G1421 [GMT]

2W Stereo Audio Amplifier with No Headphone Coupling Capacitor Function; 2W立体声音频放大器,无耳机耦合电容功能
G1421
型号: G1421
厂家: GLOBAL MIXED-MODE TECHNOLOGY INC    GLOBAL MIXED-MODE TECHNOLOGY INC
描述:

2W Stereo Audio Amplifier with No Headphone Coupling Capacitor Function
2W立体声音频放大器,无耳机耦合电容功能

音频放大器
文件: 总24页 (文件大小:432K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Global Mixed-mode Technology Inc.  
G1421  
2W Stereo Audio Amplifier with No Headphone  
Coupling Capacitor Function  
Features  
General Description  
„
Depop Circuitry Integrated  
G1421 is a stereo audio power amplifier in 24pin  
TSSOP thermal pad package. It can drive 1.8W con-  
tinuous RMS power into 4Ω load per channel in  
Bridge-Tied Load (BTL) mode at 5V supply voltage. Its  
THD is smaller than 1% under the above operation  
condition. To simplify the audio system design in the  
notebook application, G1421 supports the Bridge-Tied  
Load (BTL) mode for driving the speakers, Single-End  
(SE) mode for driving the headphone. In the HP-IN  
mode, it can support a DC value to the phone-jacket  
and drive the headphone without the audio amplifier  
outputs coupling capacitors. G1421 can mute the out-  
put when Mute-In is activated. For the low current  
consumption applications, the SHDN mode is sup-  
ported to disable G1421 when it is idle. The current  
consumption can be further reduced to below 5µA.  
„
Output Power at 1% THD+N, VDD=5V  
--1.8W/CH (typical) into a 4Ω Load  
--1.2W/CH (typical) into a 8Ω Load  
Eliminates Headphone Amplifier Output Cou-  
pling Capacitors  
Maximum Output Power Clamping Circuitry  
Integrated  
Bridge-Tied Load (BTL), Single-Ended (SE),  
and Stereo Headphone Amplifier (HP-IN) modes  
Supported  
„
„
„
„
„
„
Stereo Input MUX  
Mute and Shutdown Control Available  
Surface-Mount Power Package  
24-Pin TSSOP-P  
G1421 also supports two input paths, that means two  
different gain loops can be set in the same PCB and  
Applications  
„
Stereo Power Amplifiers for Notebooks or  
Desktop Computers  
choosing either one by setting HP/LINE pin. It en-  
hances the hardware designing flexibility. G1421 also  
supports an extra function -- the maximum output  
power clamping function to protect the speakers or  
headphones from burned-out.  
„
„
Multimedia Monitors  
Stereo Power Amplifiers for Portable Audio  
Systems  
Ordering Information  
ORDER  
NUMBER  
G1421  
ORDER NUMBER  
(Pb free)  
TEMP.  
PACKAGE  
RANGE  
G1421f  
-40°C to +85°C  
TSSOP-24 (FD)  
Note: U: Tape & Reel  
(FD): Thermal Pad  
Pin Configuration  
G1421  
GND/HS  
VOL  
GND/HS  
24  
23  
1
TJ  
LOUT+  
LLINEIN  
2
3
22 ROUT+  
RLINEIN  
4
5
6
21  
20 RHPIN  
LHPIN  
LBYPASS  
LVDD  
Thermal  
Pad  
19 RBYPASS  
18  
17  
16  
RVDD  
7
8
9
HP-IN  
SHUTDOWN  
MUTE OUT  
LOUT-  
HP/LINE  
10  
15 ROUT-  
14 SE/BTL  
MUTE IN 11  
14  
12  
13  
GND/HS  
GND/HS  
Top View  
Bottom View  
TSSOP-24 (FD)  
Note: Recommend connecting the Thermal Pad to the GND for excellent power dissipation.  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.6  
Aug 04, 2005  
1
Global Mixed-mode Technology Inc.  
G1421  
Absolute Maximum Ratings  
Supply Voltage, VDD……………………..………...…...6V  
Input Voltage, VI………………………-0.3V to VDD+0.3V  
Operating Ambient Temperature Range  
TA…….…………………………..….…….-40°C to +85°C  
Maximum Junction Temperature, TJ…..…………150°C  
Storage Temperature Range, TSTG….…-65°C to+150°C  
Reflow Temperature (soldering, 10sec)…………260°C  
Power Dissipation (1)  
TA 25°C…………………………………………..2.7W  
TA 70°C…………………………………………..1.7W  
TA 85°C………………….……………………….1.4W  
Electrostatic Discharge, VESD  
Human body mode  
Lout- pin………………………..…………-8000 to 8000V  
Other pins………………………………...-3000 to 3000(2)  
Note:  
(1) : Recommended PCB Layout.  
(2) : Human body model : C = 100pF, R = 1500Ω, 3 positive pulses plus 3 negative pulses  
Electrical Characteristics  
DC Electrical Characteristics, TA=+25°C  
PARAMETER  
SYMBOL  
CONDITION  
HP-IN  
MIN TYP MAX UNIT  
VDD =3.3V  
VDD = 5V  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
5.5  
6.5  
7
11  
14  
13  
8
HP-IN  
Stereo BTL  
Supply Current  
IDD  
VDD =3.3V  
mA  
Stereo SE  
Stereo BTL  
Stereo SE  
3.5  
8
16  
10  
50  
16  
14  
10  
5
V
DD = 5V  
4
DC Differential Output Voltage  
Supply Current in Mute Mode  
IDD in Shutdown  
VO(DIFF)  
IDD(MUTE)  
ISD  
VDD = 5V,Gain = 2  
5
mV  
mA  
µA  
Stereo BTL  
HP-IN  
8
VDD = 5V  
6.5  
4
Stereo SE  
VDD = 5V  
2
(AC Operation Characteristics, VDD = 5.0V, TA=+25°C, RL = 4Ω, unless otherwise noted)  
PARAMETER  
SYMBOL  
CONDITION  
THD = 1%, BTL, RL = 4Ω  
THD = 1%, BTL, RL = 8Ω  
THD = 10%, BTL, RL = 4Ω  
THD = 10%, BTL, RL = 8Ω  
THD = 1%, SE, RL = 4Ω  
THD = 1%, SE, RL = 8Ω  
THD = 10%, SE, RL = 4Ω  
THD = 10%, SE, RL L = 8Ω  
THD = 0.5%, SE, RL = 32Ω  
PO = 1.6W, BTL, RL = 4Ω  
PO = 1W, BTL, RL = 8Ω  
PO = 75mW, SE, RL = 32Ω  
VI = 1V, RL = 10KΩ, G = 1  
G = 1, THD =1%  
MIN TYP MAX UNIT  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
1.8  
1.12  
2
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
W
1.4  
500  
320  
650  
400  
90  
Output power (each channel) see Note  
P(OUT)  
mW  
m%  
500  
150  
20  
Total harmonic distortion plus noise  
THD+N  
10  
Maximum output power bandwidth  
Phase margin  
BOM  
20  
kHz  
°
dB  
RL = 4Ω, Open Load  
f = 120Hz  
60  
Power supply ripple rejection  
Mute attenuation  
PSRR  
75  
85  
dB  
Channel-to-channel output separation  
Line/HP input separation  
BTL attenuation in SE mode  
Input impedance  
f = 1kHz  
82  
dB  
80  
dB  
85  
dB  
ZI  
2
MΩ  
dB  
Signal-to-noise ratio  
PO = 500mW, BTL  
90  
Output noise voltage  
Vn  
Output noise voltage  
55  
µV (rms)  
Note :Output power is measured at the output terminals of the IC at 1kHz.  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.6  
Aug 04, 2005  
2
Global Mixed-mode Technology Inc.  
(AC Operation Characteristics, VDD = 3.3V, TA=+25°C, RL = 4Ω, unless otherwise noted)  
G1421  
PARAMETER  
SYMBOL  
CONDITION  
THD = 1%, BTL, RL = 4Ω  
THD = 1%, BTL, RL = 8Ω  
THD = 10%, BTL, RL = 4Ω  
THD = 10%, BTL, RL = 8Ω  
THD = 1%, SE, RL = 4Ω  
THD = 1%, SE, RL = 8Ω  
THD = 10%, SE, RL = 4Ω  
THD = 10%, SE, RL L = 8Ω  
THD = 0.5%, SE, RL = 32Ω  
PO = 1.6W, BTL, RL = 4Ω  
PO = 1W, BTL, RL = 8Ω  
PO = 75mW, SE, RL = 32Ω  
VI = 1V, RL = 10KΩ, G = 1  
G = 1, THD 1%  
MIN TYP MAX UNIT  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
0.8  
0.5  
1
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
W
0.6  
230  
140  
290  
180  
43  
Output power (each channel) see Note  
P(OUT)  
mW  
270  
100  
20  
Total harmonic distortion plus noise  
THD+N  
m%  
10  
Maximum output power bandwidth  
Phase margin  
BOM  
20  
kHz  
°
dB  
RL = 4Ω, Open Load  
f = 120Hz  
60  
Power supply ripple rejection  
Mute attenuation  
PSRR  
75  
85  
dB  
Channel-to-channel output separation  
Line/HP input separation  
BTL attenuation in SE mode  
Input impedance  
f = 1kHz  
80  
dB  
80  
dB  
85  
dB  
ZI  
2
MΩ  
dB  
Signal-to-noise ratio  
PO = 500mW, BTL  
90  
Output noise voltage  
Vn  
Output noise voltage  
55  
µV (rms)  
Note :Output power is measured at the output terminals of the IC at 1kHz.  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.6  
Aug 04, 2005  
3
Global Mixed-mode Technology Inc.  
G1421  
Typical Characteristics  
Table of Graphs  
FIGURE  
vs Output Power  
vs Frequency  
1,3,6,9,10,13,16,19,22,25,26,27,33,36,39  
THD +N Total Harmonic Distortion Plus Noise  
Output Noise Voltage  
2,4,5,7,8,11,12,14,15,17,18,20,21,23,24,28,29  
30,31,32,34,35,37,38,40,41  
42,43,44  
vs Frequency  
Supply Ripple Rejection Ratio  
vs Frequency  
45,46,47  
Vn  
Crosstalk  
vs Frequency  
48,49,50,51,52  
53,54,55,56  
57  
Closed loop Response  
IDD Supply Current  
vs Frequency  
vs Supply Voltage  
vs Supply Voltage  
vs Load Resistance  
vs Output Power  
58,59  
PO Output Power  
60,61  
PD Power Dissipation  
62,63,64,65  
Total Harmonic Distortion Plus  
Noise vs Output Power  
Total Harmonic Distortion Plus  
Noise vs Output Frequency  
10  
5
10  
5
20kHz  
2
2
1
1
Po=1.8W  
1kHz  
0.5  
0.5  
%
%
0.2  
0.2  
0.1  
VDD=5V  
Po=1.5W  
0.1  
RL=3  
BTL  
20 Hz  
Ω
VDD=5V  
0.05  
0.05  
RL=3  
Ω
Av=-2V/V  
BTL  
0.02  
0.01  
0.02  
0.01  
3m  
5 m  
10 m  
20m  
5 0m  
100m  
W
20 0m  
500 m  
1
2
3
20  
50  
10 0  
2 00  
5 00  
Hz  
1k  
2 k  
5 k  
10 k  
20k  
Figure 1  
Figure 2  
Total Harmonic Distortion Plus  
Noise vs Output Power  
Total Harmonic Distortion Plus  
Noise vs Output Frequency  
10  
5
10  
5
Av=-4V/V  
20kHz  
2
1
2
1
Av=-2V/V  
0.5  
0.5  
1kHz  
%
%
0.2  
0.1  
0.2  
0.1  
VDD=5V  
Av=-1V/V  
VDD=5V  
20 Hz  
RL=4  
BTL  
Po=1.5W  
Ω
0.05  
0.05  
RL=4  
BTL  
Ω
0.02  
0.01  
0.02  
0.01  
3m  
5 m  
10 m  
20m  
50m  
100m  
W
20 0m  
500 m  
1
2
3
20  
50  
10 0  
2 00  
5 00  
Hz  
1k  
2 k  
5 k  
10 k  
20k  
Figure 3  
Figure 4  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.6  
Aug 04, 2005  
4
Global Mixed-mode Technology Inc.  
G1421  
Total Harmonic Distortion Plus  
Noise vs Output Frequency  
Total Harmonic Distortion Plus  
Noise vs Output Power  
10  
5
10  
VDD=5V  
VDD=5V  
5
RL=8  
BTL  
Av=-2V/V  
Ω
RL=4  
BTL  
Av=-2V/V  
Ω
20kHz  
Po=1.5W  
2
1
2
1
Po=0.25W  
0.5  
0.5  
%
%
0.2  
0.1  
0.2  
0.1  
1kHz  
0.05  
0.05  
Po=0.75W  
20Hz  
0.02  
0.01  
0.02  
0.01  
20  
50  
100  
200  
500  
Hz  
1k  
2 k  
5k  
10k  
20k  
3m  
5 m  
10m  
20m  
50m  
100m  
W
20 0m  
500 m  
1
2
3
Figure 5  
Figure 6  
Total Harmonic Distortion Plus  
Noise vs Output Frequency  
Total Harmonic Distortion Plus  
Noise vs Output Frequency  
10  
5
10  
5
VDD=5V  
VDD=5V  
RL=8  
BTL  
RL=8  
Ω
Av=-4V/V  
Ω
Po=1W  
2
1
2
1
BTL  
Av=-2V/V  
Po=1W  
Po=0.25W  
0.5  
0.5  
Av=-2V/V  
%
%
0.2  
0.1  
0.2  
0.1  
Po=0.5W  
0.05  
0.05  
Av=-1V/V  
0.02  
0.01  
0.02  
0.01  
20  
50  
100  
200  
500  
Hz  
1k  
2 k  
5k  
10k  
20k  
20  
50  
10 0  
2 00  
5 00  
Hz  
1k  
2 k  
5 k  
10k  
20k  
Figure 8  
Figure 7  
Total Harmonic Distortion Plus  
Noise vs Output Power  
Total Harmonic Distortion Plus  
Noise vs Output Power  
10  
5
10  
5
20kHz  
1kHz  
20kHz  
2
1
2
1
1kHz  
0.5  
0.5  
%
%
0.2  
0.1  
0.2  
0.1  
VDD=3.3V  
VDD=3.3V  
20Hz  
RL=4  
Ω
0.05  
0.05  
RL=3  
20Hz  
Ω
BTL  
BTL  
0.02  
0.01  
0.02  
0.01  
1m  
2m  
5m  
10m  
20m  
50m  
100m  
200 m  
500 m  
1
1m  
2m  
5m  
10m  
20 m  
50 m  
100m  
2 00 m  
500 m  
1
W
W
Figure 9  
Figure 10  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.6  
Aug 04, 2005  
5
Global Mixed-mode Technology Inc.  
G1421  
Total Harmonic Distortion Plus  
Noise vs Output Frequency  
Total Harmonic Distortion Plus  
Noise vs Output Frequency  
10  
5
10  
5
VDD=3.3V  
VDD=3.3V  
RL=4  
BTL  
Ω
Av=-4V/V  
RL=4  
BTL  
Ω
2
1
2
1
Av=-2V/V  
Po=0.7W  
Av=-2V/V  
Po=0.65W  
0.5  
0.5  
%
%
Po=0.1W  
0.2  
0.1  
0.2  
0.1  
Po=0.35W  
Av=-1V/V  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
20  
50  
100  
200  
5 00  
Hz  
1k  
2k  
5 k  
10k  
20k  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10 k  
20k  
Figure 12  
Figure 11  
Total Harmonic Distortion Plus  
Noise vs Output Frequency  
Total Harmonic Distortion Plus  
Noise vs Output Power  
10  
10  
5
VDD=3.3V  
5
VDD=3.3V  
RL=8  
BTL  
Ω
RL=8  
BTL  
Ω
20kHz  
2
1
Av=-4V/V  
2
1
Po=0.4W  
Av=-2V/V  
0.5  
0.5  
%
%
1kHz  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
Av=-1V/V  
20Hz  
0.02  
0.01  
0.02  
0.01  
20  
50  
100  
200  
500  
Hz  
1k  
2 k  
5k  
10 k  
20k  
1m  
2m  
5m  
1 0m  
20 m  
50m  
10 0m  
200m  
500m  
1
W
Figure 13  
Figure 14  
Total Harmonic Distortion Plus  
Noise vs Output Frequency  
Total Harmonic Distortion Plus  
Noise vs Output Power  
10  
5
10  
5
VDD=5V  
VDD=3.3V  
RL=4  
Ω
RL=8  
BTL  
Ω
SE  
2
1
2
1
Po=0.4W  
Av=-2V/V  
20kHz  
1kHz  
0.5  
0.5  
%
%
Po=0.1W  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
Po=0.25W  
100Hz  
0.02  
0.01  
0.02  
0.01  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10 k  
20k  
1m  
2m  
5m  
10m  
20m  
50m  
10 0m  
2 00 m  
500m  
1
W
Figure 15  
Figure 16  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.6  
Aug 04, 2005  
6
Global Mixed-mode Technology Inc.  
G1421  
Total Harmonic Distortion Plus  
Noise vs Output Frequency  
Total Harmonic Distortion Plus  
Noise vs Output Frequency  
10  
5
10  
VDD=5V  
5
VDD=5V  
RL=4  
RL=4  
Ω
Ω
2
1
2
1
SE  
Av=-4V/V  
SE  
Av=-2V/V  
Po=0.4W  
Po=0.5W  
0.5  
0.5  
Av=-2V/V  
%
%
0.2  
0.1  
0.2  
0.1  
Po=0.1W  
0.05  
0.05  
Av=-1V/V  
Po=0.25W  
0.02  
0.01  
0.02  
0.01  
20  
50  
100  
200  
5 00  
Hz  
1k  
2k  
5k  
10k  
20k  
20  
50  
100  
2 00  
5 00  
Hz  
1k  
2k  
5 k  
10k  
20k  
Figure 17  
Figure 18  
Total Harmonic Distortion Plus  
Noise vs Output Frequency  
Total Harmonic Distortion Plus  
Noise vs Output Power  
10  
5
10  
5
VDD=5V  
VDD=5V  
RL=8  
Ω
RL=8  
Ω
2
1
2
1
SE  
SE  
Po=0.25W  
20kHz  
0.5  
0.5  
Av=-2V/V  
%
%
0.2  
0.1  
0.2  
0.1  
Av=-4V/V  
1kHz  
0.05  
0.05  
100Hz  
0.02  
0.01  
0.02  
0.01  
Av=-1V/V  
20  
50  
10 0  
200  
500  
Hz  
1k  
2k  
5k  
10 k  
20k  
1m  
2m  
5m  
10m  
20m  
50 m  
100m  
2 00m  
500m  
1
W
Figure 20  
Figure 19  
Total Harmonic Distortion Plus  
Noise vs Output Power  
Total Harmonic Distortion Plus  
Noise vs Output Frequency  
10  
5
10  
5
VDD=5V  
VDD=5V  
2
1
RL=8  
SE  
Ω
RL=32  
Ω
2
1
SE  
0.5  
Av=-2  
20kHz  
0.2  
0.1  
0.5  
Po=0.05W  
Po=0.25W  
%
%
20Hz  
0.2  
0.1  
0.05  
0.02  
0.01  
Po=0.1W  
0.05  
0.005  
1kHz  
0.02  
0.01  
0.002  
0.001  
1m  
2m  
5m  
10 m  
20m  
50m  
10 0m  
200m  
20  
50  
10 0  
200  
500  
Hz  
1k  
2 k  
5k  
10 k  
20k  
W
Figure 21  
Figure 22  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.6  
Aug 04, 2005  
7
Global Mixed-mode Technology Inc.  
G1421  
Total Harmonic Distortion Plus  
Noise vs Output Frequency  
Total Harmonic Distortion Plus  
Noise vs Output Frequency  
10  
10  
5
5
VDD=5V  
VDD=5V  
2
1
RL=32  
SE  
Po=75mW  
2
1
Ω
RL=32  
Ω
SE  
0.5  
0.5  
Av=-4V/V  
Po=25mW  
0.2  
0.1  
0.2  
0.1  
%
%
%
%
0.05  
Av=-2V/V  
0.05  
Po=50mW  
0.02  
0.01  
0.02  
0.01  
0.0 05  
0.005  
Av=-1V/V  
Po=75mW  
0.0 02  
0.0 01  
0.002  
0.001  
20  
50  
100  
200  
5 00  
Hz  
1k  
2k  
5 k  
10k  
20k  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10 k  
20k  
Figure 23  
Figure 24  
Total Harmonic Distortion Plus  
Noise vs Output Power  
Total Harmonic Distortion Plus  
Noise vs Output Power  
10  
5
10  
5
VDD=5V  
RL=8  
HP-IN  
Av=-2V/V  
VDD=5V  
Ω
RL=4  
HP-IN  
Ω
2
1
2
1
20kHz  
Av=-2V/V  
0.5  
0.5  
20kHz  
%
0.2  
0.1  
0.2  
0.1  
1kHz  
1kHz  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
100Hz  
100Hz  
1m  
2m  
5m  
1 0m  
20 m  
50m  
10 0m  
200m  
500m  
1
1m  
2m  
5m  
10m  
20m  
50m  
100m  
200m  
5 00m  
1
W
W
Figure 26  
Figure 25  
Total Harmonic Distortion Plus  
Noise vs Output Power  
Total Harmonic Distortion Plus  
Noise vs Output Power  
10  
5
10  
5
VDD=5V  
RL=4  
VDD=5V  
RL=32  
HP-IN  
Av=-2V/V  
2
1
Ω
Ω
2
1
HP-IN  
Po=0.5W  
Av=-4V/V  
0.5  
20kHz  
0.2  
0.1  
0.5  
%
Av=-2V/V  
0.05  
0.2  
0.1  
1kHz  
0.02  
0.01  
0.05  
0.005  
Av=-1V/V  
100Hz  
0.02  
0.01  
0.002  
0.001  
1m  
2m  
5m  
10m  
20m  
W
50m  
100m  
200m  
500m  
20  
50  
100  
200  
500  
Hz  
1 k  
2 k  
5k  
10 k  
20k  
Figure 27  
Figure 28  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.6  
Aug 04, 2005  
8
Global Mixed-mode Technology Inc.  
G1421  
Total Harmonic Distortion Plus  
Noise vs Output Frequency  
Total Harmonic Distortion Plus  
Noise vs Output Frequency  
10  
5
10  
5
VDD=5V  
RL=4  
HP-IN  
VDD=5V  
RL=8  
HP-IN  
Po=0.25W  
Ω
Ω
2
1
2
1
Av=-2V/V  
Po=0.25W  
0.5  
0.5  
Av=-4V/V  
%
%
0.2  
0.1  
0.2  
0.1  
Po=0.1W  
Av=-2V/V  
0.05  
0.05  
Po=0.4W  
0.02  
0.01  
0.02  
0.01  
Av=-1V/V  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10 k  
20k  
20  
50  
100  
200  
500  
Hz  
1 k  
2 k  
5k  
10 k  
10k  
10k  
20k  
20k  
20k  
Figure 29  
Figure 30  
Total Harmonic Distortion Plus  
Noise vs Output Frequency  
Total Harmonic Distortion Plus  
Noise vs Output Frequency  
10  
5
10  
5
VDD=5V  
VDD=5V  
2
1
RL=8  
Ω
RL=32  
HP-IN  
Ω
2
1
HP-IN  
Av=-2V/V  
Po=0.1W  
Po=25mW  
0.5  
Av=-2V/V  
0.2  
0.1  
0.5  
%
%
0.2  
0.1  
0.05  
Po=50mW  
0.02  
0.01  
0.05  
Po=0.05W  
0.0 05  
Po=70mW  
0.02  
0.01  
Po=0.25W  
0.0 02  
0.0 01  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10 k  
20k  
20  
50  
100  
200  
5 00  
Hz  
1k  
2k  
5k  
Figure 31  
Figure 32  
Total Harmonic Distortion Plus  
Noise vs Output Power  
Total Harmonic Distortion Plus  
Noise vs Output Frequency  
10  
5
10  
5
VDD=3.3V  
VDD=3.3V  
RL=4 ,SE  
Ω
RL=4  
Ω
Av=-2  
2
1
2
1
SE  
Po=0.2W  
20kHz  
Av=-4V/V  
0.5  
0.5  
%
%
Av=-2V/V  
0.2  
0.1  
0.2  
0.1  
1kHz  
0.05  
0.05  
Av=-1V/V  
100Hz  
0.02  
0.01  
0.02  
0.01  
1m  
2m  
5m  
10m  
20m  
50m  
100m  
2 00m  
500m  
1
20  
50  
10 0  
200  
500  
Hz  
1k  
2k  
5k  
W
Figure 33  
Figure 34  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.6  
Aug 04, 2005  
9
Global Mixed-mode Technology Inc.  
G1421  
Total Harmonic Distortion Plus  
Noise vs Output Frequency  
Total Harmonic Distortion Plus  
Noise vs Output Power  
10  
10  
R
R
5
VDD=3.3V  
RL=8 ,SE  
Av=-2  
5
VDD=3.3V  
Ω
RL=4  
Ω
2
1
2
1
Po=50mW  
SE  
Av=-2  
20kHz  
0.5  
0.5  
%
%
0.2  
0.1  
0.2  
0.1  
Po=100mW  
1kHz  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
Po=150mW  
100Hz  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k  
20k  
1m  
2m  
5m  
10m  
20 m  
50m  
100m  
200m  
W
Figure 35  
Figure 36  
Total Harmonic Distortion Plus  
Noise vs Output Frequency  
Total Harmonic Distortion Plus  
Noise vs Output Frequency  
10  
5
10  
5
VDD=3.3V  
VDD=3.3V  
RL=8  
Ω
RL=8  
Ω
2
1
2
1
SE  
SE  
Po=100mW  
Po=25mW  
Av=-4V/V  
0.5  
0.5  
%
%
0.2  
0.1  
0.2  
0.1  
Po=50mW  
Av=-2V/V  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
Av=-1V/V  
Po=100mW  
20  
50  
10 0  
200  
5 00  
Hz  
1k  
2k  
5 k  
10k  
20k  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k  
20k  
Figure 38  
Figure 37  
Total Harmonic Distortion Plus  
Noise vs Output Power  
Total Harmonic Distortion Plus  
Noise vs Output Frequency  
10  
5
10  
5
VDD=3.3V  
VDD=3.3V  
2
1
RL=32  
Ω
RL=32  
SE  
Ω
1kHz  
2
1
SE  
Av=-4V/V  
0.5  
Po=30mW  
0.2  
0.1  
0.5  
20kHz  
Av=-2V/V  
%
%
0.2  
0.1  
0.05  
0.02  
0.01  
20Hz  
0.05  
0.005  
Av=-1V/V  
0.02  
0.01  
0.002  
0.001  
1m  
2m  
5m  
10m  
W
20m  
50m  
100m  
20  
50  
100  
2 00  
500  
Hz  
1k  
2k  
5k  
10k  
20k  
Figure 39  
Figure 40  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.6  
Aug 04, 2005  
10  
Global Mixed-mode Technology Inc.  
G1421  
Total Harmonic Distortion Plus  
Noise vs Output Frequency  
Output Noise Voltage  
vs Frequency  
10  
5
100u  
90u  
80u  
VDD=3.3V  
VDD=5V  
BW=22Hz to 20kHz  
70u  
60u  
RL=32  
2
1
Ω
RL=4  
Ω
SE  
50u  
40u  
0.5  
Po=10mW  
0.2  
0.1  
Vo BTL  
Vo SE  
%
V
30u  
20u  
0.05  
Po=20mW  
0.02  
0.01  
0.005  
Po=30mW  
0.002  
0.001  
10u  
20  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k  
20k  
50  
10 0  
200  
5 00  
Hz  
1k  
2k  
5 k  
10k  
20k  
Figure 41  
Figure 42  
Output Noise Voltage  
vs Frequency  
Output Noise Voltage  
vs Frequency  
100u  
90u  
80u  
100u  
90u  
VDD=3.3V  
80u  
70u  
BW=22Hz to 20kHz  
Vo BTL  
70u  
60u  
RL=4  
Ω
60u  
50u  
50u  
40u  
BW=22Hz to 20kHz  
A- Weighted Filter  
40u  
30u  
V
V
30u  
20u  
VDD=5V  
HP-IN  
20u  
Vo SE  
RL=4  
Ω
10u  
20  
10u  
20  
5 0  
1 00  
200  
500  
Hz  
1k  
2k  
5k  
10k  
20k  
50  
100  
200  
5 00  
Hz  
1k  
2k  
5 k  
10k  
20k  
Figure 43  
Figure 44  
Supply Ripple Rejection  
Ratio vs Frequency  
Supply Ripple Rejection  
Ratio vs Frequency  
+0  
+0  
T
T
T
T
-10  
-20  
-30  
-10  
-20  
-30  
VDD=5V  
VDD=5V  
HP-IN  
RL=4  
RL=4  
Ω
CB=4.7uF  
Ω
-40  
-50  
-40  
-50  
CB=4.7uF  
d
B
d
B
BTL  
-60  
-70  
-80  
-90  
-60  
-70  
-80  
-90  
SE  
-100  
20  
-100  
20  
5 0  
1 00  
2 00  
500  
1k  
2k  
5k  
10k  
20k  
5 0  
1 00  
200  
500  
Hz  
1k  
2k  
5k  
10k  
20k  
Hz  
Figure 45  
Figure 46  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.6  
Aug 04, 2005  
11  
Global Mixed-mode Technology Inc.  
G1421  
Supply Ripple Rejection  
Ratio vs Frequency  
Crosstalk vs Frequency  
+0  
-20  
-25  
T
-10  
-20  
-30  
VDD=3.3V  
RL=4  
VDD=5V  
Po=1.5W  
-30  
-35  
Ω
-40  
-45  
RL=4  
BTL  
CB=4.7uF  
Ω
-50  
-55  
-60  
-40  
-50  
d
B
d
B
BTL  
L to R  
-65  
-70  
-75  
-60  
-70  
-80  
-90  
-80  
-85  
R to L  
SE  
-90  
-95  
-100  
20  
-100  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k  
20k  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k 20k  
Figure 47  
Figure 48  
Crosstalk vs Frequency  
Crosstalk vs Frequency  
-30  
-35  
-40  
-20  
-25  
VDD=3.3V  
Po=0.75W  
VDD=5V  
Po=75mW  
-30  
-35  
-40  
-45  
-50  
-45  
-50  
-55  
-60  
RL=4  
Ω
RL=32  
Ω
BTL  
SE  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
-100  
d
B
d
B
-65  
-70  
R to L  
L to R  
R to L  
-75  
-80  
-85  
-90  
-95  
L to R  
-100  
20  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k 20k  
50  
100  
200  
500  
Hz  
1k  
2 k  
5k  
10k  
20k  
Figure 49  
Figure 50  
Crosstalk vs Frequency  
Crosstalk vs Frequency  
-30  
-35  
-40  
-2 0  
-2 5  
VDD=3.3V  
Po=35mW  
-3 0  
-3 5  
VDD=5V  
Po=75mW  
RL=32  
HP-IN  
-45  
-50  
RL=32  
Ω
-4 0  
-4 5  
SE  
R to L  
-55  
-60  
-5 0  
-5 5  
d
B
d
B
-65  
-70  
-6 0  
-6 5  
R to L  
L to R  
-7 0  
-7 5  
-75  
-80  
-85  
-8 0  
-8 5  
-90  
-95  
-9 0  
-9 5  
L to R  
-100  
20  
-100  
20  
50  
10 0  
20 0  
50 0  
Hz  
1k  
2 k  
5k  
10 k  
20k  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k  
20 k  
Figure 52  
Figure 51  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.6  
Aug 04, 2005  
12  
Global Mixed-mode Technology Inc.  
G1421  
Closed Loop Response  
Closed Loop Response  
Figure 54  
Figure 53  
Closed Loop Response  
Closed Loop Response  
Figure 55  
Figure 56  
Supply Current vs Supply Voltage  
Output Power vs Supply Voltage  
10  
9
8
7
6
5
4
3
2
1
0
2.5  
2
THD+N=1%  
BTL  
Each Channel  
Stereo BTL  
RL=4  
Ω
1.5  
1
RL=3  
Ω
RL=8  
Ω
Stereo SE  
0.5  
0
3
4
5
6
2.5  
3.5  
4.5  
5.5  
6.5  
Supply Voltage (V)  
Supply Voltage (V)  
Figure 58  
Figure 57  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.6  
Aug 04, 2005  
13  
Global Mixed-mode Technology Inc.  
G1421  
Output Power vs Supply Voltage  
Output Power vs Load Resistance  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2
1.8  
1.6  
1.4  
1.2  
1
THD+N=1%  
SE  
Each Channel  
THD+N=1%  
BTL  
Each Channel  
VDD=5V  
RL=8  
Ω
RL=4  
Ω
VDD=3.3V  
0.8  
0.6  
0.4  
0.2  
0
RL=32  
5.5  
Ω
2.5  
3.5  
4.5  
6.5  
0
4
8
12  
16  
20  
24  
28  
32  
Supply Voltage(V)  
Figure 59  
Load Resistance()  
Figure 60  
Output Power vs Load Resistance  
Power Dissipation vs Output Power  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.8  
1.6  
1.4  
1.2  
1
THD+N=1%  
SE  
Each Channel  
VDD=5V  
RL=3  
Ω
RL=4  
0.8  
0.6  
0.4  
0.2  
0
Ω
VDD=5V  
BTL  
Each Channel  
RL=8  
Ω
VDD=3.3V  
0
4
8
12  
16  
20  
24  
28  
32  
0
0.5  
1
1.5  
2
2.5  
Po-Output Pow er(W)  
Load Resistance()  
Figure 62  
Figure 61  
Power Dissipation vs Output Power  
Power Dissipation vs Output Power  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.35  
0.3  
RL=3  
Ω
RL=4  
Ω
0.25  
0.2  
RL=4  
Ω
RL=8  
Ω
0.15  
0.1  
VDD=5V  
SE  
Each Channel  
RL=8  
VDD=3.3V  
BTL  
Each Channel  
Ω
0.05  
0
RL=32  
Ω
0
0.25  
0.5  
0.75  
1
0
0.2  
0.4  
0.6  
0.8  
Output Pow er(W)  
Output Pow er(W)  
Figure 63  
Figure 64  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.6  
Aug 04, 2005  
14  
Global Mixed-mode Technology Inc.  
G1421  
Recommended Minimum Footprint  
TSSOP-24 (FD)  
Power Dissipation vs Output Power  
0.16  
0.14  
0.12  
0.1  
RL=4  
Ω
VDD=3.3V  
SE  
0.08  
0.06  
0.04  
0.02  
0
Each Channel  
RL=8  
Ω
RL=32  
Ω
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
Output Pow er (W)  
Figure 65  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.6  
Aug 04, 2005  
15  
Global Mixed-mode Technology Inc.  
G1421  
Pin Description  
PIN  
1,12,13,24  
2
NAME  
GND/HS  
TJ  
I/O  
FUNCTION  
Ground connection for circuitry, directly connected to thermal pad.  
O
Source a current inversely to the junction temperature. This pin should be left uncon-  
nected during normal operation. For more information, see the junction temperature  
measurement section of this document.  
3
4
5
LOUT+  
LLINE IN  
LHP IN  
O
I
Left channel + output in BTL mode, + output in SE mode.  
Left channel line input, selected when HP/ pin is held low.  
I
Left channel headphone input, selected when HP/pin is held high.  
6
7
8
LBYPASS  
LVDD  
Connect to voltage divider for left channel internal mid-supply bias.  
Supply voltage input for left channel and for primary bias circuits.  
Shutdown mode control signal input, places entire IC in shutdown mode when held  
high, IDD = 5µA.  
I
I
SHUTDOWN  
9
MUTE OUT  
LOUT-  
O
O
Follows MUTE IN pin, provides buffered output.  
10  
Left channel - output in BTL mode, high impedance state in SE mode. Supply VDD/2 to  
the phone jacket in HP-IN mode.  
11  
14  
15  
16  
MUTE IN  
SE/  
I
I
Mute control signal input, hold low for normal operation, hold high to mute.  
Mode control signal input, hold low for BTL mode, hold high for SE mode.  
Right channel - output in BTL mode, high impedance state in SE mode.  
MUX control input, hold high to select headphone inputs (5,20), hold low to select line  
inputs (4,21).  
ROUT-  
HP/  
O
I
17  
HP-IN  
This pin can activate the HP-IN mode to supplied the VDD/2 at LOUT- onto the phone  
jacket. So the DC blocking capacitors can be removed in HP-IN type (like SE mode  
except no DC blocking capacitors). Hold high to activate this function. If this function is  
not used, it should be strongly tied to low.  
18  
19  
20  
21  
22  
23  
RVDD  
RBYPASS  
RHP IN  
RLINE IN  
ROUT+  
VOL  
I
Supply voltage input for right channel.  
Connect to voltage divider for right channel internal mid-supply bias.  
Right channel headphone input, selected when HP/pin is held high.  
Right channel line input, selected when HP/pin is held low.  
I
I
O
I
Right channel + output in BTL mode, + output in SE mode.  
The output power can be clamped by setting a low bound voltage to this pin. The high  
bound voltage will be generated internally. The output voltage will be clamped between  
high/low bound voltages. Then the output power is limited. It is weakly pull-low inter-  
nally, let this pin floating or tied to GND can deactivate this function.  
Recommend connecting the Thermal Pad to the GND for excellent power dissipation.  
Thermal Pad  
TEL: 886-3-5788833  
Ver: 1.6  
http://www.gmt.com.tw  
Aug 04, 2005  
16  
Global Mixed-mode Technology Inc.  
G1421  
Block Diagram  
20k  
21  
20  
RLINEIN  
RHPIN  
_
+
22  
15  
ROUT+  
ROUT-  
RIGHT  
MUX  
RBYPASS  
19  
RVDD  
HP-IN  
18  
17  
16  
14  
2
MUTEIN  
11  
MUTEOUT  
SHUTDOWN  
VOL  
HP/LINE  
SE/BTL  
TJ  
9
8
BIAS CIRCUITS  
MODES CONTROL  
CIRCUITS  
23  
LVDD  
7
6
LBYPASS  
+
10  
3
LOUT-  
LOUT+  
LHPIN  
5
4
_
LEFT  
MUX  
LLINEIN  
20k  
Parameter Measurement Information  
11  
HP-IN  
17  
16  
MUTEIN  
HP/LINE  
8
SHUTDOWN  
VOL  
14  
7
23  
SE/BTL  
LVDD  
RL 4/8/32ohm  
6
LBYPASS  
CB  
4.7µF  
LOUT-  
LOUT+  
10  
3
+
_
5
4
LHPIN  
CI  
LEFT  
MUX  
LLINEIN  
AC source  
RI  
RF  
BTL Mode Test Circuit  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.6  
Aug 04, 2005  
17  
Global Mixed-mode Technology Inc.  
G1421  
Parameter Measurement Information (Continued)  
11  
HP-IN  
17  
MUTEIN  
HP/LINE  
8
SHUTDOWN  
VOL  
16  
14  
VDD  
23  
SE/BTL  
LVDD  
7
6
LBYPASS  
CB  
4.7µF  
LOUT-  
LOUT+  
10  
3
+
_
5
4
LHPIN  
CI  
LEFT  
MUX  
LLINEIN  
AC source  
RI  
RL 32ohm  
RF  
SE Mode Test Circuit  
VDD  
11  
HP-IN  
17  
MUTEIN  
HP/LINE  
8
SHUTDOWN  
VOL  
16  
14  
23  
SE/BTL  
LVDD  
7
6
LBYPASS  
CB  
4.7µF  
LOUT-  
LOUT+  
10  
3
+
RL 32ohm  
5
4
LHPIN  
CI  
LEFT  
MUX  
_
LLINEIN  
AC source  
RI  
RF  
HP-IN Mode (Non-DC Blocking Cap) Test Circuit  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.6  
Aug 04, 2005  
18  
Global Mixed-mode Technology Inc.  
G1421  
Application Circuits  
With DC blocking Capacitors Application  
GND/HS  
TJ  
GND/HS  
VOL  
1
2
24  
23  
LOUT+  
ROUT+  
3
4
22  
21  
RIL  
CIL  
RIR  
CIR  
1µF  
LLINEIN  
RLINEIN  
RFL  
20KΩ  
CFR  
AUDIO SOURCE  
RFL 20KΩ  
AUDIO SOURCE  
CFL  
10KΩ  
10KΩ  
1µF  
LHPIN  
RHPIN  
LVDD  
5
6
20  
7
LBYPASS  
RVDD  
HP-IN  
RBYPASS  
G1421  
4.7µF  
19  
8
18  
17  
R
4.7µF  
SHUTDWON  
CSR  
4.7µF  
100KΩ  
COUTR  
220µF  
MUTE OUT  
LOUT-  
HP/LINE  
ROUT-  
9
16  
15  
10  
R
1
3
MUTE IN  
GND/HS  
SE/BTL  
GND/HS  
1KΩ  
11  
12  
14  
13  
100KΩ  
4
2
PHONOJACK  
0.1µF  
COUTR  
220µF  
1KΩ  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.6  
Aug 04, 2005  
19  
Global Mixed-mode Technology Inc.  
G1421  
Application Circuits (Continued)  
No DC Blocking Capacitors Application  
GND/HS  
1
GND/HS  
VOL  
24  
23  
TJ  
2
LOUT+  
3
ROUT+  
22  
21  
CIR  
RIR  
CIL  
RIL  
RLINEIN  
LLINEIN  
RFL  
20KΩ  
RFR  
20KΩ  
CFR  
AUDIO SOURCE  
CFL  
4
RC  
4.7Ω  
10KΩ  
1µF  
10KΩ  
1µF  
AUDIO SOURCE  
LHPIN  
5
6
RHPIN  
LVDD  
20  
7
CC  
0.1µF  
LBYPASS  
RVDD  
HP-IN  
G1421  
RBYPASS  
CBL  
4.7µF  
4.7µF  
19  
8
18  
17  
SHUTDWON  
4.7µF  
MUTE OUT  
LOUT-  
HP/LINE  
ROUT-  
9
16  
15  
1
2
10  
3
4
MUTE IN  
GND/HS  
SE/BTL  
11  
12  
14  
13  
RC  
4.7Ω  
5
GND/HS  
PHONOJACK  
CC  
0.1µF  
Logical Truth Table  
INPUTS  
OUTPUT  
AMPLIFIER STATES  
Input L/R Out+ L Out- R Out- Mode  
HP-IN Mute In Shutdown Mute Out  
SE/BTL HP/LINE  
X
Low  
High  
X
X
X
X
X
X
X
----  
High  
----  
----  
X
X
X
X
----  
VDD/2  
VDD/2  
VDD/2  
BTL  
----  
----  
VDD/2  
----  
Mute  
Mute  
Mute  
Mute  
High  
High  
High  
High  
High  
High  
VDD/2  
----  
X
----  
High  
----  
VDD/2  
BTL  
----  
BTL  
Low  
Low  
High  
High  
X
Low  
High  
Low  
High  
Low  
High  
Low  
Low  
Low  
Low  
High  
High  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
L/R Line  
L/R HP  
L/R Line  
L/R HP  
L/R Line  
L/R HP  
BTL  
BTL  
Output  
BTL  
Output  
BTL  
Output  
BTL  
Output  
SE  
Output  
Output  
----  
----  
----  
----  
----  
----  
SE  
Output  
SE  
SE  
Output  
SE  
VDD/2  
VDD/2  
HP-IN  
HP-IN  
Output  
SE  
X
Output  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.6  
Aug 04, 2005  
20  
Global Mixed-mode Technology Inc.  
G1421  
Application Information  
Input MUX Operation  
There are two input signal paths – HP & Line. With the  
prompt setting, G1421 allows the setting of different  
gains for BTL and SE modes. Generally, speakers  
typically require approximately a factor of 10 more  
gain for similar volume listening levels as compared  
with headphones.  
-3 dB  
SE Gain(HP)  
BTL Gain(LINE)  
To achieve headphones and speakers listening parity,  
(RF(LINE/RI(LINE)) is suggested to be 5 times of (RF(HP)  
=
-(RF(HP)/RI(HP)  
)
fc  
=
-2(RF(LINE)/RI(LINE)  
)
Figure B  
/
RI(HP)). The ratio of (RF(HP)/RI(HP)) can be determined by  
the applications. When the optimum distortion per-  
formance into the headphones (clear sound) is impor-  
tant, gain of –1 ((RF(HP) / RI(HP)) = 1) is suggested.  
Bridged-Tied Load Mode Operation  
G1421 has two linear amplifiers to drive both ends of  
the speaker load in Bridged-Tied Load (BTL) mode  
operation. Figure C shows the BTL configuration. The  
differential driving to the speaker load means that  
when one side is slewing up, the other side is slewing  
down, and vice versa. This configuration in effect will  
double the voltage swing on the load as compared to a  
ground reference load. In BTL mode, the peak-to-peak  
voltage VO(PP) on the load will be two times than a  
ground reference configuration. The voltage on the  
load is doubled, this will also yield 4 times output  
power on the load at the same power supply rail and  
loading. Another benefit of using differential driving  
configuration is that BTL operation cancels the dc off-  
sets, which eliminates the dc coupling capacitor that is  
needed to cancelled dc offsets in the ground reference  
configuration. Low-frequency performance is then lim-  
ited only by the input network and speaker responses.  
Cost and PCB space can be minimized by eliminating  
the dc coupling capacitors.  
Single Ended Mode Operation  
G1421 can drive clean, low distortion SE output power  
into headphone loads (generally 16Ω or 32Ω) as in  
Figure A. Please refer to Electrical Characteristics to  
see the performances. A coupling capacitor is needed  
to block the dc offset voltage, allowing pure ac signals  
into headphone loads. Choosing the coupling capaci-  
tor will also determine the 3 dB point of the high-pass  
filter network, as Figure B.  
fC=1/(2πRLCC)  
For example, a 68uF capacitor with 32Ω headphone  
load would attenuate low frequency performance be-  
low 73Hz. So the coupling capacitor should be well  
chosen to achieve the excellent bass performance  
when in SE mode operation.  
VDD  
VDD  
Vo(PP)  
Vo(PP)  
RL  
2xVo(PP)  
-Vo(PP)  
CC  
VDD  
Vo(PP)  
RL  
Figure A  
Figure C  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.6  
Aug 04, 2005  
21  
Global Mixed-mode Technology Inc.  
G1421  
HP-IN Mode Operation  
MUTE and SHUTDOWN Mode Operations  
G1421 implements the mute and shutdown mode  
operations to reduce supply current, IDD, to the ab-  
solute minimum level during nonuse periods for  
battery-power conservation. When the shutdown  
pin (pin 8) is pulled high, all linear amplifiers will be  
deactivated to mute the amplifier outputs. And  
G1421 enters an extra low current consumption  
state, IDD is smaller than 5µA. If pulling mute-in pin  
(pin 11) high, it will force the activated linear ampli-  
fier to supply the VDD/2 dc voltage on the output to  
mute the AC performance. In mute mode operation,  
the current consumption will be a little different be-  
tween BTL, SE and HP-IN modes. (SE < HP-IN <  
BTL) Typically, the supply current is about 2.5mA in  
BTL mute operation. Shutdown and Mute-In pins  
should never be left unconnected, this floating con-  
dition will cause the amplifier operations unpredict-  
able.  
An internal weakly pull-up circuit is connected to  
HP-IN control pin (pin 17). When this pin is left un-  
connected or tied to VDD, HP-IN mode is activated,  
ignoring SE/ BTL setting. In normal SE/ BTL mode  
operations, this HP-IN pin should be tied to GND. In  
HP-IN mode, the linear amplifiers of LOUT+ (pin 3)  
/ROUT+ (pin 22) are still alive, the linear amplifier of  
ROUT- (pin 15) is deactivated, the linear amplifier of  
LOUT- (pin 10) supplies VDD/2 on this pin to cancel  
the dc offsets. (Please refer to Logical Truth Table and  
No DC CAP Application Circuit for detailed operation.)  
If connected VDD/2 on the LOUT- (pin 10) to the  
phone jacket, the dc offset can be eliminated without  
using coupling capacitors in headphone applications.  
By using HP-IN mode, cost and PCB space can be  
further minimized than traditional headphone applica-  
tions with coupling capacitors. The HP-IN configura-  
tion is shown on Figure D.  
Maximum Power Clampping Function  
G1421 supports the maximum output power clamping  
function to avoid damaging the speaker when the am-  
plifier output a power beyond the speaker tolerance.  
The Vol pin (pin 23) is weakly pull-low internally. If  
inputting a non-zero voltage (low boundary voltage) to  
the Vol pin, G1421 will generate a high boundary  
voltage which the difference between the VDD/2 and  
the high boundary voltage is the same as the differ-  
ence between the VDD/2 and the low boundary volt-  
age. ( i.e. VOH – VDD/2 = VDD/2 – VOL ) Then the out-  
puts of linear amplifiers will be effectively limited be-  
tween the high/low boundary voltage, the maximum  
output power is clamped. By setting the voltage of Vol,  
the maximum output power can be well controlled.  
When the maximum power clamping function is not  
used, the Vol pin should be floated or tied to GND.  
VDD  
Vo(PP)+VDD/2  
RL  
Vo(PP)  
VDD/2  
VDD/2  
Figure D  
Short circuit protection is implemented on LOUT-  
(pin10) to avoid the short-circuit damage caused by  
the sleeve of the phone jack connected to ground ac-  
cidentally during the module assembling. When  
short-circuit is detected, the linear amplifier of LOUT-  
(pin 10) will turn off for a period. After this period, it  
activates again. If the short circuit condition still exists,  
it will be turned off again. With this protection, the  
damage caused by larger dc short circuit current (from  
VDD/2 to GND) can be avoided.  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.6  
Aug 04, 2005  
22  
Global Mixed-mode Technology Inc.  
G1421  
Optimizing DEPOP Operation  
Junction Temperature Measurement  
Circuitry has been implemented in G1421 to mini-  
mize the amount of popping heard at power-up and  
when coming out of shutdown mode. Popping oc-  
curs whenever a voltage step is applied to the  
speaker and making the differential voltage gener-  
ated at the two ends of the speaker. To avoid the  
popping heard, the bypass capacitor should be  
chosen promptly, 1/(CBx100kΩ) 1/(CI*(RI+RF)).  
Where 100kΩ is the output impedance of the  
mid-rail generator, CB is the mid-rail bypass ca-  
pacitor, CI is the input coupling capacitor, RI is the  
input impedance, RF is the gain setting impedance  
which is on the feedback path. CB is the most im-  
portant capacitor. Besides it is used to reduce the  
popping, CB can also determine the rate at which  
the amplifier starts up during startup or recovery  
from shutdown mode.  
Characterizing a PCB layout with respect to thermal  
impedance is very difficult, as it is usually impossi-  
ble to know the junction temperature of the IC.  
G1421 TJ (pin 2) sources a current inversely pro-  
portional to the junction temperature. Typically TJ  
sources–120µA for a 5V supply at 25°C. And the  
slope is approximately 0.22µA/°C. As the resistors  
have a tolerance of ±20%, these values should be  
calibrated on each device. When the temperature  
sensing function is not used, TJ pin can be left  
floating or tied to VDD to reduce the current con-  
sumption.  
Temperature sensing circuit is shown on Figure F.  
VDD  
R
De-popping circuitry of G1421 is shown on Figure E.  
The PNP transistor limits the voltage drop across  
the 50kΩ by slewing the internal node slowly when  
power is applied. At start-up, the voltage at  
BYPASS capacitor is 0. The PNP is ON to pull the  
mid-point of the bias circuit down. So the capacitor  
sees a lower effective voltage, and thus the charg-  
ing is slower. This appears as a linear ramp (while  
the PNP transistor is conducting), followed by the  
expected exponential ramp of an R-C circuit.  
R
5R  
TJ  
Figure F  
VDD  
100 kΩ  
50 kΩ  
Bypass  
100 kΩ  
Figure E  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.6  
Aug 04, 2005  
23  
Global Mixed-mode Technology Inc.  
G1421  
Package Information  
D
24  
L
D1  
E
E1  
E2  
1
Note 5  
A2  
A1  
e
b
TSSOP-24(FD) Package  
NOTE:  
1. Package body sizes exclude mold flash protrusions or gate burrs  
2. Tolerance ±0.1mm unless otherwise specified  
3. Coplanarity : 0.1mm  
4. Controlling dimension is millimeter. Converted inch dimensions are not necessarily exact.  
5. Die pad exposure size is according to lead frame design.  
6. Follow JEDEC MO-153  
DIMENSION IN MM  
DIMENSION IN INCH  
SYMBOLS  
MIN  
-----  
0.00  
0.80  
0.19  
0.20  
7.7  
NOM  
-----  
MAX  
1.20  
0.15  
1.05  
0.30  
-----  
MIN  
-----  
NOM  
-----  
MAX  
0.047  
0.006  
0.041  
0.012  
-----  
A
A1  
A2  
b
-----  
0.000  
0.031  
0.007  
0.008  
0.303  
0.173  
-----  
1.00  
0.039  
-----  
-----  
C
-----  
-----  
D
7.8  
7.9  
0.307  
-----  
0.311  
0.193  
D1  
E
4.4  
-----  
4.9  
6.40 BSC  
4.40  
0.252 BSC  
0.173  
-----  
E1  
E2  
e
4.30  
2.7  
4.50  
3.2  
0.169  
0.106  
0.177  
0.126  
-----  
0.65 BSC  
0.60  
0.026 BSC  
0.024  
-----  
L
0.45  
0º  
0.75  
8º  
0.018  
0º  
0.030  
8º  
θ
-----  
Taping Specification  
PACKAGE  
Q’TY/REEL  
TSSOP-24 (FD)  
2,500 ea  
Feed Direction  
Typical TSSOP Package Orientation  
GMT Inc. does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and GMT Inc. reserves the right at any time without notice to change said circuitry and specifications.  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.6  
Aug 04, 2005  
24  

相关型号:

G1421F

2W Stereo Audio Amplifier with No Headphone Coupling Capacitor Function
GMT

G1422

2W Stereo Audio Amplifier
GMT

G1422F2U

2W Stereo Audio Amplifier
GMT

G1422F2UF

2W Stereo Audio Amplifier
GMT

G1423

Heyco Rubber Grommets
ETC

G1426

2.2W Stereo Audio Amplifier
GMT

G1426D5T

2.2W Stereo Audio Amplifier
GMT

G1426D5U

2.2W Stereo Audio Amplifier
GMT

G1426D5UF

Audio Amplifier, 1 Func, PDSO20
GMT

G1426F2T

2.2W Stereo Audio Amplifier
GMT

G1426F2U

2.2W Stereo Audio Amplifier
GMT

G1426F2UF

暂无描述
GMT