G1427 [GMT]

2W Stereo Audio Amplifier; 2W立体声音频放大器
G1427
型号: G1427
厂家: GLOBAL MIXED-MODE TECHNOLOGY INC    GLOBAL MIXED-MODE TECHNOLOGY INC
描述:

2W Stereo Audio Amplifier
2W立体声音频放大器

音频放大器
文件: 总16页 (文件大小:338K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
G1427  
Global Mixed-mode Technology Inc.  
2W Stereo Audio Amplifier  
6dB\10dB\15.6dB\21.6dB Selectable Gain Settings  
Features  
General Description  
„
Internal Gain Control, Which Eliminates Exter-  
G1427 is a stereo audio power amplifier in 24pin  
TSSOP thermal pad package. It can drive 2.0W con-  
tinuous RMS power into 4Ω load per channel in  
Bridge-Tied Load (BTL) mode at 5V supply voltage. Its  
THD is smaller than 1% under the above operation  
condition. To simplify the audio system design in the  
notebook application, G1427 supports the Bridge-Tied  
Load (BTL) mode for driving the speakers, Single-End  
(SE) mode for driving the headphone. For the low  
current consumption applications, the SHDN mode is  
supported to disable G1427 when it is idle. The current  
consumption can be reduced to 160µA (typically).  
nal Gain-Setting Resistors  
Depop Circuitry Integrated  
Output Power at 1% THD+N, VDD=5V  
--2.0W/CH (typical) into a 4Ω Load  
--1.2W/CH (typical) into a 8Ω Load  
Bridge-Tied Load (BTL), Single-Ended (SE)  
Stereo Input MUX  
PC-Beep Input  
Fully differential Input  
Shutdown Control Available  
Surface-Mount Power Package  
24-Pin TSSOP-P  
„
„
„
„
„
„
„
„
Amplifier gain is internally configured and controlled by  
two terminals (GAIN0, GAIN1). BTL gain settings of  
6dB, 10dB, 15.6dB, 21.6dB are provided, while SE  
gain is always configured as 4.1dB (inverting) for  
headphone driving. G1427 also supports two input  
paths, that means two different amplitude AC signals  
Applications  
„
Stereo Power Amplifiers for Notebooks or  
Desktop Computers  
„
„
Multimedia Monitors  
Stereo Power Amplifiers for Portable Audio  
Systems  
can be applied and chosen by setting HP/LINE pin. It  
enhances the hardware designing flexibility.  
Ordering Information  
ORDER  
NUMBER  
G1427F31U  
ORDER NUMBER  
(Pb free)  
TEMP.  
PACKAGE  
RANGE  
G1427F31Uf  
-40°C to +85°C  
TSSOP-24 (FD)  
Note: U:Tape & Reel  
(FD): Thermal Pad  
Pin Configuration  
G1427  
GND/HS  
24  
1
2
3
4
GND/HS  
GAIN0  
GAIN1  
LOUT+  
LLINEIN  
LPHIN  
PVDD  
RIN  
23 RLINEIN  
SHUTDOWN  
22  
21 ROUT+  
20 RHPIN  
5
6
7
8
9
VDD  
Thermal  
Pad  
19  
18  
17  
16  
15  
PVDD  
HP/LINE  
ROUT-  
SE/BTL  
LOUT-  
LIN 10  
BYPASS  
14 PC-BEEP  
GND/HS  
13  
11  
GND/HS 12  
Top View  
Bottom View  
TSSOP-24  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.3  
Sep 23, 2005  
1
G1427  
Global Mixed-mode Technology Inc.  
Absolute Maximum Ratings  
Supply Voltage, VCC…………………..…..…….….…...6V  
Operating Ambient Temperature Range  
Power Dissipation (1)  
TA 25°C ………...….…………………………..2.7W  
TA 70°C ………...….…………………………..1.7W  
Electrostatic Discharge, VESD  
TA…….…………………………….……….-40°C to +85°C  
Maximum Junction Temperature, TJ…..……….….150°C  
Storage Temperature Range, TSTG….…-65°C to+150°C  
Reflow Temperature (soldering, 10sec)……..……260°C  
Human body mode..…………………….…………3000(2)  
Note:  
(1) : Recommended PCB Layout  
(2) : Human body model : C = 100pF, R = 1500Ω, 3 positive pulses plus 3 negative pulses  
Electrical Characteristics  
DC Electrical Characteristics, TA=+25°C  
PARAMETER  
Supply voltage VDD  
SYMBOL  
VDD  
CONDITION  
MIN  
4.5  
2
TYP  
5
MAX UNIT  
5.5  
---  
V
V
High-Level Input voltage, VIH  
VIH  
---  
SE/BTL , HP/LINE ,  
GAIN1  
SHUTDOWN , GAIN0,  
Low-Level Input voltage, VIL  
VIL  
---  
---  
0.8  
V
SE/BTL , HP/LINE , SHUTDOWN , GAIN0,  
GAIN1  
DC Differential Output Voltage  
Supply Current in Mute Mode  
IDD in Shutdown  
VO(DIFF)  
IDD  
VDD = 5V,Gain = 2  
---  
---  
---  
5
7.5  
4
50  
13  
7
mV  
mA  
µA  
Stereo BTL  
VDD = 5V  
Stereo SE  
ISD  
VDD = 5V  
160  
300  
(AC Operation Characteristics, VDD = 5.0V, TA=+25°C, RL = 4Ω, unless otherwise noted)  
PARAMETER  
SYMBOL  
CONDITION  
THD = 1%, BTL, RL = 4Ω G=-2V/V  
THD = 1%, BTL, RL = 8Ω G=-2V/V  
THD = 10%, BTL, RL = 4Ω G=-2V/V  
THD = 10%, BTL, RL = 8Ω G=-2V/V  
THD = 0.1%, SE, RL = 32Ω  
PO = 1.6W, BTL, RL = 4Ω G=-2V/V  
PO = 1W, BTL, RL = 8Ω G=-2V/V  
PO = 75mW, SE, RL = 32Ω  
VI = 1V, RL = 10KΩ, SE  
THD = 5%  
MIN TYP MAX UNIT  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
2
1.25  
2.5  
1.6  
85  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
W
Output power (each channel) see Note  
P(OUT)  
mW  
m%  
100  
60  
Total harmonic distortion plus noise  
THD+N  
80  
30  
Maximum output power bandwidth  
Power supply ripple rejection  
BOM  
>15  
68  
kHz  
dB  
PSRR  
F=1kHz, BTL mode G=-2V/V  
CBYP=1µF  
Channel-to-channel output separation  
Line/HP input separation  
BTL attenuation in SE mode  
Input impedance  
f = 1kHz  
---  
---  
---  
80  
---  
---  
---  
dB  
dB  
80  
85  
dB  
ZI  
See Table 2  
MΩ  
Signal-to-noise ratio  
PO = 500mW, BTL, G=-2V/V  
---  
---  
90  
45  
---  
---  
dB  
Output noise voltage  
Vn  
BTL, G=-2V/V, A Weighted filter  
µV (rms)  
Note :Output power is measured at the output terminals of the IC at 1kHz.  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.3  
Sep 23, 2005  
2
G1427  
Global Mixed-mode Technology Inc.  
Typical Characteristics  
Table of Graphs  
FIGURE  
vs Frequency  
1,2,7,8,13,14,19,21  
THD +N Total Harmonic Distortion Plus  
Noise  
vs Output Power  
vs Output Voltage  
vs Frequency  
3,4,5,6,9,10,11,12,15,16,17,18,20  
22  
Output Noise Voltage  
27  
Vn  
Supply Ripple Rejection Ratio  
Crosstalk  
vs Frequency  
23,24  
25,26  
28,29  
30,31  
vs Frequency  
PO Output Power  
vs Load Resistance  
vs Output Power  
PD Power Dissipation  
Total Harmonic Distortion Plus  
Noise vs Output Frequency  
Total Harmonic Distortion Plus  
Noise vs Output Frequency  
10  
5
10  
5
VDD=5V  
VDD=5V  
RL=3  
BTL  
Po=1.75W  
RL=3  
Ω
BTL,Av=6dB  
Ω
Av=21.6dB  
2
1
2
1
Av=15.6dB  
0.5  
0.5  
Po=0.5W  
%
%
0.2  
0.2  
0.1  
Po=1W  
0.1  
0.05  
0.05  
Av=10dB  
Av=6dB  
0.02  
0.01  
0.02  
0.01  
Po=1.5W  
20  
50  
100  
200  
50 0  
Hz  
1k  
2k  
5k  
10k  
20k  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k  
20 k  
Figure 1  
Figure 2  
Total Harmonic Distortion Plus  
Noise vs Output Power  
Total Harmonic Distortion Plus  
Noise vs Output Power  
10  
5
10  
5
VDD=5V  
15kHz  
VDD=5V  
15kHz  
RL=3  
Ω
RL=3  
Ω
BTL,Av=6dB  
BTL,Av=10dB  
2
1
2
1
0.5  
0.5  
1kHz  
%
%
1kHz  
0.2  
0.2  
0.1  
0.1  
0.05  
0.0 5  
20Hz  
20Hz  
0.02  
0.01  
0.0 2  
0.0 1  
3m  
5m  
10m  
20m  
50m  
100m  
W
200m  
500m  
1
2
3
3m  
5m  
10m  
20m  
50 m  
100m  
200m  
500m  
1
2
3
W
Figure 3  
Figure 4  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.3  
Sep 23, 2005  
3
G1427  
Global Mixed-mode Technology Inc.  
Total Harmonic Distortion Plus  
Noise vs Output Power  
Total Harmonic Distortion Plus  
Noise vs Output Power  
10  
5
10  
15kHz  
5
15kHz  
2
1
2
1
1kHz  
0.5  
0.5  
1kHz  
%
%
0.2  
0.2  
0.1  
20Hz  
0.1  
VDD=5V  
RL=3  
VDD=5V  
RL=3  
20Hz  
0.05  
0.05  
Ω
Ω
BTL,Av=21.6dB  
BTL,Av=15.6dB  
0.02  
0.01  
0.02  
0.01  
3m  
5m  
10m  
20m  
50m  
100m  
W
200m  
50 0m  
1
2
3
3m  
5m  
10m  
20m  
50m  
100m  
W
200m  
500m  
1
2
3
Figure 5  
Figure 6  
Total Harmonic Distortion Plus  
Noise vs Frequency  
Total Harmonic Distortion Plus  
Noise vs Frequency  
10  
5
10  
5
VDD=5V  
VDD=5V  
RL=4  
BTL,Av=6dB  
RL=4  
BTL  
Ω
Av=21.6dB  
Ω
2
1
2
1
Po=  
1.75W  
0.5  
0.5  
Po=0.25W  
%
Av=15.6dB  
%
0.2  
0.2  
0.1  
Av=6dB  
Po=1.5W  
Po=1W  
0.1  
0.0 5  
0.05  
0.0 2  
0.0 1  
0.02  
0.01  
Av=10dB  
20  
50  
100  
200  
50 0  
Hz  
1k  
2k  
5k  
10k  
20k  
20  
50  
100  
20 0  
500  
Hz  
1k  
2k  
5k  
10k  
20k  
Figure 7  
Figure 8  
Total Harmonic Distortion Plus  
Noise vs Output Power  
Total Harmonic Distortion Plus  
Noise vs Output Power  
10  
5
10  
5
VDD=5V  
15kHz  
VDD=5V  
RL=4  
Ω
BTL,Av=10dB  
RL=4  
15kHz  
1kHz  
20Hz  
Ω
BTL,Av=6dB  
2
1
2
1
0.5  
0.5  
1kHz  
20Hz  
%
%
0.2  
0.2  
0.1  
0.1  
0.05  
0.0 5  
0.02  
0.01  
0.0 2  
0.0 1  
3m  
5m  
10m  
20m  
50m  
100m  
W
200m  
50 0m  
1
2
3
3m  
5m  
10m  
20m  
50 m  
100m  
W
200m  
500m  
1
2
3
Figure 9  
Figure 10  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.3  
Sep 23, 2005  
4
G1427  
Global Mixed-mode Technology Inc.  
Total Harmonic Distortion Plus  
Noise vs Output Power  
Total Harmonic Distortion Plus  
Noise vs Output Power  
10  
10  
5
5
15kHz  
15kHz  
2
1
2
1
1kHz  
1kHz  
0.5  
0.5  
%
%
0.2  
0.2  
0.1  
0.1  
20Hz  
VDD=5V  
RL=4  
BTL,Av=21.6dB  
VDD=5V  
RL=4  
BTL,Av=15.6dB  
0.05  
0.05  
20Hz  
Ω
Ω
0.02  
0.01  
0.02  
0.01  
3m  
5m  
10m  
20m  
50m  
100m  
W
200m  
500m  
1
2
3
3m  
5m  
10m  
20m  
50m  
100m  
200m  
50 0m  
1
2
3
W
Figure 11  
Figure 12  
Total Harmonic Distortion Plus  
Noise vs Frequency  
Total Harmonic Distortion Plus  
Noise vs Frequency  
10  
5
10  
5
VDD=5V  
RL=8  
BTL,Av=6dB  
VDD=5V  
Ω
RL=8  
BTL  
Ω
2
1
2
1
Po=1W  
Av=15.6dB  
0.5  
0.5  
%
%
Po=0.25W  
0.2  
0.2  
0.1  
Av=21.6dB  
0.1  
Po=1W  
Av=6dB  
0.05  
0.0 5  
0.02  
0.01  
0.0 2  
0.0 1  
Po=0.5W  
Av=10dB  
20  
50  
100  
20 0  
5 00  
Hz  
1 k  
2k  
5k  
10k  
20 k  
20  
5 0  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k  
20k  
Figure 13  
Figure 14  
Total Harmonic Distortion Plus  
Noise vs Output Power  
Total Harmonic Distortion Plus  
Noise vs Output Power  
10  
5
10  
5
VDD=5V  
VDD=5V  
RL=8  
Ω
RL=8  
Ω
15kHz  
15kHz  
BTL,Av=10dB  
2
1
2
1
BTL,Av=6dB  
0.5  
0.5  
%
%
0.2  
0.2  
0.1  
1kHz  
1kHz  
0.1  
0.05  
0.0 5  
20Hz  
0.02  
0.01  
0.0 2  
0.0 1  
20Hz  
3m  
5m  
10m  
20m  
50m  
100m  
W
200m  
50 0m  
1
2
3
3m  
5m  
10m  
20m  
50 m  
100m  
W
200m  
500m  
1
2
3
Figure 15  
Figure 16  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.3  
Sep 23, 2005  
5
G1427  
Global Mixed-mode Technology Inc.  
Total Harmonic Distortion Plus  
Total Harmonic Distortion Plus  
Noise vs Output Power  
Noise vs Output Power  
10  
5
10  
VDD=5V  
RL=8  
Ω
5
15kHz  
15kHz  
BTL,Av=15.6dB  
2
1
2
1
1kHz  
0.5  
0.5  
1kHz  
%
%
%
%
0.2  
0.2  
0.1  
0.1  
VDD=5V  
RL=8  
BTL,Av=21.6dB  
0.05  
0.05  
20Hz  
Ω
20Hz  
0.02  
0.01  
0.02  
0.01  
3m  
5m  
10m  
20m  
50m  
100m  
W
200m  
500m  
1
2
3
3m  
5m  
10m  
20m  
50 m  
100m  
W
200 m  
50 0m  
1
2
3
Figure 17  
Figure 18  
Total Harmonic Distortion Plus  
Noise vs Output Power  
Total Harmonic Distortion Plus  
Noise vs Frequency  
10  
5
10  
5
VDD=5V  
VDD=5V  
RL=32  
SE,Av=4.1dB  
RL=32  
Ω
Ω
2
2
SE,Av=4.1dB  
1
1
0.5  
0.5  
15kHz  
%
Po=50mW  
0.2  
0.1  
0.2  
0.1  
Po=75mW  
20Hz  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
1kHz  
Po=25mW  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
1 0k  
20k  
1m  
2m  
5m  
10 m  
2 0m  
50m  
100m  
200m  
W
Figure 19  
Figure 20  
Total Harmonic Distortion Plus  
Noise vs Output Voltage  
Total Harmonic Distortion Plus  
Noise vs Frequency  
10  
5
10  
5
VDD=5V  
RL=10k  
VDD=5V  
RL=10k  
SE,Av=4.1dB  
Cout=1000µF  
Ω
Ω
2
2
SE,Av=4.1dB  
Cout=1000µF  
1
1
0.5  
0.5  
%
0.2  
0.1  
0.2  
0.1  
20Hz  
15kHz  
Vo=1Vrms  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
1kHz  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
1 0k  
20k  
100m  
200m  
300m 400 m 50 0m  
7 00m  
1
2
3
Vo-Outpu t Voltage-Vrms  
Figure 21  
Figure 22  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.3  
Sep 23, 2005  
6
G1427  
Global Mixed-mode Technology Inc.  
Supply Ripple Rejection Ratio  
vs Frequency  
Supply Ripple Rejection Ratio  
vs Frequency  
+0  
+0  
T
T
T
T
T
T T  
-10  
-10  
VDD=5V  
RL=8  
Cb=1µF  
SE  
VDD=5V  
Ω
-20  
-20  
-30  
-40  
-50  
RL=8  
Ω
Cb=1µF  
BTL  
-30  
-40  
-50  
Av=21.6dB  
d
B
d
B
-60  
-70  
-80  
-90  
-60  
-70  
-80  
Av=6dB  
-90  
-100  
-100  
20  
50  
100  
200  
50 0  
Hz  
1k  
2k  
5k  
1 0k  
20k  
20  
50  
100  
200  
5 00  
Hz  
1k  
2k  
5 k  
10k  
20 k  
Figure 23  
Figure 24  
Channel Separation  
Channel Separation  
-20  
-25  
-20  
-25  
-30  
T
-30  
-35  
VDD=5V  
Po=1W  
-35  
-40  
VDD=5V  
Po=1W  
RL=8  
-40  
-45  
RL=8  
Ω
-45  
-50  
Ω
BTL,Av=6dB  
-50  
SE,Av=4.1dB  
-55  
-60  
-55  
-60  
d
B
d
B
-65  
-70  
-65  
L TO R  
-70  
-75  
L TO R  
-75  
-80  
-80  
-85  
-90  
-85  
-90  
R TO L  
R TO L  
-95  
-95  
-100  
-100  
20  
50  
100  
200  
5 00  
Hz  
1k  
2k  
5 k  
10k  
20 k  
20  
50  
100  
200  
50 0  
Hz  
1k  
2k  
5k  
1 0k  
20k  
Figure 25  
Figure 26  
Output Noise vs Frequency  
Output Power vs Load Resistance  
5 00u  
4 00u  
2.5  
3 00u  
VDD=5V  
RL=4  
BTL,Av=6dB  
VDD=5V  
THD+N=1%  
BTL  
Ω
2
1.5  
1
2 00u  
A-Weighted filter  
Each Channel  
1 00u  
V
70u  
60u  
50u  
40u  
30u  
20u  
0.5  
0
10u  
20  
50  
100  
200  
5 00  
Hz  
1k  
2k  
5 k  
10k  
20 k  
0
10  
20  
30  
40  
Load Resistance()  
Figure 27  
Figure 28  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.3  
Sep 23, 2005  
7
G1427  
Global Mixed-mode Technology Inc.  
Power Dissipation vs Output Power  
Output Power vs Load Resistance  
1.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.6  
RL=3  
Ω
VDD=5V  
THD+N=1%  
SE  
1.4  
1.2  
1
RL=4  
Ω
Each Channel  
VDD=5V  
BTL  
Each Channel  
0.8  
0.6  
0.4  
0.2  
0
RL=8  
Ω
4
8
12  
16  
20  
24  
28  
32  
0
0.5  
1
1.5  
2
2.5  
Load Resistance()  
Po-Output Pow er(W)  
Figure 29  
Figure 30  
Recommend PCB Footprint  
Power Dissipation vs Output Power  
0.35  
0.3  
RL=4  
Ω
0.25  
0.2  
0.15  
0.1  
VDD=5V  
SE  
Each Channel  
RL=8  
Ω
0.05  
0
RL=32  
0.2  
Ω
0
0.4  
0.6  
0.8  
Po-Output Pow er(W)  
Figure 31  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.3  
Sep 23, 2005  
8
G1427  
Global Mixed-mode Technology Inc.  
Pin Description  
PIN  
NAME  
GND/HS  
GAIN0  
I/O  
FUNCTION  
Ground connection for circuitry, directly connected to thermal pad.  
Bit 0 of gain control  
1,12,13,24  
2
3
4
5
I
I
GAIN1  
Bit 1 of gain control  
LOUT+  
LLINEIN  
O
I
Left channel + output in BTL mode, + output in SE mode.  
Left channel line input, selected when HP/LINE pin is held low.  
6
7,18  
8
LPHIN  
PVDD  
RIN  
I
I
Left channel headphone input, selected when HP/LINE pin is held high.  
Power supply for output stages.  
I
Common right input for fully differential inputs. AC ground for single-ended inputs.  
Left channel - output in BTL mode, and high impedance in SE mode.  
Common left input for fully differential inputs. AC ground for single-ended inputs.  
Tap to voltage divider for internal mid-supply bias generator.  
The input for PC-BEEP mode. PC-BEEP is enabled when at least eight continuous >  
1-VPP (peak to peak) square waves is input to PC-BEEP pin.  
Hold low for BTL mode, hold high for SE mode.  
9
LOUT-  
LIN  
O
I
10  
11  
14  
BYPASS  
PC-BEEP  
I
15  
16  
17  
I
O
I
SE/BTL  
ROUT-  
Right channel - output in BTL mode, high impedance state in SE mode.  
MUX control input, hold high to select headphone inputs (6,20), hold low to select line  
inputs (5,23).  
HP/LINE  
19  
VDD  
Analog VDD input supply. This terminal needs to be isolated from PVDD to achieve  
highest performance.  
20  
21  
22  
RHPIN  
ROUT+  
I
O
I
Right channel headphone input, selected when HP/LINE pin is held high.  
Right channel + output in BTL mode, positive output in SE mode.  
Places entire IC in shutdown mode when held low, expect PC-BEEP remains active.  
SHUTDOWN  
RLINEIN  
23  
I
Right channel line input, selected when HP/ LINE pin is held low.  
TEL: 886-3-5788833  
Ver: 1.3  
http://www.gmt.com.tw  
Sep 23, 2005  
9
G1427  
Global Mixed-mode Technology Inc.  
Block Diagram  
RLINEIN  
RHPIN  
Right  
MUX  
_
ROUT+  
+
RIN  
PC-Beep  
PC-Beep  
_
ROUT-  
+
BYPASS  
Depop  
Circuitry  
GAIN0  
GAIN1  
SE/BTL  
HP/LINE  
Gain/MUX  
Control  
PVDD  
VDD  
Power  
Management  
SHUTDOWN  
LLINEIN  
LHPIN  
GND  
Left  
MUX  
_
LOUT+  
+
LIN  
_
LOUT-  
+
TEL: 886-3-5788833  
Ver: 1.3  
http://www.gmt.com.tw  
Sep 23, 2005  
10  
G1427  
Global Mixed-mode Technology Inc.  
Application Circuit  
Right Linein Negative  
Differential Input  
1µF  
23  
20 RHPIN  
RLINEIN  
Right  
MUX  
1µF  
_
Right Hpin Negative  
Differential Input  
ROUT+ 21  
+
Right Hpin/Linein Positive  
1µF  
Differential Input  
8
RIN  
14 PC-Beep  
11 BYPASS  
PC-Beep  
_
1µF  
220µF  
ROUT- 16  
PC-BEEP Input Signal  
2.2µF  
+
VDD  
1K  
Depop  
Circuitry  
2
3
GAIN0  
GAIN1  
VDD  
PVDD 7,18  
VDD 19  
Gain/MUX  
Control  
SE/BTL  
15  
Power  
Management  
Left Linein Negative  
Differential Input  
17 HP/LINE  
10µF  
1µF  
SHUTDOWN  
22  
1µF  
1,12,13,24  
GND  
LLINEIN  
LHPIN  
Note  
5
6
Left  
MUX  
100K  
1K  
_
1µF  
Left Hpin Negative  
Differential Input  
4
LOUT+  
+
220µF  
Left Hpin/Linein Positive  
Differential Input  
LIN  
10  
1µF  
_
3
LOUT-  
+
0.1µF  
Application Circuit Using Differential Inputs  
Note: 1µF ceramic capacitor should be placed as close as possible to the IC to filter the higher-frequency noise.  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.3  
Sep 23, 2005  
11  
G1427  
Global Mixed-mode Technology Inc.  
Application Circuit (continued)  
1µF  
1µF  
Right Linein Input  
Right Hpin Input  
23  
20 RHPIN  
RLINEIN  
Right  
MUX  
_
ROUT+ 21  
+
1µF  
8
RIN  
14 PC-Beep  
11 BYPASS  
PC-Beep  
_
1µF  
220µF  
ROUT- 16  
PC-BEEP Input Signal  
+
VDD  
1K  
Depop  
Circuitry  
2.2µF  
2
3
GAIN0  
GAIN1  
VDD  
PVDD 7,18  
VDD 19  
Gain/MUX  
Control  
SE/BTL  
15  
Power  
Management  
17 HP/LINE  
1µF  
SHUTDOWN  
22  
10µF  
Note  
100K  
1µF  
1µF  
Left Linein Input  
Left Hpin Input  
1,12,13,24  
GND  
LLINEIN  
LHPIN  
5
6
Left  
MUX  
1K  
_
4
LOUT+  
+
220µF  
LIN  
10  
1µF  
_
3
LOUT-  
+
0.1µF  
Application Circuit Using Single-Ended Inputs  
Note: 1µF ceramic capacitor should be placed as close as possible to the IC to filter the higher-frequency noise.  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.3  
Sep 23, 2005  
12  
G1427  
Global Mixed-mode Technology Inc.  
Table 2  
Application Information  
Gain setting via GAIN0 and GAIN1 inputs  
The internal gain setting is determined by two input  
terminals, GAIN0 and GAIN1. The gains listed in Table  
1 are realized by changing the taps on the input resis-  
tors inside the amplifier. This will cause the internal  
input impedance, ZI, to be dependent on the gain set-  
ting. Although the real input impedance will shift by  
30% due to process variation from part-to-part, the  
actual gain settings are controlled by the ratios of the  
resistors and the actual gain distribution from part-to-  
part is quite good.  
Zi (Kohm)  
AV (dB)  
21.6  
15.6  
10  
30  
45  
70  
90  
6
Input Capacitor  
In the typical application, an input capacitor Ci is re-  
quired to allow the amplifier to bias the input signal to  
the proper dc level for optimum operation. In this  
case ,Ci and the input impedance of the amplifier, Zi,  
form a high-pass filter with the -3dB determined by the  
equation: f-3dB= 1/ (2πRI Ci)  
Table 1  
GAIN0  
GAIN1  
SE/BTL  
AV (dB)  
6
The value of Ci is important to consider as it directly af-  
fects the bass performance of the application circuit. For  
example, if the input resistor is 15kΩ, the input capacitor  
is 1µF, the flat bass response will be down to 10.6Hz.  
0
0
1
1
X
0
1
0
1
X
0
0
0
0
1
10  
15.6  
21.6  
4.1  
Because the small leakage current of the input capaci-  
tors will cause the dc offset voltage at the input to the  
amplifier that reduces the operation headroom, espe-  
cially at the high gain applications. The low-leakage  
tantalum or ceramic capacitors are suggested to be  
used as the input coupling capacitors. When using the  
polarized capacitors, it is important to let the positive  
side connecting to the higher dc level of the application.  
Input Resistance  
The typical input impedance at each gain setting is given  
in the Table 2. Each gain setting is achieved by varying  
the input resistance of the amplifier, which can be over 3  
times from its minimum value to the maximum value. As  
a result, if a single capacitor is used in the input high  
pass filter, the -3dB or cut-off frequency will be also  
change over 3 times. To reduce the variation of the  
cut-off frequency, an additional resistor can be con-  
nected from the input pin of the amplifier to the ground,  
as shown in Figure 1. With the extra resistor, the cut-off  
frequency can be re-calculated using equation : f-3dB= 1/  
2πC(R||RI). Using small external R can reduce the varia-  
Power Supply Decoupling  
The G1427 is a high-performance CMOS audio ampli-  
fier that requires adequate power supply decoupling to  
make sure the output total harmonic distortion (THD)  
as low as possible. The optimum decoupling is using  
two capacitors with different types that target different  
types of noise on the power supply leads. For high  
frequency transients, spikes, a good low ESR ceramic  
capacitor works best, typically 0.1µF/1µF used and  
placed as close as possible to the G1427 VDD lead. A  
larger aluminum electrolytic capacitor of 10µF or  
greater placed near the device power is recommended  
for filtering low-frequency noise.  
tion of the cut-off frequency. But the side effect is small  
external R will also let (R||RI) become small, the cut-off  
frequency will be larger and degraded the bass-band  
performance. The other side effect is with extra power  
dissipation through the external resistor R to the ground.  
So using the external resistor R to flatting the variation of  
the cut-off frequency, the user must also consider the  
bass-band performance and the extra power dissipation  
to choose the accepted external resistor R value.  
Optimizing DEPOP Operation  
Circuitry has been implemented in G1427 to mini-  
mize the amount of popping heard at power-up and  
when coming out of shutdown mode. Popping oc-  
curs whenever a voltage step is applied to the  
speaker and making the differential voltage gener-  
ated at the two ends of the speaker. To avoid the  
popping heard, the bypass capacitor should be  
chosen promptly, 1/(CBx170kΩ) 1/(CI*(RI+RF)).  
C
Zi  
Zf  
Input Signal  
IN  
R
Figure 1  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.3  
Sep 23, 2005  
13  
G1427  
Global Mixed-mode Technology Inc.  
Output coupling capacitor  
Where 170kΩ is the output impedance of the  
mid-rail generator, CB is the mid-rail bypass ca-  
pacitor, CI is the input coupling capacitor, RI is the  
input impedance, RF is the gain setting impedance  
which is on the feedback path. CB is the most im-  
portant capacitor. Besides it is used to reduce the  
popping, CB can also determine the rate at which  
the amplifier starts up during startup or recovery  
from shutdown mode.  
G1427 can drive clean, low distortion SE output power  
with gain –1V/V into headphone loads (generally 16Ω  
or 32Ω) as in Figure 3. Please refer to Electrical  
Characteristics to see the performances. A coupling  
capacitor is needed to block the dc-offset voltage, al-  
lowing pure ac signals into headphone loads. Choos-  
ing the coupling capacitor will also determine the -3dB  
point of the high-pass filter network, as Figure 4.  
fC=1/(2πRLCC)  
De-popping circuitry of G1427 is shown as below  
Figure 2. The PNP transistor limits the voltage drop  
across the 120kΩ by slewing the internal node  
slowly when power is applied. At start-up, the volt-  
age at BYPASS capacitor is 0. The PNP is ON to  
pull the mid-point of the bias circuit down. So the  
capacitor sees a lower effective voltage, and thus  
the charging is slower. This appears as a linear  
ramp (while the PNP transistor is conducting), fol-  
lowed by the expected exponential ramp of an R-C  
circuit.  
For example, a 220µF capacitor with 32Ω headphone  
load would attenuate low frequency performance be-  
low 22.6Hz. So the coupling capacitor should be well  
chosen to achieve the excellent bass performance  
when in SE mode operation.  
VDD  
Vo(PP)  
For better performance, CB is recommended to be  
at least 1.5 times of input coupling capacitor CI. For  
example, if using 1µF input coupling capacitor,  
2.2µF ceramic or tantalum low-ESR capacitors are  
recommended to achieve the better THD perform-  
ance.  
CC  
Vo(PP)  
RL  
Figure 3  
VDD  
100 kΩ  
120 kΩ  
Bypass  
-3 dB  
100 kΩ  
fc  
Figure 2  
Figure 4  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.3  
Sep 23, 2005  
14  
G1427  
Global Mixed-mode Technology Inc.  
Bridged-Tied Load Mode Operation  
Shutdown mode  
G1427 has two linear amplifiers to drive both ends of  
the speaker load in Bridged-Tied Load (BTL) mode  
operation. Figure 5 shows the BTL configuration. The  
differential driving to the speaker load means that  
when one side is slewing up, the other side is slewing  
down, and vice versa. This configuration in effect will  
double the voltage swing on the load as compared to a  
ground reference load. In BTL mode, the peak-to-peak  
voltage VO(PP) on the load will be two times than a  
ground reference configuration. The voltage on the  
load is doubled, this will also yield 4 times output  
power on the load at the same power supply rail and  
loading. Another benefit of using differential driving  
configuration is that BTL operation cancels the dc off-  
sets, which eliminates the dc coupling capacitor that is  
needed to cancelled dc offsets in the ground reference  
configuration. Low-frequency performance is then lim-  
ited only by the input network and speaker responses.  
Cost and PCB space can be minimized by eliminating  
the dc coupling capacitors.  
When the normal operation, the SHUTDOWN pin  
should be held high. Pulling SHUTDOWN low will  
mute the outputs and deactivate almost circuits except  
PC-BEEP monitoring block. At this moment, the cur-  
rent of this device will be reduced to about 160µA to  
save the battery energy. The SHUTDOWN pin should  
never be left unconnected during the normal applica-  
tions.  
INPUT *  
SHUTDOWN  
AMPLIFIER STATE  
INPUT OUTPUT  
HP/LINE SE/BTL  
X
X
Low  
High  
High  
X
Mute  
BTL  
SE  
Low  
Low  
Low  
High  
Line  
Line  
head-  
phone  
head-  
phone  
High  
High  
Low  
High  
High  
BTL  
SE  
High  
* Inputs should never be left unconnected  
X= do not care  
PC-BEEP Operation  
Input MUX And SE/BTL Operation  
The PC-BEEP input allows a system beep to be sent  
directly from a computer through the amplifier to the  
speakers with a few external components. It is acti-  
vated automatically by detecting the PC-BEEP input.  
The preferred input signal is a square wave or pulse  
train with an amplitude of 1-VPP or greater. To be ac-  
curately detected, the signal must be with at least  
1-VPP amplitude, 8 continuous rising edges, rise and  
fall times less than 0.1µs. When the signal is no longer  
detected, the amplifier will return its previous operating  
mode and volume setting.  
VDD  
Vo(PP)  
RL  
2xVo(PP)  
-Vo(PP)  
VDD  
When the PC-BEEP mode is activated, both the  
LINEIN and HPIN are deselected and the outputs will  
be driven in BTL mode with the signal from PC-BEEP.  
The gain setting will be also fixed at 0.3V/V, inde-  
pendent of the volume setting. If the device is in the  
SHUTDOWN mode, activating PC-BEEP will take the  
device out of shutdown mode and output the  
PC-BEEP input signal until the PC-BEEP signal no  
longer detected. And then the device will return the  
shutdown mode when no PC-BEEP signal is detected.  
Figure 5  
The G1427 allows two different input sources applied  
to the audio amplifiers, which can be independent to  
the SE/BTL setting. When HP/LINE is held high, the  
headphone inputs are active. When the HP/LINE is  
held low, the line inputs are selected.  
When SE/BTL is held low, all four internal audio am-  
plifiers are activated to drive the stereo speakers.  
The PC-BEEP input can be dc-coupled to save the  
coupling capacitor. This pin is set at mid-rail normally  
when no signal is present.  
When SE/BTL is held high, two amplifiers are acti-  
vated to drive the stereo headphones. The other two  
amplifiers are disable and keeping the outputs high  
impedance.  
If AC-coupling is desired, the value of the coupling  
capacitor should be chosen to satisfy the equation:  
CPCB1/( 2πfPCB*150KΩ)  
CPCB is the PC-BEEP AC-coupling capacitor. fPCB is the  
frequency of applied PC-BEEP input signal.  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.3  
Sep 23, 2005  
15  
G1427  
Global Mixed-mode Technology Inc.  
Package Information  
D
24  
L
1.88  
1.88  
3.85  
E
E1  
2.8  
0.71  
1
Note 5  
A2  
A1  
e
b
NOTE:  
1. Package body sizes exclude mold flash protrusions or gate burrs  
2. Tolerance ±0.1mm unless otherwise specified  
3. Coplanarity : 0.1mm  
4. Controlling dimension is millimeter. Converted inch dimensions are not necessarily exact.  
5. Die pad exposure size is according to lead frame design.  
6. Follow JEDEC MO-153  
DIMENSION IN MM  
DIMENSION IN INCH  
SYMBOL  
MIN.  
-----  
NOM.  
-----  
MAX.  
1.15  
0.10  
1.05  
0.30  
0.20  
7.90  
6.60  
4.50  
-----  
MIN.  
-----  
NOM.  
-----  
MAX.  
0.045  
0.004  
0.041  
0.012  
0.008  
0.311  
2.260  
0.177  
-----  
A
A1  
A2  
b
0.00  
0.80  
0.19  
0.09  
7.70  
6.20  
4.30  
-----  
-----  
0.000  
0.031  
0.007  
0.004  
0.303  
0.244  
0.169  
-----  
-----  
1.00  
-----  
0.039  
-----  
C
-----  
-----  
D
7.80  
6.40  
4.40  
0.65  
0.60  
-----  
0.307  
0.252  
0.173  
0.026  
0.024  
-----  
E
E1  
e
L
0.45  
-----  
0.75  
0.10  
8º  
0.018  
-----  
0.030  
0.004  
8º  
y
θ
0º  
-----  
0º  
-----  
Taping Specification  
PACKAGE  
Q’TY/REEL  
2,500 ea  
TSSOP-24 (FD)  
Feed D irec tion  
T ypical T S S O P P a ckage O rientation  
GMT Inc. does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and GMT Inc. reserves the right at any time without notice to change said circuitry and specifications.  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.3  
Sep 23, 2005  
16  

相关型号:

G1427F31U

2W Stereo Audio Amplifier
GMT

G1427F31UF

2W Stereo Audio Amplifier
GMT

G1428

2W Stereo Audio Amplifier
GMT

G1428F31U

2W Stereo Audio Amplifier
GMT

G1428F31UF

2W Stereo Audio Amplifier
GMT

G1430

2W Stereo Audio Amplifier
GMT

G1430Z4T

2W Stereo Audio Amplifier
GMT

G1431

2W Stereo Audio Amplifier
GMT

G1431F2U

2W Stereo Audio Amplifier
GMT

G1431R9U

2W Stereo Audio Amplifier
GMT

G1431_06

2W Stereo Audio Amplifier
GMT

G1431_15

2W Stereo Audio Amplifier
GMT