MRF6VP41KHSR6 [FREESCALE]

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs; 射频功率场效应晶体管N沟道增强模式横向的MOSFET
MRF6VP41KHSR6
型号: MRF6VP41KHSR6
厂家: Freescale    Freescale
描述:

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs
射频功率场效应晶体管N沟道增强模式横向的MOSFET

晶体 晶体管 功率场效应晶体管 射频
文件: 总13页 (文件大小:511K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MRF6VP41KH  
Rev. 0, 1/2008  
Freescale Semiconductor  
Technical Data  
RF Power Field Effect Transistors  
N-Channel Enhancement-Mode Lateral MOSFETs  
MRF6VP41KHR6  
MRF6VP41KHSR6  
Designed primarily for pulsed wideband applications with frequencies up to  
450 MHz. Devices are unmatched and are suitable for use in industrial,  
medical and scientific applications.  
Typical Pulsed Performance at 450 MHz: VDD = 50 Volts, IDQ = 150 mA,  
P
out = 1000 Watts Peak, Pulse Width = 100 μsec, Duty Cycle = 20%  
10-450 MHz, 1000 W, 50 V  
LATERAL N-CHANNEL  
BROADBAND  
Power Gain — 20 dB  
Drain Efficiency — 64%  
Capable of Handling 10:1 VSWR, @ 50 Vdc, 450 MHz, 1000 Watts Peak  
RF POWER MOSFETs  
Power  
Features  
Qualified Up to a Maximum of 50 VDD Operation  
Integrated ESD Protection  
Excellent Thermal Stability  
Designed for Push-Pull Operation  
Greater Negative Gate-Source Voltage Range for Improved Class C  
Operation  
RoHS Compliant  
In Tape and Reel. R6 Suffix = 150 Units per 56 mm, 13 inch Reel.  
CASE 375D-05, STYLE 1  
NI-1230  
MRF6VP41KHR6  
CASE 375E-04, STYLE 1  
NI-1230S  
MRF6VP41KHSR6  
PARTS ARE PUSH-PULL  
RF /V  
RF /V  
outA DSA  
3
4
1
2
inA GSA  
RF /V  
inB GSB  
RF /V  
outB DSB  
(Top View)  
Figure 1. Pin Connections  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
-0.5, +110  
-6, +10  
- 65 to +150  
150  
Unit  
Drain-Source Voltage  
V
Vdc  
Vdc  
°C  
DSS  
Gate-Source Voltage  
V
GS  
Storage Temperature Range  
Case Operating Temperature  
Operating Junction Temperature  
T
stg  
T
°C  
C
T
200  
°C  
J
© Freescale Semiconductor, Inc., 2008. All rights reserved.  
Table 2. Thermal Characteristics  
(1,2)  
Characteristic  
Symbol  
Value  
Unit  
Thermal Resistance, Junction to Case  
Case Temperature 80°C, 1000 W Pulsed, 100 μsec Pulse Width, 20% Duty Cycle  
R
θ
JC  
0.03  
°C/W  
Table 3. ESD Protection Characteristics  
Test Methodology  
Class  
Human Body Model (per JESD22-A114)  
Machine Model (per EIA/JESD22-A115)  
Charge Device Model (per JESD22-C101)  
2 (Minimum)  
A (Minimum)  
IV (Minimum)  
Table 4. Electrical Characteristics (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(3)  
Off Characteristics  
Gate-Source Leakage Current  
(V = 5 Vdc, V = 0 Vdc)  
I
110  
10  
μAdc  
Vdc  
GSS  
GS  
DS  
Drain-Source Breakdown Voltage  
(I = 300 mA, V = 0 Vdc)  
V
(BR)DSS  
D
GS  
Zero Gate Voltage Drain Leakage Current  
(V = 50 Vdc, V = 0 Vdc)  
I
I
100  
5
μAdc  
mA  
DSS  
DSS  
DS  
GS  
Zero Gate Voltage Drain Leakage Current  
(V = 100 Vdc, V = 0 Vdc)  
DS  
GS  
On Characteristics  
(3)  
Gate Threshold Voltage  
(V = 10 Vdc, I = 1600 μAdc)  
V
1
1.68  
2.2  
3
Vdc  
Vdc  
Vdc  
GS(th)  
GS(Q)  
DS(on)  
DS  
D
(4)  
Gate Quiescent Voltage  
(V = 50 Vdc, I = 150 mAdc, Measured in Functional Test)  
V
1.5  
3.5  
DD  
D
(3)  
Drain-Source On-Voltage  
(V = 10 Vdc, I = 4 Adc)  
V
0.28  
GS  
D
(3)  
Dynamic Characteristics  
Reverse Transfer Capacitance  
(V = 50 Vdc 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
3.3  
147  
506  
pF  
pF  
pF  
rss  
GS  
Output Capacitance  
(V = 50 Vdc 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
oss  
GS  
Input Capacitance  
C
iss  
(V = 50 Vdc, V = 0 Vdc 30 mV(rms)ac @ 1 MHz)  
DS  
GS  
(4)  
Functional Tests  
(In Freescale Test Fixture, 50 ohm system) V = 50 Vdc, I = 150 mA, P = 1000 W Peak (200 W Avg.), f = 450 MHz,  
DD DQ out  
100 μsec Pulse Width, 20% Duty Cycle  
Power Gain  
G
19  
60  
20  
64  
22  
-9  
dB  
%
ps  
Drain Efficiency  
η
D
Input Return Loss  
IRL  
-18  
dB  
1. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.  
Select Documentation/Application Notes - AN1955.  
3. Each side of device measured separately.  
4. Measurement made with device in push-pull configuration.  
MRF6VP41KHR6 MRF6VP41KHSR6  
RF Device Data  
Freescale Semiconductor  
2
B1  
V
SUPPLY  
+
+
V
BIAS  
+
L3  
C25 C26 C27 C28 C29 C30  
C1  
C2  
C3  
C4  
L1  
Z14  
COAX3  
COAX1  
C22  
C23  
Z12 Z16 Z18 Z20 Z22  
Z8  
Z2  
Z3  
Z4 Z6  
Z10  
RF  
OUTPUT  
RF  
INPUT  
C5  
Z1  
Z24  
DUT  
C15 C16 C17 C18 C19  
C24  
C7 C8  
Z5 Z7  
C9  
C10  
Z11  
C6  
Z13  
Z17 Z19 Z21 Z23  
Z9  
L2  
C21  
C20  
Z15  
L4  
COAX2  
COAX4  
B2  
V
SUPPLY  
V
BIAS  
+
+
+
C31 C32 C33 C34 C35 C36  
C11  
C12 C13 C14  
Z1  
0.366x 0.082Microstrip  
0.170x 0.100Microstrip  
0.220x 0.451Microstrip  
0.117x 0.726Microstrip  
0.792x 0.058Microstrip  
0.316x 0.726Microstrip  
0.262x 0.507Microstrip  
Z14*, Z15*  
Z16, Z17  
Z18, Z19  
Z20, Z21, Z22, Z23  
Z24  
0.764x 0.150Microstrip  
0.290x 0.430Microstrip  
0.100x 0.430Microstrip  
0.080x 0.430Microstrip  
0.257x 0.215Microstrip  
Z2*, Z3*  
Z4*, Z5*  
Z6, Z7  
Z8*, Z9*  
Z10, Z11  
Z12, Z13  
PCB  
Arlon CuClad 250GX-0300-55-22, 0.030, ε = 2.55  
r
* Line length includes microstrip bends  
Figure 2. MRF6VP41KHR6 Test Circuit Schematic  
Table 5. MRF6VP41KHR6 Test Circuit Component Designations and Values  
Part  
Description  
47 Ω, 100 MHz Short Ferrite Beads  
47 μF, 50 V Electrolytic Capacitors  
0.1 μF Chip Capacitors  
Part Number  
Manufacturer  
Fair-Rite  
B1, B2  
2743019447  
C1, C11  
476KXM063M  
Illinois  
C2, C12, C28, C34  
CDR33BX104AKYS  
C1812C224K5RAC  
C1825C225J5RAC  
ATC100B270JT500XT  
27291SL  
Kemet  
C3, C13, C27, C33  
220 nF, 50 V Chip Capacitors  
2.2 μF, 50 V Chip Capacitors  
27 pF Chip Capacitors  
Kemet  
C4, C14  
C5, C6, C8, C15  
C7, C10  
C9  
Kemet  
ATC  
0.8-8.0 pF Variable Capacitors  
33 pF Chip Capacitor  
Johanson Components  
ATC100B330JT500XT  
ATC100B120JT500XT  
ATC100B100JT500XT  
ATC100B9R1CT500XT  
ATC100B8R2CT500XT  
ATC100B241JT200XT  
ATC  
ATC  
ATC  
ATC  
ATC  
ATC  
C16  
12 pF Chip Capacitor  
C17  
10 pF Chip Capacitor  
C18  
9.1 pF Chip Capacitor  
C19  
8.2 pF Chip Capacitor  
C20, C21, C22, C23,  
C25, C32  
240 pF Chip Capacitors  
C24  
5.6 pF Chip Capacitor  
ATC100B5R6CT500XT  
2225X7R225KT3AB  
EMVY630GTR331MMH0S  
UT-141C-25  
ATC  
C26, C31  
C29, C30, C35, C36  
Coax1, 2, 3. 4  
L1, L2  
2.2 μF, 100 V Chip Capacitors  
330 μF, 63 V Electrolytic Capacitors  
25 Ω Semi Rigid Coax, 2.2Long  
2.5 nH, 1 Turn Inductors  
ATC  
Multicomp  
Micro-Coax  
CoilCraft  
Coilcraft  
A01TKLC  
L3, L4  
43 nH, 10 Turn Inductors  
B10TJLC  
MRF6VP41KHR6 MRF6VP41KHSR6  
RF Device Data  
Freescale Semiconductor  
3
C29  
C27  
C1  
MRF6VP41KH  
Rev. 1  
C2 C3  
B1  
C30  
C28  
C4  
C25  
C26  
L1  
COAX1  
COAX3  
L3  
C22  
C23  
C19  
C18  
C7  
C10  
C5  
C8 C9  
C16  
C15  
C17  
C6  
C20  
C21  
C24  
L4  
COAX2  
COAX4  
L2  
C32  
C31  
C35  
C36  
C33  
B2  
C14  
C12  
C11  
C13  
C34  
Figure 3. MRF6VP41KHR6 Test Circuit Component Layout  
MRF6VP41KHR6 MRF6VP41KHSR6  
RF Device Data  
Freescale Semiconductor  
4
TYPICAL CHARACTERISTICS  
1000  
100  
10  
100  
C
iss  
T = 200°C  
J
C
oss  
T = 175°C  
J
T = 150°C  
J
Measured with 30 mV(rms)ac @ 1 MHz  
= 0 Vdc  
10  
V
GS  
C
rss  
T
= 25°C  
C
1
1
0
10  
20  
30  
40  
50  
1
10  
V , DRAIN−SOURCE VOLTAGE (VOLTS)  
DS  
100  
200  
V
, DRAIN−SOURCE VOLTAGE (VOLTS)  
DS  
Figure 4. Capacitance versus Drain-Source Voltage  
Figure 5. DC Safe Operating Area  
21  
80  
70  
60  
50  
40  
30  
20  
10  
0
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
Ideal  
P3dB = 60.70 dBm (1174.89 W)  
V
= 50 Vdc  
= 150 mA  
DD  
20  
19  
18  
17  
16  
15  
14  
13  
I
DQ  
f = 450 MHz  
G
ps  
P1dB = 60.33 dBm (1078.94 W)  
Pulse Width = 100 μsec  
Duty Cycle = 20%  
Actual  
η
D
V
= 50 Vdc  
= 150 mA  
DD  
I
DQ  
f = 450 MHz  
Pulse Width = 100 μsec  
Duty Cycle = 20%  
1
10  
100  
1000 2000  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
P
, OUTPUT POWER (WATTS) PULSED  
out  
P , INPUT POWER (dBm) PULSED  
in  
Figure 6. Pulsed Power Gain and Drain Efficiency  
versus Output Power  
Figure 7. Pulsed Output Power versus  
Input Power  
23  
22  
22  
20  
18  
I
= 6000 mA  
DQ  
3600 mA  
21  
20  
19  
18  
17  
1500 mA  
50 V  
45 V  
750 mA  
375 mA  
16  
14  
40 V  
35 V  
V
= 30 V  
DD  
V
= 50 Vdc  
f = 450 MHz  
DD  
I
= 150 Vdc, f = 450 MHz  
DQ  
150 mA  
Pulse Width = 100 μsec  
Duty Cycle = 20%  
Pulse Width = 100 μsec  
Duty Cycle = 20%  
12  
10  
100  
, OUTPUT POWER (WATTS) PULSED  
1000  
2000  
0
200  
400  
600  
800  
1000  
1200  
1400  
P
P
, OUTPUT POWER (WATTS) PULSED  
out  
out  
Figure 9. Pulsed Power Gain versus  
Output Power  
Figure 8. Pulsed Power Gain versus  
Output Power  
MRF6VP41KHR6 MRF6VP41KHSR6  
RF Device Data  
Freescale Semiconductor  
5
TYPICAL CHARACTERISTICS  
65  
60  
55  
50  
45  
40  
35  
22  
100  
V
= 50 Vdc  
= 150 mA  
DD  
T
= −30_C  
21  
90  
80  
70  
60  
50  
C
T
= −30_C  
85_C  
C
I
DQ  
20 f = 450 MHz  
25_C  
Pulse Width = 100 μsec  
Duty Cycle = 20%  
19  
18  
17  
16  
15  
14  
85_C  
25_C  
G
ps  
40  
30  
20  
10  
0
V
= 50 Vdc  
= 150 mA  
DD  
η
D
I
DQ  
f = 450 MHz  
Pulse Width = 100 μsec  
Duty Cycle = 20%  
13  
12  
20  
25  
30  
35  
40  
45  
1
10  
100  
1000 2000  
P , INPUT POWER (dBm) PULSED  
in  
P
, OUTPUT POWER (WATTS) PULSED  
out  
Figure 10. Pulsed Output Power versus  
Input Power  
Figure 11. Pulsed Power Gain and Drain Efficiency  
versus Output Power  
7
10  
6
10  
5
10  
4
10  
90  
110  
130  
150  
170  
190  
210  
230  
250  
T , JUNCTION TEMPERATURE (°C)  
J
This above graph displays calculated MTTF in hours when the device  
is operated at V = 50 Vdc, P = 1000 W Peak, Pulse Width = 100 μsec,  
DD  
out  
Duty Cycle = 20%, and η = 64%.  
D
MTTF calculator available at http:/www.freescale.com/rf. Select  
Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
Figure 12. MTTF versus Junction Temperature  
MRF6VP41KHR6 MRF6VP41KHSR6  
RF Device Data  
Freescale Semiconductor  
6
Z = 2 Ω  
o
f = 450 MHz  
f = 450 MHz  
Z
source  
Z
load  
V
= 50 Vdc, I = 150 mA, P = 1000 W Peak  
DQ out  
DD  
f
Z
Z
load  
W
source  
W
MHz  
450  
0.86 + j1.06  
1.58 + j1.22  
Z
Z
=
Test circuit impedance as measured from  
gate to ground.  
source  
load  
=
Test circuit impedance as measured  
from drain to ground.  
Output  
Matching  
Network  
Device  
Under  
Test  
Input  
Matching  
Network  
Z
Z
source  
load  
Figure 13. Series Equivalent Source and Load Impedance  
MRF6VP41KHR6 MRF6VP41KHSR6  
RF Device Data  
Freescale Semiconductor  
7
PACKAGE DIMENSIONS  
MRF6VP41KHR6 MRF6VP41KHSR6  
RF Device Data  
Freescale Semiconductor  
8
MRF6VP41KHR6 MRF6VP41KHSR6  
RF Device Data  
Freescale Semiconductor  
9
MRF6VP41KHR6 MRF6VP41KHSR6  
RF Device Data  
Freescale Semiconductor  
10  
MRF6VP41KHR6 MRF6VP41KHSR6  
RF Device Data  
Freescale Semiconductor  
11  
PRODUCT DOCUMENTATION  
Refer to the following documents to aid your design process.  
Application Notes  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
Engineering Bulletins  
EB212: Using Data Sheet Impedances for RF LDMOS Devices  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
0
Jan. 2008  
Initial Release of Data Sheet  
MRF6VP41KHR6 MRF6VP41KHSR6  
RF Device Data  
Freescale Semiconductor  
12  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Semiconductor was negligent regarding the design or manufacture of the part.  
Denver, Colorado 80217  
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
Freescale Semiconductor, Inc. 2008. All rights reserved.  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MRF6VP41KH  
Rev. 0,1/2008

相关型号:

MRF750

NPN SILICON RF TRANSISTOR
ASI

MRF752

NPN SILICON RF TRANSISTOR
ASI

MRF754

UHF BAND, Si, NPN, RF POWER TRANSISTOR
MOTOROLA

MRF7P20040HR3

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE

MRF7P20040HR3_10

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs
FREESCALE

MRF7P20040HR5

TRANSISTOR,MOSFET,N-CHANNEL,65V V(BR)DSS,SOT-262A2
NXP

MRF7P20040HSR3

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE

MRF7P20040HSR3

Single W-CDMA Lateral N-Channel RF Power MOSFET, 2010-2025 MHz, 10 W Avg., 32 V
NXP

MRF7P20040HSR5

TRANSISTOR,MOSFET,N-CHANNEL,65V V(BR)DSS,SOT-262A2VAR
NXP

MRF7S15100H

N-Channel Enhancement-Mode Lateral MOSFET
NXP

MRF7S15100HR3

RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs
FREESCALE

MRF7S15100HR3

N-Channel Enhancement-Mode Lateral MOSFET
NXP