MC9S08FL16CBM [FREESCALE]

MC9S08FL16CBM;
MC9S08FL16CBM
型号: MC9S08FL16CBM
厂家: Freescale    Freescale
描述:

MC9S08FL16CBM

外围集成电路 光电二极管 微控制器 PC 时钟
文件: 总35页 (文件大小:1175K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
深圳市南天星电子科技有限公司  
专业代理飞思卡尔  
(Freescale)  
飞思卡尔主要产品  
飞思卡尔产品主要应用  
8 位微控制器  
汽车电子  
16 位微控制器  
数字信号处理器与控制器  
i.MX 应用处理器  
基于 ARM®技术的 Kinetis MCU  
32/64 位微控制器与处理器  
模拟与电源管理器件  
射频器件(LDMOS,收发器)  
传感器(压力,加速度,磁场,  
触摸,电池)  
数据连接  
消费电子  
工业控制  
医疗保健  
电机控制  
网络  
智能能源  
深圳市南天星电子科技有限公司  
电话:075583040796  
传真:075583040790  
邮箱:tiger@soustar.com.cn  
网址:www.soustar.com.cn  
地址:深圳市福田区福明路雷圳大厦 2306 室  
Freescale Semiconductor  
Data Sheet: Product Preview  
Document Number: MC9S08FL16  
Rev. 0 Draft B, 10/2008  
MC9S08FL16  
MC9S08FL16 Series  
Covers: MC9S08FL16 and  
MC9S08FL8  
32-Pin SDIP  
32-Pin LQFP  
• Illegal address detection with reset  
• Flash block protection  
Features:  
8-Bit S08 Central Processor Unit (CPU)  
Development Support  
• Up to 20 MHz CPU at 4.5 V to 5.5 V across  
• Single-wire background debug interface  
temperature range of 0 °C to 85 °C  
• Breakpoint capability to allow single breakpoint  
setting during in-circuit debugging (plus two more  
breakpoints). On-chip in-circuit emulator (ICE)  
debug module containing two comparators and  
nine trigger modes.  
• HC08 instruction set with added BGND instruction  
• Support for up to 32 interrupt/reset sources  
On-Chip Memory  
• Up to 16 KB flash read/program/erase over full  
Peripherals  
operating voltage and temperature  
• Up to 1024-byte random-access memory (RAM)  
• Security circuitry to prevent unauthorized access  
to RAM and flash contents  
• IPC — Interrupt Priority Controller to provide  
hardware based nested interrupt mechanism  
ADC — 12-channel, 8-bit resolution; 2.5 μs  
conversion time; automatic compare function;  
1.7 mV/°C temperature sensor; internal bandgap  
reference channel; operation in stop; optional  
hardware trigger; fully functional from 4.5V to  
5.5 V  
TPM — One 4-channel and one 2-channel  
timer/pulse-width modulators (TPM) modules;  
selectable input capture, output compare, or  
buffered edge- or center-aligned PWM on each  
channel  
Power-Saving Modes  
Two low power stop modes; reduced power wait  
mode  
• Allows clocks to remain enabled to specific  
peripherals in stop3 mode  
Clock Source Options  
• Oscillator (XOSC) — Loop-control Pierce  
oscillator; Crystal or ceramic resonator range of  
31.25 kHz to 39.0625 kHz or 16 MHz to 20 MHz  
• Internal Clock Source (ICS) — Internal clock  
source module containing a  
MTIM16 — One 16-bit modulo timer with optional  
prescaler  
• SCI — One serial communications interface  
frequency-locked-loop (FLL) controlled by internal  
or external reference; precision trimming of  
internal reference allows 0.2% resolution and 2%  
deviation over temperature and voltage; supports  
bus frequencies up to 10 MHz  
module with optional 13-bit break; LIN extensions  
Input/Output  
• 30 GPIOs including 1 output only pin and 1 input  
only pin  
System Protection  
Package Options  
• 32-pin SDIP  
• Watchdog computer operating properly (COP)  
reset with option to run from dedicated 1 kHz  
internal clock source or bus clock  
• 32-pin LQFP  
• Low-voltage detection with reset or interrupt;  
selectable trip points  
• Illegal opcode detection with reset  
This document contains information on a product under development. Freescale reserves the  
right to change or discontinue this product without notice.  
© Freescale Semiconductor, Inc., 2008. All rights reserved.  
Table of Contents  
1
2
3
4
5
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
System Clock Distribution. . . . . . . . . . . . . . . . . . . . . . . 4  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . 10  
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
5.2 Parameter Classification . . . . . . . . . . . . . . . . . . 10  
5.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . 10  
5.4 Thermal Characteristics . . . . . . . . . . . . . . . . . . . 11  
5.5 ESD Protection and Latch-Up Immunity . . . . . . 12  
5.6 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . 12  
5.7 Supply Current Characteristics . . . . . . . . . . . . . 16  
5.8 External Oscillator (XOSC) Characteristics . . . . 17  
5.9 Internal Clock Source (ICS) Characteristics. . . . 18  
5.10 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . 19  
5.10.1Control Timing . . . . . . . . . . . . . . . . . . . . . 20  
5.10.2TPM Module Timing . . . . . . . . . . . . . . . . 21  
5.11 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . 22  
5.12 Flash Specifications. . . . . . . . . . . . . . . . . . . . . . 24  
5.13 EMC Performance . . . . . . . . . . . . . . . . . . . . . . . 25  
5.13.1Conducted Transient Susceptibility . . . . . 25  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . 27  
7.1 Mechanical Drawings. . . . . . . . . . . . . . . . . . . . . 27  
6
7
Revision History  
To provide the most up-to-date information, the revision of our documents on the World Wide Web will be the most current.  
Your printed copy may be an earlier revision. To verify you have the latest information available, refer to:  
http://freescale.com/  
The following revision history table summarizes changes contained in this document.  
Rev  
Date  
Description of Changes  
Initial created by Kenny and edited by Ping.  
Added information of MTIM16, IPC, and 4 ADC channels  
0
1
Sep 11, 2008  
Oct 17, 2008  
Related Documentation  
Find the most current versions of all documents at: http://www.freescale.com  
Reference Manual (MC9S08FL16RM)  
Contains extensive product information including modes of operation, memory,  
resets and interrupts, register definition, port pins, CPU, and all module  
information.  
MC9S08FL16 Series Data Sheet, Rev. 0 Draft B  
2
Freescale Semiconductor  
MCU Block Diagram  
1
MCU Block Diagram  
The block diagram, Figure 1, shows the structure of MC9S08FL16 series MCU.  
PTA0/ADP0  
16-bit Modulo Timer  
TCLK  
HCS08 CORE  
PTA1/ADP1  
(MTIM16)  
PTA2/ADP2  
BDC  
CPU  
PTA3/ADP3  
2-CH TIMER/PWM  
TPM2CH[1:0]  
MODULE (TPM2)  
PTA4/BKGD/MS  
PTA5/IRQ/TCLK/RESET  
PTA6/TPM2CH0  
PTA7/TPM2CH1  
HCS08 SYSTEM CONTROL  
RESETS AND INTERRUPTS  
MODES OF OPERATION  
POWER MANAGEMENT  
RESET  
IRQ  
COP  
IRQ  
LVD  
Interrupt Priority Controller  
(IPC)  
PTB0/RxD/ADP4  
PTB1/TxD/ADP5  
PTB2/ADP6  
ON-CHIP ICE AND  
DEBUG MODUE (DBG)  
TxD  
RxD  
Serial Communications  
Interface (SCI)  
PTB3/ADP7  
USER FLASH  
PTB4/TPM1CH0  
PTB5/TPM1CH1  
PTB6/XTAL  
MC9S08FL16 — 16,384 BYTES  
MC9S08FL8 — 8,192 BYTES  
4-CH TIMER/PWM  
TPM2CH[3:0]  
MODULE (TPM1)  
USER RAM  
MC9S08FL16 — 1,024 BYTES  
MC9S08FL8 — 768 BYTES  
PTB7/EXTAL  
PTC0/ADC8  
PTC1/ADP9  
PTC2/ADP10  
PTC3/ADP11  
PTC4  
20-MHz INTERNAL CLOCK  
SOURCE (ICS)  
EXTAL  
XTAL  
External Oscillator Source  
(XOSC)  
V
V
PTC5  
DD  
SS  
VOLTAGE REGULATOR  
PTC6  
PTC7  
V
V
V
V
REFH  
REFL  
DDAD  
SSAD  
12-CH 8-BIT  
ANALOG-TO-DIGITAL  
CONVERTER(ADC)  
ADP[11:0]  
PTD0  
PTD1  
PTD2/TPM1CH2  
PTD3/TPM1CH3  
PTD4  
NOTE  
1. PTA4 is output only when used as port pin.  
2. PTA5 is input only when used as port pin.  
PTD5  
Figure 1. MC9S08FL16 Series Block Diagram  
MC9S08FL16 Series Data Sheet, Rev. 0 Draft B  
Freescale Semiconductor  
3
System Clock Distribution  
2
System Clock Distribution  
MC9S08FL16 series use ICS module as clock sources. The ICS module can use internal or external clock  
source as reference to provide up to 20 MHz CPU clock. The output of ICS module includes,  
ICSERCLK — ICS external clock reference provides EXTAL signal to ADC as external reference  
clock.  
ICSFFCLK — ICS fixed frequency clock reference (around 32.768 kHz) provides fixed lock  
signal to TPMs.  
ICSOUT — ICS CPU clock provides double of bus clock which is basic clock reference of  
peripherals.  
ICSLCLK — Alternate BDC clock provides debug signal to BDC module.  
The TCLK pin is an extra external clock source. When TCLK is enabled, it can provide alternate clock  
source to TPMs and MTIM16. The on-chip 1 kHz clock can provide clock source of COP module.  
TCLK  
1-kHz  
COP  
TPM1  
TPM2  
MTIM16  
ADC  
ICSERCLK  
ICSFFCLK  
ICSOUT  
FIXED CLOCK (XCLK)  
ICS  
BUS CLOCK  
÷2  
ICSLCLK  
XOSC  
IPC  
CPU  
SCI  
BDC  
FLASH  
RAM  
EXTAL XTAL  
Figure 2. System Clock Distribution Diagram  
MC9S08FL16 Series Data Sheet, Rev. 0 Draft B  
4
Freescale Semiconductor  
Pin Assignments  
3
Pin Assignments  
This section shows the pin assignments for the MC9S08FL16 series devices.  
PTC6  
PTC5  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
1
PTC7  
PTC4  
2
PTA0/ADP0  
PTD5  
PTA5/IRQ/TCLK/RESET  
3
PTD2/TPM1CH2  
4
PTA1/ADP1  
PTA2/ADP2  
PTA3/ADP3  
PTA6/TPM2CH0  
PTA7/TPM2CH1  
PTB0/RxD/ADP4  
PTB1/TxD/ADP5  
PTB2/ADP6  
PTD4  
PTA4/BKGD/MS  
5
PTD0  
6
PTD1  
7
VDD  
8
VSS  
9
PTB7/EXTAL  
10  
PTB6/XTAL  
11  
PTB5/TPM2CH1  
12  
PTD3/TPM1CH3  
13  
PTB3/ADP7  
PTC0/ADP8  
PTC1/ADP9  
PTB4/TPM1CH0  
14  
PTC3/ADP11  
15  
PTC2/ADP10  
16  
Figure 3. MC9S08FL16 Series 32-Pin SDIP Package  
MC9S08FL16 Series Data Sheet, Rev. 0 Draft B  
Freescale Semiconductor  
5
Pin Assignments  
PTA4/BKGD/MS  
PTD0  
PTA1/ADP1  
1
24  
23  
22  
21  
20  
19  
18  
PTA2/ADP2  
2
3
4
5
6
7
8
PTD1  
PTA3/ADP3  
VDD  
PTA6/TPM2CH0  
PTA7/TPM2CH1  
PTB0/RxD/ADP4  
PTB1/TxD/ADP5  
PTB2/ADP6  
VSS  
PTB7/EXTAL  
PTB6/XTAL  
PTB5/TPM1CH1  
17  
Figure 4. MC9S08FL16 Series 32-Pin LQFP Package  
Table 3-1. Pin Availability by Package Pin-Count  
Pin Number  
<-- Lowest Priority --> Highest  
32-SDIP  
32-LQFP  
Port Pin I/O  
Alt 1  
I/O  
Alt 2  
I/O  
Alt 3  
I/O  
1
2
29  
30  
31  
32  
1
PTC5  
PTC4  
PTA5  
PTD2  
PTA4  
PTD0  
PTD1  
I/O  
I/O  
I/O  
I/O  
O
I/O  
I/O  
I
3
IRQ  
TCLK  
TPM1CH2  
BKGD  
I
I
RESET  
MS  
I
I
4
5
O
6
2
I/O  
I/O  
I/O  
I/O  
7
3
8
4
VDD  
VSS  
I
I
9
5
10  
11  
12  
6
PTB7  
PTB6  
PTB5  
I/O  
I/O  
I/O  
EXTAL  
XTAL  
I
7
O
8
TPM1CH1 I/O  
MC9S08FL16 Series Data Sheet, Rev. 0 Draft B  
6
Freescale Semiconductor  
Pin Assignments  
Table 3-1. Pin Availability by Package Pin-Count  
Pin Number  
<-- Lowest Priority --> Highest  
32-SDIP  
32-LQFP  
Port Pin I/O  
Alt 1  
I/O  
Alt 2  
I/O  
Alt 3  
I/O  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
9
PTD3  
PTB4  
PTC3  
PTC2  
PTC1  
PTC0  
PTB3  
PTD4  
PTB2  
PTB1  
PTB0  
PTA7  
PTA6  
PTA3  
PTA2  
PTA1  
PTD5  
PTA0  
PTC7  
PTC6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
TPM1CH3 I/O  
TPM1CH0 I/O  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
ADP11  
ADP10  
ADP9  
ADP8  
ADP7  
I
ACMP–  
ACMP+  
I
I
I
I
I
I
I
I/O  
I
I
I
I
ADP6  
TxD  
O
I
ADP5  
ADP4  
I
I
RxD  
TPM2CH1 I/O  
TPM2CH0 I/O  
I
I
I
ADP3  
ADP2  
ADP1  
I
I
I
I/O  
I
I
ADP0  
NOTE  
When an alternative function is first enabled, it is possible to get a spurious  
edge to the module. User software should clear out any associated flags  
before interrupts are enabled. Table 3-1 illustrates the priority if multiple  
modules are enabled. The highest priority module will have control over the  
pin. Selecting a higher priority pin function with a lower priority function  
already enabled can cause spurious edges to the lower priority module.  
Disable all modules that share a pin before enabling another module.  
MC9S08FL16 Series Data Sheet, Rev. 0 Draft B  
Freescale Semiconductor  
7
Memory Map  
4
Memory Map  
Figure 5 shows the memory map for the MC9S08FL16 series. On-chip memory in the MC9S08FL16  
series of MCUs consist of RAM, flash program memory for nonvolatile data storage, plus I/O and  
control/status registers. The registers are divided into two groups:  
Direct-page registers (0x0000 through 0x003F)  
High-page registers (0x1800 through 0x187F)  
MC9S08FL16 Series Data Sheet, Rev. 0 Draft B  
8
Freescale Semiconductor  
Memory Map  
$0000  
$0000  
DIRECT PAGE REGISTERS  
RAM 768 BYTES  
DIRECT PAGE REGISTERS  
RAM 1024 BYTES  
$003F  
$0040  
$003F  
$0040  
$033F  
$0340  
$043F  
$0440  
UNIMPLEMENTED  
UNIMPLEMENTED  
$17FF  
$1800  
$17FF  
$1800  
HIGH PAGE REGISTERS  
HIGH PAGE REGISTERS  
$187F  
$1880  
$187F  
$1880  
UNIMPLEMENTED  
UNIMPLEMENTED  
$BFFF  
$C000  
FLASH  
16384 BYTES  
$DFFF  
$E000  
FLASH  
8192 BYTES  
$FFFF  
$FFFF  
MC9S08FL8  
MC9S08FL16  
Figure 5. MC9S08FL16 Series Memory Map  
MC9S08FL16 Series Data Sheet, Rev. 0 Draft B  
Freescale Semiconductor  
9
Electrical Characteristics  
5
Electrical Characteristics  
5.1  
Introduction  
This section contains electrical and timing specifications for the MC9S08FL16 series of microcontrollers available at the time  
of publication.  
5.2  
Parameter Classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better  
understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:  
Table 2. Parameter Classifications  
Those parameters are guaranteed during production testing on each individual device.  
P
C
Those parameters are achieved by the design characterization by measuring a statistically relevant  
sample size across process variations.  
Those parameters are achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted. All values shown in the typical column are within this  
category.  
T
Those parameters are derived mainly from simulations.  
D
NOTE  
The classification is shown in the column labeled “C” in the parameter  
tables where appropriate.  
5.3  
Absolute Maximum Ratings  
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the  
limits specified in Table 3 may affect device reliability or cause permanent damage to the device. For functional operating  
conditions, refer to the remaining tables in this section.  
This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised  
that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this  
high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for  
instance, either V or V ) or the programmable pullup resistor associated with the pin is enabled.  
SS  
DD  
Table 3. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Supply voltage  
VDD  
IDD  
VIn  
–0.3 to 5.5  
120  
V
mA  
V
Maximum current into VDD  
Digital input voltage  
–0.3 to VDD + 0.3  
Instantaneous maximum current  
ID  
±25  
mA  
Single pin limit (applies to all port pins)1, 2, 3  
Storage temperature range  
Tstg  
–55 to 150  
°C  
MC9S08FL16 Series Data Sheet, Rev. 0 Draft B  
10  
Freescale Semiconductor  
Electrical Characteristics  
Input must be current limited to the value specified. To determine the value of the required  
1
current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp  
voltages, then use the larger of the two resistance values.  
2
3
All functional non-supply pins, except for PTA5 are internally clamped to VSS and VDD  
.
Power supply must maintain regulation within operating VDD range during instantaneous and  
operating maximum current conditions. If positive injection current (VIn > VDD) is greater than  
IDD, the injection current may flow out of VDD and could result in external power supply going  
out of regulation. Ensure external VDD load will shunt current greater than maximum injection  
current. This will be the greatest risk when the MCU is not consuming power. Examples are: if  
no system clock is present, or if the clock rate is very low (which would reduce overall power  
consumption).  
5.4  
Thermal Characteristics  
This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power  
dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and  
it is user-determined rather than being controlled by the MCU design. To take P into account in power calculations, determine  
I/O  
the difference between actual pin voltage and V or V and multiply by the pin current for each I/O pin. Except in cases of  
SS  
DD  
unusually high pin current (heavy loads), the difference between pin voltage and V or V will be very small.  
SS  
DD  
Table 4. Thermal Characteristics  
Symbol  
Rating  
Value  
Unit  
Operating temperature range  
(packaged)  
TL to TH  
0 to 85  
TA  
°C  
°C  
Maximum junction temperature  
TJM  
TBD  
Thermal resistance  
Single-layer board  
32-pin SDIP  
32-pin LQFP  
TBD  
66  
θJA  
°C/W  
°C/W  
Thermal resistance  
Four-layer board  
32-pin LQFP  
32-pin LQFP  
TBD  
47  
θJA  
The average chip-junction temperature (T ) in °C can be obtained from:  
J
T = T + (P × θ )  
JA  
Eqn. 1  
J
A
D
where:  
T = Ambient temperature, °C  
A
θ
= Package thermal resistance, junction-to-ambient, °C/W  
JA  
P = P + P  
D
int  
I/O  
P
P
= I × V , Watts — chip internal power  
= Power dissipation on input and output pins — user determined  
int  
I/O  
DD DD  
For most applications, P << P and can be neglected. An approximate relationship between P and T (if P is neglected)  
I/O  
int  
D
J
I/O  
is:  
P = K ÷ (T + 273°C)  
Eqn. 2  
D
J
MC9S08FL16 Series Data Sheet, Rev. 0 Draft B  
Freescale Semiconductor  
11  
Electrical Characteristics  
Solving Equation 1 and Equation 2 for K gives:  
2
K = P × (T + 273°C) + θ × (P )  
Eqn. 3  
D
A
JA  
D
where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring P (at equilibrium)  
D
for a known T . Using this value of K, the values of P and T can be obtained by solving Equation 1 and Equation 2 iteratively  
A
D
J
for any value of T .  
A
5.5  
ESD Protection and Latch-Up Immunity  
Although damage from electrostatic discharge (ESD) is much less common on these devices than on early CMOS circuits,  
normal handling precautions must be taken to avoid exposure to static discharge. Qualification tests are performed to ensure  
that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.  
All ESD testing is in conformity with AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits. During  
the device qualification, ESD stresses were performed for the human body model (HBM), the machine model (MM) and the  
charge device model (CDM).  
A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device specification. Complete  
DC parametric and functional testing is performed per the applicable device specification at room temperature followed by hot  
temperature, unless instructed otherwise in the device specification.  
Table 5. ESD and Latch-up Test Conditions  
Model  
Description  
Series resistance  
Symbol  
Value  
Unit  
R1  
1500  
Ω
pF  
Human  
Body  
Storage capacitance  
C
100  
3
Number of pulses per pin  
Series resistance  
R1  
0
Ω
pF  
V
Machine  
Latch-up  
Storage capacitance  
C
200  
3
Number of pulses per pin  
Minimum input voltage limit  
Maximum input voltage limit  
–2.5  
7.5  
V
Table 6. ESD and Latch-Up Protection Characteristics  
1
No.  
1
Symbol  
VHBM  
VMM  
Min  
±2000  
±200  
±500  
±100  
Max  
Unit  
V
Rating  
Human body model (HBM)  
Machine model (MM)  
2
V
VCDM  
ILAT  
3
Charge device model (CDM)  
Latch-up current at TA = 85°C  
V
4
mA  
1
Parameter is achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted.  
5.6  
DC Characteristics  
This section includes information about power supply requirements and I/O pin characteristics.  
MC9S08FL16 Series Data Sheet, Rev. 0 Draft B  
12  
Freescale Semiconductor  
Electrical Characteristics  
Table 7. DC Characteristics  
Num  
C
Characteristic  
Symbol  
Condition  
Min.  
Typical1  
Max.  
Unit  
1
P Operating Voltage  
4.5  
5.5  
V
All I/O pins,  
low-drive strength  
C
ILoad = –2 mA  
Load = –10 mA  
VDD – 1.5  
V
Output high  
voltage  
2
VOH  
All I/O pins,  
high-drive strength  
P
I
VDD – 1.5  
Output high  
current  
D
C
P
D
P
P
C
Max total IOH for all ports IOHT  
All I/O pins,  
100  
mA  
V
3
4
ILoad = 2 mA  
ILoad = 10 mA  
1.5  
low-drive strength  
Output low  
voltage  
VOL  
All I/O pins,  
high-drive strength  
1.5  
Output low  
current  
5
6
7
8
Max total IOL for all ports  
all digital inputs  
IOLT  
VIH  
VIL  
100  
mA  
V
Input high  
voltage  
0.65 x VDD  
Input low  
voltage  
all digital inputs  
0.35 x VDD  
Input  
hysteresis  
all digital inputs Vhys  
0.06 x VDD  
mV  
Input  
P leakage  
current  
all input only pins  
|IIn|  
9
VIn = VDD or VSS  
0.1  
0.1  
1
1
μA  
(Per pin)  
Hi-Z  
(off-state)  
leakage  
current  
all input/output  
10  
P
|IOZ  
|
VIn = VDD or VSS  
μA  
kΩ  
kΩ  
(per pin)  
all digital inputs, when  
enabled (all I/O pins other RPU,  
Pullup,  
11a P Pulldown  
resistors  
17.5  
17.5  
52.5  
52.5  
than  
RPD  
PTA5/IRQ/TCLK/RESET  
RPU,  
RPD  
Pullup,  
11b C Pulldown  
resistors  
(PTA5/IRQ/TCLK/RESET)  
(Note2)  
Single pin limit  
–0.2  
–5  
0.2  
5
mA  
mA  
DCinjection  
12 C current 3, 4,  
IIC  
VIN < VSS, VIN > VDD  
Total MCU limit, includes  
sum of all stressed pins  
5
13 C Input Capacitance, all pins  
14 C RAM retention voltage  
15 C POR re-arm voltage6  
16 D POR re-arm time  
CIn  
0.6  
1.4  
8
pF  
V
VRAM  
VPOR  
tPOR  
1.0  
2.0  
0.9  
10  
V
μs  
VDD falling  
VDD rising  
17 C Low-voltage detection threshold  
18 C Low-voltage warning threshold  
VLVD  
VLVW  
TBD  
TBD  
V
V
VDD falling  
VDD rising  
MC9S08FL16 Series Data Sheet, Rev. 0 Draft B  
Freescale Semiconductor  
13  
Electrical Characteristics  
Table 7. DC Characteristics (continued)  
Num  
C
Characteristic  
Symbol  
Condition  
Min.  
Typical1  
Max.  
Unit  
Low-voltage inhibit reset/recover  
hysteresis  
20 C Bandgap Voltage Reference7  
19  
C
Vhys  
VBG  
80  
mV  
V
TBD  
1
2
Typical values are measured at 25°C. Characterized, not tested  
The specified resistor value is the actual value internal to the device. The pullup or pulldown value may appear higher when  
measured externally on the pin.  
3
4
All functional non-supply pins, except for PTA5 are internally clamped to VSS and VDD  
.
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate  
resistance values for positive and negative clamp voltages, then use the larger of the two values.  
5
Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current  
conditions. If the positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could  
result in external power supply going out of regulation. Ensure that external VDD load will shunt current greater than maximum  
injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is  
present, or if clock rate is very low (which would reduce overall power consumption).  
6
7
Maximum is highest voltage that POR is guaranteed.  
Factory trimmed at VDD = 5.0 V, Temp = 25 °C  
TBD  
Figure 6. Pullup and Pulldown Typical Resistor Values (V = 5.0 V)  
DD  
TBD  
Figure 7. Typical Low-Side Driver (Sink) Characteristics Low Drive (PTxDSn = 0)  
MC9S08FL16 Series Data Sheet, Rev. 0 Draft B  
14  
Freescale Semiconductor  
Electrical Characteristics  
TBD  
Figure 8. Typical Low-Side Driver (Sink) Characteristics High Drive (PTxDSn = 1)  
TBD  
Figure 9. Typical High-Side (Source) Characteristics Low Drive (PTxDSn = 0)  
TBD  
Figure 10. Typical High-Side (Source) Characteristics High Drive (PTxDSn = 1)  
MC9S08FL16 Series Data Sheet, Rev. 0 Draft B  
Freescale Semiconductor  
15  
Electrical Characteristics  
5.7  
Supply Current Characteristics  
This section includes information about power supply current in various operating modes.  
Table 8. Supply Current Characteristics  
Parameter  
VDD  
(V)  
Bus  
Freq  
Temp  
(°C)  
Typical1  
Num  
C
Symbol  
Max  
Unit  
P
P
P
P
C
C
C
10 MHz  
1 MHz  
10 MHz  
1 MHz  
20 MHz  
1 MHz  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Run supply current  
FEI mode, all modules on  
1
RIDD  
5
5
5
mA  
0 to 85°C  
0 to 85°C  
0 to 85°C  
Run supply current  
FEI mode, all modules off  
2
3
RIDD  
mA  
Wait mode supply current  
FEI mode, all modules off  
WIDD  
μA  
4
5
6
7
8
Stop2 mode supply current  
S2IDD  
S3IDD  
5
5
5
5
5
μA  
nA  
μA  
μA  
μA  
0 to 85°C  
0 to 85°C  
25°C  
Stop3 mode supply current  
no clocks active  
C
C
C
C
TBD  
TBD  
TBD  
TBD  
ADC adder to stop3  
ICS adder to stop3  
EREFSTEN = 1  
25°C  
LVD adder to stop3  
25°C  
1
Data in Typical column was characterized at 5.0 V, 25°C or is typical recommended value.  
TBD  
MC9S08FL16 Series Data Sheet, Rev. 0 Draft B  
16  
Freescale Semiconductor  
Electrical Characteristics  
Figure 11. Typical Run I for FBE and FEI, I vs. V  
DD  
DD  
DD  
(ADC off, All Other Modules Enabled)  
5.8  
External Oscillator (XOSC) Characteristics  
Refer to Figure 12 and Figure 13 for crystal or resonator circuits.  
Table 9. XOSC and ICS Specifications (Temperature Range = 0 to 85°C Ambient)  
Num  
C
Characteristic  
Symbol  
Min.  
Typical1 Max. Unit  
Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1)  
Low range (RANGE = 0)  
High range (RANGE = 1), high gain (HGO = 1)  
High range (RANGE = 1), low power (HGO = 0)  
flo  
fhi  
fhi  
32  
1
1
38.4  
16  
8
kHz  
MHz  
MHz  
1
C
Load capacitors  
Low range (RANGE=0), low power (HGO=0)  
Other oscillator settings  
See Note 2  
See Note 3  
C1,C2  
2
3
D
D
Feedback resistor  
Low range, low power (RANGE=0, HGO=0)2  
Low range, high gain (RANGE=0, HGO=1)  
High range (RANGE=1, HGO=X)  
10  
1
RF  
MΩ  
kΩ  
Series resistor —  
Low range, low power (RANGE = 0, HGO = 0)2  
100  
0
Low range, high gain (RANGE = 0, HGO = 1)  
High range, low power (RANGE = 1, HGO = 0)  
High range, high gain (RANGE = 1, HGO = 1)  
RS  
4
D
8 MHz  
4 MHz  
1 MHz  
0
0
0
0
10  
20  
Crystal start-up time 4  
Low range, low power  
Low range, high gain  
High range, low power  
High range, high gain  
t
600  
400  
5
CSTL  
5
6
C
D
ms  
t
CSTH  
15  
Square wave input clock frequency (EREFS = 0, ERCLKEN = 1)  
FEE mode  
fextal  
0.03125  
0
20  
20  
MHz  
MHz  
FBE or FBELP mode  
1
2
3
4
Data in Typical column was characterized at 5.0 V, 25°C or is typical recommended value.  
Load capacitors (C1,C2), feedback resistor (RF) and series resistor (RS) are incorporated internally when RANGE = HGO = 0.  
See crystal or resonator manufacturer’s recommendation.  
Proper PC board layout procedures must be followed to achieve specifications.  
MC9S08FL16 Series Data Sheet, Rev. 0 Draft B  
Freescale Semiconductor  
17  
Electrical Characteristics  
XOSC  
EXTAL  
XTAL  
RS  
RF  
Crystal or Resonator  
C1  
C2  
Figure 12. Typical Crystal or Resonator Circuit  
5.9  
Internal Clock Source (ICS) Characteristics  
Table 10. ICS Frequency Specifications (Temperature Range = 0 to 85°C Ambient)  
Num  
C
Characteristic  
Symbol  
Min. Typical1 Max.  
Unit  
Average internal reference frequency — factory trimmed  
at VDD = 3.6 V and temperature = 25°C  
fint_ft  
1
P
32.768  
kHz  
Internal reference frequency — user trimmed  
Internal reference start-up time  
fint_ut  
tIRST  
fdco_u  
2
3
4
P
T
P
31.25  
60  
39.06  
100  
30  
kHz  
μs  
DCO output frequency range — trimmed2  
24  
MHz  
DCO output frequency2  
Reference = 32768 Hz and DMX32 = 1  
fdco_DMX32  
Δfdco_res_t  
Δfdco_res_t  
Δfdco_t  
5
6
7
8
P
C
C
C
TBD  
±0.1  
±0.2  
±0.2  
±0.4  
±2  
MHz  
%fdco  
%fdco  
%fdco  
Resolution of trimmed DCO output frequency at fixed voltage and  
temperature (using FTRIM)  
Resolution of trimmed DCO output frequency at fixed voltage and  
temperature (not using FTRIM)  
Total deviation of trimmed DCO output frequency over voltage  
and temperature  
+ 0.5  
–1.0  
Total deviation of trimmed DCO output frequency over fixed  
voltage and temperature range of 0°C to 70 °C  
Δfdco_t  
tAcquire  
CJitter  
%fdco  
ms  
9
C
C
C
±0.5  
±1  
1
FLL acquisition time3  
10  
Long term jitter of DCO output clock (averaged over 2-ms  
interval)4  
%fdco  
11  
0.02  
0.2  
1
Data in Typical column was characterized at 5.0 V, 25°C or is typical recommended value.  
The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.  
2
3
This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing  
from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference,  
this specification assumes it is already running.  
MC9S08FL16 Series Data Sheet, Rev. 0 Draft B  
18  
Freescale Semiconductor  
Electrical Characteristics  
4
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBus  
.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise  
injected into the FLL circuitry via VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage for a  
given interval.  
1.00%  
0.50%  
0.00%  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
-0.50%  
-1.00%  
-1.50%  
-2.00%  
Temperature  
Figure 13. Deviation of DCO Output from Trimmed Frequency (20 MHz, 5.0 V)  
5.10 AC Characteristics  
This section describes timing characteristics for each peripheral system.  
MC9S08FL16 Series Data Sheet, Rev. 0 Draft B  
Freescale Semiconductor  
19  
Electrical Characteristics  
5.10.1 Control Timing  
Table 11. Control Timing  
Num  
C
D
D
D
D
Rating  
Symbol  
fBus  
tLPO  
textrst  
trstdrv  
Min  
Typical1  
Max  
20  
Unit  
MHz  
μs  
Bus frequency (tcyc = 1/fBus  
)
1
2
3
4
dc  
700  
Internal low power oscillator period  
1300  
External reset pulse width2  
Reset low drive  
100  
ns  
34 x tcyc  
ns  
BKGD/MS setup time after issuing background debug  
force reset to enter user or BDM modes  
tMSSU  
tMSH  
5
6
D
D
500  
100  
ns  
BKGD/MS hold time after issuing background debug  
force reset to enter user or BDM modes 3  
μs  
IRQ pulse width  
Asynchronous path2  
Synchronous path4  
tILIH, IHIL  
t
100  
1.5 x tcyc  
ns  
ns  
7
D
8
D
Keyboard interrupt pulse width  
Asynchronous path2  
tILIH, IHIL  
t
100  
1.5 x tcyc  
Synchronous path4  
Port rise and fall time —  
Low output drive (PTxDS = 0) (load = 50 pF)5  
Slew rate control disabled (PTxSE = 0)  
Slew rate control enabled (PTxSE = 1)  
t
Rise, tFall  
ns  
ns  
16  
23  
9
C
Port rise and fall time —  
High output drive (PTxDS = 1) (load = 50 pF)5  
Slew rate control disabled (PTxSE = 0)  
Slew rate control enabled (PTxSE = 1)  
tRise, tFall  
5
9
1
2
3
Typical values are based on characterization data at VDD = 5.0V, 25°C unless otherwise stated.  
This is the shortest pulse that is guaranteed to be recognized as a reset pin request.  
To enter BDM mode following a POR, BKGD/MS should be held low during the power-up and for a hold time of tMSH after VDD  
rises above VLVD  
.
4
5
This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or  
may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.  
Timing is shown with respect to 20% VDD and 80% VDD levels. Temperature range 0°C to 85°C.  
textrst  
RESET PIN  
Figure 14. Reset Timing  
MC9S08FL16 Series Data Sheet, Rev. 0 Draft B  
20  
Freescale Semiconductor  
Electrical Characteristics  
tIHIL  
KBIPx  
IRQ/KBIPx  
tILIH  
Figure 15. IRQ/KBIPx Timing  
5.10.2 TPM Module Timing  
Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the  
optional external source to the timer counter. These synchronizers operate from the current bus rate clock.  
Table 12. TPM Input Timing  
No.  
C
Function  
Symbol  
Min  
Max  
Unit  
1
2
3
4
5
D
D
D
D
D
External clock frequency  
External clock period  
fTCLK  
tTCLK  
tclkh  
0
fBus/4  
Hz  
tcyc  
tcyc  
tcyc  
tcyc  
4
External clock high time  
External clock low time  
Input capture pulse width  
1.5  
1.5  
1.5  
tclkl  
tICPW  
tTCLK  
tclkh  
TCLK  
tclkl  
Figure 16. Timer External Clock  
tICPW  
TPMCHn  
TPMCHn  
tICPW  
Figure 17. Timer Input Capture Pulse  
MC9S08FL16 Series Data Sheet, Rev. 0 Draft B  
Freescale Semiconductor  
21  
Electrical Characteristics  
5.11 ADC Characteristics  
Table 13. 12-bit ADC Operating Conditions  
Characteristic  
Conditions  
Symb  
Min  
Typical1  
Max  
Unit  
Comment  
Supply voltage  
Absolute  
Delta to VDD (VDD-VDDAD  
VDDAD  
ΔVDDAD  
ΔVSSAD  
4.5  
0
5.5  
V
2
)
–100  
–100  
+100  
+100  
mV  
mV  
2
Ground voltage  
Delta to VSS (VSS-VSSAD  
)
0
Ref Voltage  
High  
VREFH  
VADIN  
CADIN  
1.8  
VREFL  
VDDAD  
VDDAD  
VREFH  
5.5  
V
V
Input Voltage  
Input  
Capacitance  
4.5  
pF  
Input  
Resistance  
RADIN  
5
7
kΩ  
kΩ  
Analog Source  
Resistance  
8 bit mode (all valid fADCK  
)
RAS  
10  
External to MCU  
ADC  
Conversion  
Clock Freq.  
High Speed (ADLPC=0)  
Low Power (ADLPC=1)  
0.4  
0.4  
8.0  
4.0  
fADCK  
MHz  
1
2
Typical values assume VDDAD = 5.0 V, Temp = 25 °C, fADCK=1.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
DC potential difference.  
MC9S08FL16 Series Data Sheet, Rev. 0 Draft B  
22  
Freescale Semiconductor  
Electrical Characteristics  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
CIRCUIT  
ZADIN  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
RAS  
RADIN  
protection  
+
VADIN  
CAS  
VAS  
+
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 18. ADC Input Impedance Equivalency Diagram  
Table 14. 12-bit ADC Characteristics (V  
= V  
, V  
= V  
)
SSAD  
REFH  
Min.  
DDAD REFL  
C
Characteristic  
Conditions  
Symbol  
Typical1  
Max.  
Unit  
Comment  
Supply Current  
ADLPC=1  
ADLSMP=1  
ADCO=1  
T
IDDAD  
120  
μA  
Supply Current  
ADLPC=1  
ADLSMP=0  
ADCO=1  
T
T
P
IDDAD  
202  
288  
1
μA  
μA  
Supply Current  
ADLPC=0  
ADLSMP=1  
ADCO=1  
IDDAD  
Supply Current  
ADLPC=0  
ADLSMP=0  
ADCO=1  
IDDAD  
0.532  
mA  
P
C
ADC  
Asynchronous  
Clock Source  
High Speed (ADLPC=0)  
Low Power (ADLPC=1)  
2
3.3  
2
5
tADACK =  
1/fADACK  
fADACK  
MHz  
1.25  
3.3  
MC9S08FL16 Series Data Sheet, Rev. 0 Draft B  
Freescale Semiconductor  
23  
Electrical Characteristics  
Table 14. 12-bit ADC Characteristics (V  
= V  
, V  
= V  
) (continued)  
SSAD  
REFH  
DDAD REFL  
C
Characteristic  
Conditions  
Short Sample  
Symbol  
Min.  
Typical1  
Max.  
Unit  
Comment  
Conversion  
Time(Including (ADLSMP=0)  
sample time)  
See ADC  
chapter in the  
QE8  
Reference  
Manual for  
conversion  
time  
P
20  
ADCK  
cycles  
tADC  
Long Sample  
C
P
C
40  
3.5  
(ADLSMP=1)  
Short Sample  
(ADLSMP=0)  
Sample Time  
ADCK  
cycles  
variances  
tADS  
Long Sample  
(ADLSMP=1)  
23.5  
Total  
Unadjusted  
Error  
Includes  
quantization  
T
8 bit mode  
ETUE  
±0.5  
LSB2  
Differential  
Non-Linearity  
T
T
T
T
D
D
8 bit mode3  
8 bit mode  
8 bit mode  
8 bit mode  
8 bit mode  
8 bit mode  
DNL  
INL  
EZS  
EFS  
EQ  
±0.3  
±0.3  
±0.5  
±0.5  
±0.5  
±0.1  
±0.5  
±0.5  
±1.0  
±1.0  
LSB2  
LSB2  
LSB2  
LSB2  
LSB2  
LSB2  
Integral  
Non-Linearity  
Zero-Scale  
Error  
VADIN  
VSSAD  
=
Full-Scale  
Error  
VADIN =  
VDDAD  
Quantization  
Error  
Input Leakage  
Error  
Padleakage3  
* RAS  
EIL  
0°C to 25°C  
1.646  
1.769  
Temp Sensor  
Slope  
D
D
m
mV/°C  
25°C to 85°C  
Temp Sensor  
Voltage  
25°C  
VTEMP25  
701.2  
mV  
1
Typical values assume VDDAD = 5.0 V, Temp = 25 °C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
2
3
1 LSB = (VREFH – VREFL)/2N  
Based on input pad leakage current. Refer to pad electricals.  
5.12 Flash Specifications  
This section provides details about program/erase times and program-erase endurance for the flash memory.  
MC9S08FL16 Series Data Sheet, Rev. 0 Draft B  
24  
Freescale Semiconductor  
Electrical Characteristics  
Program and erase operations do not require any special power sources other than the normal V supply. For more detailed  
DD  
information about program/erase operations, see the Memory section.  
Table 15. Flash Characteristics  
C
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
Supply voltage for program/erase  
0°C to 85°C  
D
Vprog/erase  
VRead  
fFCLK  
4.5  
4.5  
150  
5
5.5  
5.5  
V
D
D
D
P
P
P
P
Supply voltage for read operation  
Internal FCLK frequency1  
Internal FCLK period (1/FCLK)  
Byte program time (random location)2  
Byte program time (burst mode)2  
Page erase time2  
Mass erase time2  
Byte program current3  
Page erase current3  
V
200  
6.67  
kHz  
μs  
tFcyc  
tprog  
9
tFcyc  
tFcyc  
tFcyc  
tFcyc  
mA  
mA  
tBurst  
4
4000  
20,000  
4
tPage  
tMass  
RIDDBP  
RIDDPE  
6
Program/erase endurance4  
TL to TH = 0°C to + 85°C  
T = 25°C  
C
C
10,000  
100  
cycles  
years  
Data retention5  
tD_ret  
10  
1
2
The frequency of this clock is controlled by a software setting.  
These values are hardware state machine controlled. User code does not need to count cycles. This information supplied  
for calculating approximate time to program and erase.  
3
4
The program and erase currents are additional to the standard run IDD. These values are measured at room temperatures  
with VDD = 5.0 V, bus frequency = 4.0 MHz.  
Typical endurance for flash was evaluated for this product family on the 9S12Dx64. For additional information on how  
Freescale defines typical endurance, please refer to Engineering Bulletin EB619, Typical Endurance for Nonvolatile  
Memory.  
5
Typical data retention values are based on intrinsic capability of the technology measured at high temperature and  
de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale defines typical data retention,  
please refer to Engineering Bulletin EB618, Typical Data Retention for Nonvolatile Memory.  
5.13 EMC Performance  
Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board  
design and layout, circuit topology choices, location and characteristics of external components as well as MCU software  
operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such  
as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC  
performance.  
5.13.1 Conducted Transient Susceptibility  
Microcontroller transient conducted susceptibility is measured in accordance with an internal Freescale test method. The  
measurement is performed with the microcontroller installed on a custom EMC evaluation board and running specialized EMC  
test software designed in compliance with the test method. The conducted susceptibility is determined by injecting the transient  
susceptibility signal on each pin of the microcontroller. The transient waveform and injection methodology is based on IEC  
MC9S08FL16 Series Data Sheet, Rev. 0 Draft B  
Freescale Semiconductor  
25  
Ordering Information  
61000-4-4 (EFT/B). The transient voltage required to cause performance degradation on any pin in the tested configuration is  
greater than or equal to the reported levels unless otherwise indicated by footnotes below Table 16.  
Table 16. Conducted Susceptibility, EFT/B  
Amplitude1  
fOSC/fBUS  
Parameter  
Symbol  
Conditions  
Result  
Unit  
(Min)  
A
B
C
D
2.3  
VDD = 5V  
TA = +25oC  
package type  
32 LQFP  
8 MHz  
crystal  
8 MHz bus  
4.0  
Conducted susceptibility, electrical  
fast transient/burst (EFT/B)  
VCS_EFT  
kV  
>4.0  
>4.0  
1
Data based on qualification test results. Not tested in production.  
The susceptibility performance classification is described in Table 17.  
Table 17. Susceptibility Performance Classification  
Performance Criteria  
Result  
A
No failure  
The MCU performs as designed during and after exposure.  
Self-recovering The MCU does not perform as designed during exposure. The MCU returns  
B
C
D
failure  
automatically to normal operation after exposure is removed.  
The MCU does not perform as designed during exposure. The MCU does not return to  
normal operation until exposure is removed and the RESET pin is asserted.  
Soft failure  
The MCU does not perform as designed during exposure. The MCU does not return to  
normal operation until exposure is removed and the power to the MCU is cycled.  
Hard failure  
Damage  
The MCU does not perform as designed during and after exposure. The MCU cannot  
be returned to proper operation due to physical damage or other permanent  
performance degradation.  
E
6
Ordering Information  
This section contains ordering information for MC9S08FL16 series devices. See below for an example of the device numbering  
system.  
Table 18. Device Numbering System  
Memory  
Device Number1  
Available Packages2  
FLASH  
RAM  
32 SDIP  
32 LQFP  
MC9S08FL16  
MC9S08FL8  
16K  
1024  
32 SDIP  
32 LQFP  
8K  
768  
1
2
See the reference manual, MC9S08FL16 Series Reference Manual, for a complete  
description of modules included on each device.  
See Table 19 for package information.  
MC9S08FL16 Series Data Sheet, Rev. 0 Draft B  
26  
Freescale Semiconductor  
Package Information  
Example of the device numbering system:  
MC S08  
FL 16  
C
XX  
9
Status  
(MC = Fully Qualified)  
Package designator (see Table 19)  
Temperature range  
(C = 0°C to 85°C)  
Memory  
(9 = Flash-based)  
Core  
Approximate flash size in Kbytes  
Family  
7
Package Information  
Table 19. Package Descriptions  
Pin Count  
Package Type  
Abbreviation  
Designator  
Case No.  
Document No.  
32  
32  
Low Quad Flat Package  
LQFP  
SDIP  
LC  
873A-03  
1376-02  
98ASH70029A  
98ASA99330D  
Shrink Dual In-line Package  
TBD  
7.1  
Mechanical Drawings  
The following pages are mechanical drawings for the packages described in Table 19.  
MC9S08FL16 Series Data Sheet, Rev. 0 Draft B  
Freescale Semiconductor  
27  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Semiconductor was negligent regarding the design or manufacture of the part.  
Japan:  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
© Freescale Semiconductor, Inc. 2008. All rights reserved.  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MC9S08FL16  
Rev. 0 Draft B  
10/2008  

相关型号:

MC9S08FL16CLC

MC9S08FL16CLC
FREESCALE

MC9S08FL16CLC

S08FL 8-bit MCU, S08 core, 16KB Flash, 20MHz, QFP 32
NXP

MC9S08FL8

8-Bit S08 Central Processor Unit (CPU)
FREESCALE

MC9S08FL8CBM

MC9S08FL8CBM
FREESCALE

MC9S08FL8CLC

S08FL 8-bit MCU, S08 core, 8KB Flash, 20MHz, QFP 32
NXP

MC9S08FL8CLC

8-BIT, FLASH, 20 MHz, MICROCONTROLLER, QFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITRCH, ROHS COMPLIANT, MS-026BBA, LQFP-32
ROCHESTER

MC9S08GB32

Microcontrollers
MOTOROLA

MC9S08GB32

Microcontrollers
FREESCALE

MC9S08GB32A

HCS08 Microcontrollers
FREESCALE

MC9S08GB32ACFUE

8-BIT, FLASH, 40MHz, MICROCONTROLLER, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, 0.5 MM PITCH, MS-026BCD, LQFP-64
ROCHESTER

MC9S08GB32ACFUE

8 BIT 32K FLASH 4K RAM
NXP

MC9S08GB32ACFUER

8-BIT, FLASH, 40MHz, MICROCONTROLLER, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, 0.5 MM PITCH, MS-026BCD, LQFP-64
NXP