eliminates the dc coupling capacitor that is  
needed to cancelled dc offsets in the ground reference  
configuration. Low-frequency performance is then lim-  
ited only by the input network and speaker responses.  
Cost and PCB space can be minimized by eliminating  
the dc coupling capacitors.  
fC=1/(2πRLCC)  
For example, a 68uF capacitor with 32Ω headphone  
load would attenuate low frequency performance be-  
low 73Hz. So the coupling capacitor should be well  
chosen to achieve the excellent bass performance  
when in SE mode operation.  
VDD  
VDD  
Vo(PP)  
Vo(PP)  
RL  
2xVo(PP)  
-Vo(PP)  
VDD  
CC  
Vo(PP)  
RL  
Figure C  
Figure A  
-3 dB  
fc  
Figure B  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.2  
Jun 29, 2005  
13  
G1422  
Global Mixed-mode Technology Inc.  
SHUTDOWN Mode Operations  
De-popping circuitry of theG1422 is shown on Fig-  
ure D. The PNP transistor limits the voltage drop  
across the 225kΩ by slewing the internal node  
slowly when power is applied. At start-up, the volt-  
age at BYPASS capacitor is 0. The PNP is ON to  
pull the mid-point of the bias circuit down. So the  
capacitor sees a lower effective voltage, and thus  
the charging is slower. This appears as a linear  
ramp (while the PNP transistor is conducting), fol-  
lowed by the expected exponential ramp of an R-C  
circuit.  
The G1422 implements the shutdown mode opera-  
tions to reduce supply current, IDD, to the absolute  
minimum level during nonuse periods for bat-  
tery-power conservation. When the shutdown pin  
(pin 1) is pulled high, all linear amplifiers will be  
deactivated to mute the amplifier outputs. And The  
G1422 enters an extra low current consumption  
state, IDD is smaller than 2µA. Shutdown pin should  
never be left unconnected, this floating condition  
will cause the amplifier operations unpredictable.  
Optimizing DEPOP Operation  
Circuitry has been implemented in the G1422 to  
minimize the amount of popping heard at power-up  
and when coming out of shutdown mode. Popping  
occurs whenever a voltage step is applied to the  
speaker and making the differential voltage gener-  
ated at the two ends of the speaker. To avoid the  
popping heard, the bypass capacitor should be cho-  
VDD  
100 kΩ  
225 kΩ  
Bypass  
100 kΩ  
sen promptly, 1/(CBx100kΩ)  
1/(CI*(RI+RF)).  
Where 100kΩ is the output impedance of the mid-rail  
generator, CB is the mid-rail bypass capacitor, CI is  
the input coupling capacitor, RI is the input imped-  
ance, RF is the gain setting impedance which is on  
the feedback path. CB is the most important capacitor.  
Besides it is used to reduce the popping, CB can also  
determine the rate at which the amplifier starts up  
during startup or recovery from shutdown mode.  
Figure D  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.2  
Jun 29, 2005  
14  
G1422  
Global Mixed-mode Technology Inc.  
Package Information  
C
D
L
D1  
E1  
E
E2  
H
A2  
A
A1  
e
0.05  
b
TSSOP-20 (FD) Package  
Note:  
1. JEDCE outline: MP-153 AC/MO-153 ACT (thermally enhanced variations only)  
2. Dimension “D” does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall  
not exceed 0.15 per side.  
3. Dimension “E1” does not include interlead flash or protrusion. Interlead flash or protrusion shall not exceed  
0.25 per side.  
4. Dimension “b” does not include dambar protrusion. Allowable dambar protrusion shall be 0.08mm total in ex-  
cess of the “b” dimension at maximum material conditions. Dambar cannot be located on the lower radius of  
the foot. Minimum space between protrusion and adjacent lead is 0.07mm.  
5. Dimensions “D” and “E1” to be determined at datum plane “H”.  
DIMENSION IN MM  
DIMENSION IN INCH  
SYMBOLS  
MIN  
-----  
NOM  
-----  
-----  
1.00  
-----  
-----  
6.50  
-----  
6.40 BSC  
4.40  
MAX  
1.20  
0.15  
1.05  
0.30  
-----  
MIN  
-----  
NOM  
-----  
-----  
0.039  
-----  
-----  
MAX  
0.047  
0.006  
0.041  
0.012  
-----  
A
A1  
A2  
b
C
D
D1  
E
E1  
E2  
e
0.00  
0.80  
0.19  
0.20  
6.40  
3.90  
0.000  
0.031  
0.007  
0.008  
0.252  
0.154  
6.60  
4.40  
0.256  
-----  
0.260  
0.173  
0.252 BSC  
0.173  
-----  
0.026 BSC  
0.024  
-----  
4.30  
2.70  
4.50  
3.20  
0.169  
0.106  
0.177  
0.126  
-----  
0.65 BSC  
0.60  
L
θ
0.45  
0º  
0.75  
8º  
0.018  
0º  
0.030  
8º  
-----  
Taping Specification  
PACKAGE  
Q’TY/BY REEL  
TSSOP-20 (FD)  
2,500 ea  
Feed Direction  
Typical TSSOP Package Orientation  
GMT Inc. does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and GMT Inc. reserves the right at any time without notice to change said circuitry and specifications.  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.2  
Jun 29, 2005  
15  

相关型号:

G1422F2UF

2W Stereo Audio Amplifier
GMT

G1423

Heyco Rubber Grommets
ETC

G1426

2.2W Stereo Audio Amplifier
GMT

G1426D5T

2.2W Stereo Audio Amplifier
GMT

G1426D5U

2.2W Stereo Audio Amplifier
GMT

G1426D5UF

Audio Amplifier, 1 Func, PDSO20
GMT

G1426F2T

2.2W Stereo Audio Amplifier
GMT

G1426F2U

2.2W Stereo Audio Amplifier
GMT

G1426F2UF

暂无描述
GMT

G1427

2W Stereo Audio Amplifier
GMT

G1427F31U

2W Stereo Audio Amplifier
GMT

G1427F31UF

2W Stereo Audio Amplifier
GMT