MC9S08FL8 [FREESCALE]

8-Bit S08 Central Processor Unit (CPU); 8位S08的中央处理单元(CPU)的
MC9S08FL8
型号: MC9S08FL8
厂家: Freescale    Freescale
描述:

8-Bit S08 Central Processor Unit (CPU)
8位S08的中央处理单元(CPU)的

文件: 总34页 (文件大小:627K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet: Technical Data  
Document Number: MC9S08FL16  
Rev. 2, 7/2009  
                                                                                                                   
                                                                                                                     
                                                                                                                       
                                                                                                                         
                                                                                                                            
                                                                                                                              
                                                                                                                                
                                                                                                                                  
                                                                                                                                     
                                                                                                                                       
                                                                                                                                          
                                                                                                                                            
                                                                                                                                              
                                                                                                                                               
                                                                                                                                                 
                                                                                                                                                    
                                                                                                                                                      
                                                                                                                                                        
                                                                                                                                                           
                                                                                                                                                             
                                                                                                                                                               
                                                                                                                                                                 
                                                                                                                                                                   
                                                                                                                                                                     
MC9S08FL16  
MC9S08FL16 Series  
Covers: MC9S08FL16 and  
MC9S08FL8  
32-Pin SDIP  
1376-02  
32-Pin LQFP  
873A-03  
• Illegal address detection with reset  
• Flash block protection  
Features:  
8-Bit S08 Central Processor Unit (CPU)  
Development Support  
• Up to 20 MHz CPU at 4.5 V to 5.5 V across  
• Single-wire background debug interface  
temperature range of –40 °C to 85 °C  
• Breakpoint capability to allow single breakpoint  
setting during in-circuit debugging (plus two more  
breakpoints).  
• HC08 instruction set with added BGND instruction  
• Support for up to 32 interrupt/reset sources  
• On-chip in-circuit emulator (ICE) debug module  
containing two comparators and nine trigger  
modes.  
On-Chip Memory  
• Up to 16 KB flash read/program/erase over full  
operating voltage and temperature  
Peripherals  
• Up to 1024-byte random-access memory (RAM)  
• Security circuitry to prevent unauthorized access  
to RAM and flash contents  
• IPC — Interrupt priority controller to provide  
hardware based nested interrupt mechanism  
ADC — 12-channel, 8-bit resolution; 2.5 μs  
conversion time; automatic compare function;  
1.7 mV/°C temperature sensor; internal bandgap  
reference channel; operation in stop; optional  
hardware trigger; fully functional from 4.5 V to  
5.5 V  
Power-Saving Modes  
Two low power stop modes; reduced power wait  
mode  
• Allows clocks to remain enabled to specific  
peripherals in stop3 mode  
TPM — One 4-channel and one 2-channel  
timer/pulse-width modulators (TPM) modules;  
selectable input capture, output compare, or  
buffered edge- or center-aligned PWM on each  
channel  
Clock Source Options  
• Oscillator (XOSC) — Loop-control Pierce  
oscillator; crystal or ceramic resonator range of  
31.25 kHz to 39.0625 kHz or 1 MHz to 16 MHz  
• Internal Clock Source (ICS) — Internal clock  
source module containing a  
MTIM16 — One 16-bit modulo timer with optional  
prescaler  
frequency-locked-loop (FLL) controlled by internal  
or external reference; precision trimming of  
internal reference allows 0.2% resolution and 2%  
deviation over temperature and voltage; supports  
bus frequencies up to 10 MHz  
• SCI — One serial communications interface  
module with optional 13-bit break; LIN extensions  
Input/Output  
• 30 GPIOs including 1 output-only pin and 1  
input-only pin  
System Protection  
• Watchdog computer operating properly (COP)  
reset with option to run from dedicated 1 kHz  
internal clock source or bus clock  
• Low-voltage detectionwith reset or interrupt;  
selectable trip points  
Package Options  
• 32-pin SDIP  
• 32-pin LQFP  
• Illegal opcode detection with reset  
This document contains information on a product under development. Freescale reserves the  
right to change or discontinue this product without notice.  
© Freescale Semiconductor, Inc., 2009. All rights reserved.  
Table of Contents  
1
2
3
4
5
MCU Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
System Clock Distribution. . . . . . . . . . . . . . . . . . . . . . . 4  
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Memory Map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . 9  
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
5.2 Parameter Classification . . . . . . . . . . . . . . . . . . . 9  
5.3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . 9  
5.4 Thermal Characteristics . . . . . . . . . . . . . . . . . . . 10  
5.5 ESD Protection and Latch-Up Immunity . . . . . . 11  
5.6 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . 12  
5.7 Supply Current Characteristics . . . . . . . . . . . . . 17  
5.8 External Oscillator (XOSC) and ICS  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 19  
5.9 AC Characteristics. . . . . . . . . . . . . . . . . . . . . . . 21  
5.9.1 Control Timing . . . . . . . . . . . . . . . . . . . . . 22  
5.9.2 TPM Module Timing . . . . . . . . . . . . . . . . 23  
5.10 ADC Characteristics . . . . . . . . . . . . . . . . . . . . . 24  
5.11 Flash Specifications. . . . . . . . . . . . . . . . . . . . . . 26  
5.12 EMC Performance . . . . . . . . . . . . . . . . . . . . . . . 27  
5.12.1Radiated Emissions. . . . . . . . . . . . . . . . . 27  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . 28  
7.1 Mechanical Drawings. . . . . . . . . . . . . . . . . . . . . 28  
6
7
Revision History  
To provide the most up-to-date information, the revision of our documents on the World Wide Web will  
be the most current. Your printed copy may be an earlier revision. To verify you have the latest information  
available, refer to:  
http://freescale.com/  
The following revision history table summarizes changes contained in this document.  
Rev  
Date  
Description of Changes  
1
2
March 18, 2009  
July 20, 2009  
Initial public release.  
Updated Section 5.12, “EMC Performance.and corrected Figure 1 and Table 1.  
Corrected default trim value to 31.25 kHz.  
Related Documentation  
Find the most current versions of all documents at: http://www.freescale.com  
Reference Manual (MC9S08FL16RM)  
Contains extensive product information including modes of operation, memory,  
resets and interrupts, register definition, port pins, CPU, and all module  
information.  
MC9S08FL16 Series Data Sheet, Rev. 2  
2
Freescale Semiconductor  
MCU Block Diagram  
1
MCU Block Diagram  
The block diagram, Figure 1, shows the structure of MC9S08FL16 series MCU.  
PTA0/ADP0  
16-BIT MODULO TIMER  
TCLK  
HCS08 CORE  
PTA1/ADP1  
(MTIM16)  
PTA2/ADP2  
BDC  
CPU  
PTA3/ADP3  
2-CH TIMER/PWM  
TPM2CH[1:0]  
MODULE (TPM2)  
PTA4/BKGD/MS  
PTA5/IRQ/TCLK/RESET  
PTA6/TPM2CH0  
PTA7/TPM2CH1  
HCS08 SYSTEM CONTROL  
RESETS AND INTERRUPTS  
MODES OF OPERATION  
POWER MANAGEMENT  
RESET  
IRQ  
COP  
IRQ  
LVD  
INTERRUPT PRIORITY  
CONTROLLER (IPC)  
PTB0/RxD/ADP4  
PTB1/TxD/ADP5  
PTB2/ADP6  
ON-CHIP ICE AND  
DEBUG MODUE (DBG)  
TxD  
RxD  
SERIAL COMMUNICATIONS  
INTERFACE (SCI)  
PTB3/ADP7  
USER FLASH  
PTB4/TPM1CH0  
PTB5/TPM1CH1  
PTB6/XTAL  
MC9S08FL16 — 16,384 BYTES  
MC9S08FL8 — 8,192 BYTES  
4-CH TIMER/PWM  
TPM1CH[3:0]  
MODULE (TPM1)  
USER RAM  
MC9S08FL16 — 1,024 BYTES  
MC9S08FL8 — 768 BYTES  
PTB7/EXTAL  
PTC0/ADP8  
PTC1/ADP9  
PTC2/ADP10  
PTC3/ADP11  
PTC4  
20 MHz INTERNAL CLOCK  
SOURCE (ICS)  
EXTAL  
XTAL  
EXTERNAL OSCILLATOR  
SOURCE (XOSC)  
V
V
PTC5  
DD  
SS  
VOLTAGE REGULATOR  
PTC6  
PTC7  
V
V
V
V
REFH  
REFL  
DDA  
12-CH 8-BIT  
ANALOG-TO-DIGITAL  
CONVERTER (ADC)  
ADP[11:0]  
SSA  
PTD0  
PTD1  
PTD2/TPM1CH2  
PTD3/TPM1CH3  
PTD4  
NOTE  
1. PTA4 is output only when used as port pin.  
2. PTA5 is input only when used as port pin.  
PTD5  
Figure 1. MC9S08FL16 Series Block Diagram  
MC9S08FL16 Series Data Sheet, Rev. 2  
Freescale Semiconductor  
3
System Clock Distribution  
2
System Clock Distribution  
MC9S08FL16 series use ICS module as clock sources. The ICS module can use internal or external clock  
source as reference to provide up to 20 MHz CPU clock. The output of ICS module includes,  
OSCOUT — XOSC output provides external reference clock to ADC.  
ICSFFCLK — ICS fixed frequency clock reference (around 32.768 kHz) provides double of the  
fixed lock signal to TPMs and MTIM16.  
ICSOUT — ICS CPU clock provides double of the bus clock which is basic clock reference of  
peripherals.  
ICSLCLK — Alternate BDC clock provides debug signal to BDC module.  
The TCLK pin is an extra external clock source. When TCLK is enabled, it can provide alternate clock  
source to TPMs and MTIM16. The on-chip 1 kHz clock provides clock source of COP module.  
TCLK  
1 kHz  
COP  
TPM1  
TPM2  
MTIM16  
ADC  
OSCOUT  
ICSFFCLK  
ICSOUT  
FIXED CLOCK (XCLK)  
÷2  
ICS  
BUS CLOCK  
÷2  
ICSLCLK  
XOSC  
IPC  
CPU  
SCI  
BDC  
FLASH  
RAM  
EXTAL XTAL  
Figure 2. System Clock Distribution Diagram  
MC9S08FL16 Series Data Sheet, Rev. 2  
4
Freescale Semiconductor  
Pin Assignments  
3
Pin Assignments  
This section shows the pin assignments for the MC9S08FL16 series devices.  
PTC6  
PTC5  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
1
PTC7  
PTC4  
PTA5/IRQ/TCLK/RESET  
PTD2/TPM1CH2  
PTA4/BKGD/MS  
PTD0  
2
PTA0/ADP0  
PTD5  
3
4
PTA1/ADP1  
PTA2/ADP2  
PTA3/ADP3  
PTA6/TPM2CH0  
PTA7/TPM2CH1  
PTB0/RxD/ADP4  
PTB1/TxD/ADP5  
PTB2/ADP6  
PTD4  
5
6
PTD1  
7
VDD  
8
VSS  
9
PTB7/EXTAL  
10  
11  
12  
13  
14  
15  
16  
PTB6/XTAL  
PTB5/TPM2CH1  
PTD3/TPM1CH3  
PTB4/TPM1CH0  
PTC3/ADP11  
PTB3/ADP7  
PTC0/ADP8  
PTC1/ADP9  
PTC2/ADP10  
Figure 3. MC9S08FL16 Series 32-Pin SDIP Package  
MC9S08FL16 Series Data Sheet, Rev. 2  
Freescale Semiconductor  
5
Pin Assignments  
PTA4/BKGD/MS  
PTD0  
PTA1/ADP1  
1
24  
23  
22  
21  
20  
19  
18  
PTA2/ADP2  
2
3
4
5
6
7
8
PTD1  
PTA3/ADP3  
VDD  
PTA6/TPM2CH0  
PTA7/TPM2CH1  
PTB0/RxD/ADP4  
PTB1/TxD/ADP5  
PTB2/ADP6  
VSS  
PTB7/EXTAL  
PTB6/XTAL  
PTB5/TPM1CH1  
17  
Figure 4. MC9S08FL16 Series 32-Pin LQFP Package  
Table 1. Pin Availability by Package Pin-Count  
Pin Number  
<-- Lowest Priority --> Highest  
32-SDIP  
32-LQFP  
Port Pin I/O  
Alt 1  
I/O  
Alt 2  
I/O  
Alt 3  
I/O  
1
2
29  
30  
31  
32  
1
PTC5  
PTC4  
PTA5  
PTD2  
PTA4  
PTD0  
PTD1  
I/O  
I/O  
I
3
IRQ  
I
TCLK  
I
RESET  
MS  
I
I
4
I/O  
O
TPM1CH2 I/O  
BKGD  
5
I
6
2
I/O  
I/O  
7
3
8
4
VDD  
VSS  
I
I
9
5
10  
11  
12  
13  
14  
15  
6
PTB7  
PTB6  
PTB5  
PTD3  
PTB4  
PTC3  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
EXTAL  
XTAL  
I
7
O
8
TPM1CH1 I/O  
TPM1CH3 I/O  
TPM1CH0 I/O  
9
10  
11  
ADP11  
I
MC9S08FL16 Series Data Sheet, Rev. 2  
6
Freescale Semiconductor  
Pin Assignments  
Table 1. Pin Availability by Package Pin-Count (continued)  
Pin Number <-- Lowest Priority --> Highest  
32-SDIP  
32-LQFP  
Port Pin I/O  
Alt 1  
I/O  
Alt 2  
I/O  
Alt 3  
I/O  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
PTC2  
PTC1  
PTC0  
PTB3  
PTD4  
PTB2  
PTB1  
PTB0  
PTA7  
PTA6  
PTA3  
PTA2  
PTA1  
PTD5  
PTA0  
PTC7  
PTC6  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
ADP10  
ADP9  
ADP8  
ADP7  
I
I
I
I
ADP6  
TxD  
I
I/O  
I
ADP5  
ADP4  
I
I
RxD  
TPM2CH1 I/O  
TPM2CH0 I/O  
ADP3  
ADP2  
ADP1  
I
I
I
ADP0  
I
NOTE  
When an alternative function is first enabled, it is possible to get a spurious  
edge to the module. User software must clear out any associated flags before  
interrupts are enabled. Table 1 illustrates the priority if multiple modules are  
enabled. The highest priority module will have control over the pin.  
Selecting a higher priority pin function with a lower priority function  
already enabled can cause spurious edges to the lower priority module.  
Disable all modules that share a pin before enabling another module.  
MC9S08FL16 Series Data Sheet, Rev. 2  
Freescale Semiconductor  
7
Memory Map  
4
Memory Map  
Figure 5 shows the memory map for the MC9S08FL16 series. On-chip memory in the MC9S08FL16  
series of MCUs consists of RAM, flash program memory for nonvolatile data storage, plus I/O and  
control/status registers. The registers are divided into two groups:  
Direct-page registers (0x0000 through 0x003F)  
High-page registers (0x1800 through 0x187F)  
$0000  
$0000  
DIRECT PAGE REGISTERS  
RAM 768 BYTES  
DIRECT PAGE REGISTERS  
RAM 1024 BYTES  
$003F  
$0040  
$003F  
$0040  
$033F  
$0340  
$043F  
$0440  
UNIMPLEMENTED  
UNIMPLEMENTED  
$17FF  
$1800  
$17FF  
$1800  
HIGH PAGE REGISTERS  
HIGH PAGE REGISTERS  
$187F  
$1880  
$187F  
$1880  
UNIMPLEMENTED  
UNIMPLEMENTED  
$BFFF  
$C000  
FLASH  
16384 BYTES  
$DFFF  
$E000  
FLASH  
8192 BYTES  
$FFFF  
$FFFF  
MC9S08FL8  
MC9S08FL16  
Figure 5. MC9S08FL16 Series Memory Map  
MC9S08FL16 Series Data Sheet, Rev. 2  
8
Freescale Semiconductor  
Electrical Characteristics  
5
Electrical Characteristics  
5.1  
Introduction  
This section contains electrical and timing specifications for the MC9S08FL16 series of microcontrollers  
available at the time of publication.  
5.2  
Parameter Classification  
The electrical parameters shown in this supplement are guaranteed by various methods. To give the  
customer a better understanding, the following classification is used and the parameters are tagged  
accordingly in the tables where appropriate:  
Table 2. Parameter Classifications  
Those parameters are guaranteed during production testing on each individual device.  
P
C
Those parameters are achieved by the design characterization by measuring a statistically relevant  
sample size across process variations.  
Those parameters are achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted. All values shown in the typical column are within this  
category.  
T
Those parameters are derived mainly from simulations.  
D
NOTE  
The classification is shown in the column labeled “C” in the parameter  
tables where appropriate.  
5.3  
Absolute Maximum Ratings  
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not  
guaranteed. Stress beyond the limits specified in Table 3 may affect device reliability or cause permanent  
damage to the device. For functional operating conditions, refer to the remaining tables in this section.  
This device contains circuitry protecting against damage due to high static voltage or electrical fields;  
however, it is advised that normal precautions be taken to avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused  
inputs are tied to an appropriate logic voltage level (for instance, either V or V ) or the programmable  
SS  
DD  
pullup resistor associated with the pin is enabled.  
MC9S08FL16 Series Data Sheet, Rev. 2  
Freescale Semiconductor  
9
Electrical Characteristics  
Table 3. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Supply voltage  
VDD  
IDD  
VIn  
–0.3 to 5.8  
120  
V
mA  
V
Maximum current into VDD  
Digital input voltage  
–0.3 to VDD + 0.3  
Instantaneous maximum current  
ID  
±25  
mA  
Single pin limit (applies to all port pins)1, 2, 3  
Storage temperature range  
Tstg  
–55 to 150  
°C  
1
Input must be current limited to the value specified. To determine the value of the required  
current-limiting resistor, calculate resistance values for positive (VDD) and negative (VSS) clamp  
voltages, then use the larger of the two resistance values.  
2
3
All functional non-supply pins, except for PTA5 are internally clamped to VSS and VDD  
.
Power supply must maintain regulation within operating VDD range during instantaneous and  
operating maximum current conditions. If positive injection current (VIn > VDD) is greater than  
IDD, the injection current may flow out of VDD and could result in external power supply going  
out of regulation. Ensure external VDD load will shunt current greater than maximum injection  
current. This will be the greatest risk when the MCU is not consuming power. Examples are: if  
no system clock is present, or if the clock rate is very low (which would reduce overall power  
consumption).  
5.4  
Thermal Characteristics  
This section provides information about operating temperature range, power dissipation, and package  
thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in  
on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the  
MCU design. To take P into account in power calculations, determine the difference between actual pin  
I/O  
voltage and V or V and multiply by the pin current for each I/O pin. Except in cases of unusually high  
SS  
DD  
pin current (heavy loads), the difference between pin voltage and V or V will be very small.  
SS  
Table 4. Thermal Characteristics  
DD  
Rating  
Symbol  
Value  
Unit  
Operating temperature range  
(packaged)  
TL to TH  
–40 to 85  
TA  
°C  
Thermal resistance  
Single-layer board  
32-pin SDIP  
32-pin LQFP  
60  
85  
θJA  
°C/W  
°C/W  
Thermal resistance  
Four-layer board  
32-pin SDIP  
32-pin LQFP  
35  
56  
θJA  
The average chip-junction temperature (T ) in °C can be obtained from:  
J
MC9S08FL16 Series Data Sheet, Rev. 2  
10  
Freescale Semiconductor  
Electrical Characteristics  
T = T + (P × θ )  
JA  
Eqn. 1  
J
A
D
where:  
T = Ambient temperature, °C  
A
θ
= Package thermal resistance, junction-to-ambient, °C/W  
JA  
P = P + P  
D
int  
I/O  
P = I × V , Watts — chip internal power  
int  
DD  
DD  
P
= Power dissipation on input and output pins — user determined  
I/O  
For most applications, P far much smaller than P and can be neglected. An approximate relationship  
I/O  
int  
between P and T (if P is neglected) is:  
D
J
I/O  
P = K ÷ (T + 273 °C)  
Eqn. 2  
D
J
Solving Equation 1 and Equation 2 for K gives:  
2
K = P × (T + 273 °C) + θ × (P )  
Eqn. 3  
D
A
JA  
D
where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring  
P (at equilibrium) for an known T . Using this value of K, the values of P and T can be obtained by  
D
A
D
J
solving Equation 1 and Equation 2 iteratively for any value of T .  
A
5.5  
ESD Protection and Latch-Up Immunity  
Although damage from electrostatic discharge (ESD) is much less common on these devices than on early  
CMOS circuits, normal handling precautions must be taken to avoid exposure to static discharge.  
Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels  
of static without suffering any permanent damage.  
During the device qualification, ESD stresses were performed for the human body model (HBM) and the  
charge device model (CDM).  
A device is defined as a failure if after exposure to ESD pulses the device no longer meets the device  
specification. Complete DC parametric and functional testing is performed per the applicable device  
specification at room temperature followed by hot temperature, unless instructed otherwise in the device  
specification.  
Table 5. ESD and Latch-Up Test Conditions  
Model  
Description  
Series resistance  
Symbol  
Value  
1500  
100  
3
Unit  
Ω
R1  
C
Human  
body  
Storage capacitance  
pF  
V
Number of pulses per pin  
Minimum input voltage limit  
Maximum input voltage limit  
–2.5  
7.5  
Latch-up  
V
MC9S08FL16 Series Data Sheet, Rev. 2  
Freescale Semiconductor  
11  
Electrical Characteristics  
Table 6. ESD and Latch-Up Protection Characteristics  
1
No.  
1
Symbol  
VHBM  
VCDM  
ILAT  
Min  
±2000  
±500  
±100  
Max  
Unit  
V
Rating  
Human body model (HBM)  
Charge device model (CDM)  
Latch-up current at TA = 85 °C  
2
V
3
mA  
1
Parameter is achieved by design characterization on a small sample size from typical devices  
under typical conditions unless otherwise noted.  
5.6  
DC Characteristics  
This section includes information about power supply requirements and I/O pin characteristics.  
Table 7. DC Characteristics  
Num C  
Characteristic  
Symbol  
Condition  
Min.  
Typical1  
Max.  
Unit  
1
P Operating voltage  
4.5  
5.5  
V
All I/O pins,  
low-drive strength  
C
P
D
C
P
D
P
P
C
ILoad = –2 mA  
VDD – 1.5  
Output high  
voltage  
2
VOH  
V
mA  
V
All I/O pins,  
high-drive strength  
ILoad = –10 mA  
VDD – 1.5  
Output high  
current  
Max total IOH for all ports IOHT  
All I/O pins,  
100  
3
4
ILoad = 2 mA  
1.5  
low-drive strength  
Output low  
voltage  
VOL  
All I/O pins,  
high-drive strength  
ILoad = 10 mA  
1.5  
Output low  
current  
5
6
7
8
Max total IOL for all ports  
All digital inputs  
IOLT  
VIH  
VIL  
100  
mA  
V
Input high  
voltage  
0.65 × VDD  
Input low  
voltage  
All digital inputs  
0.35 × VDD  
V
Input  
hysteresis  
All digital inputs Vhys  
0.06 × VDD  
mV  
Input  
P leakage  
current  
All input only pins  
|IIn|  
9
VIn = VDD or VSS  
0.1  
0.1  
1
1
μA  
μA  
(per pin)  
Hi-Z  
(off-state)  
leakage  
All input/output  
10  
P
|IOZ  
|
VIn = VDD or VSS  
(per pin)  
current  
All digital inputs, when  
enabled (all I/O pins other RPU,  
Pullup,  
11a C pulldown  
resistors  
17.5  
17.5  
36.5  
36.5  
52.5  
52.5  
kΩ  
kΩ  
than  
RPD  
PTA5/IRQ/TCLK/RESET)  
Pullup,  
11b C pulldown  
resistors  
RPU,  
RPD  
(PTA5/IRQ/TCLK/RESET)  
(Note2)  
MC9S08FL16 Series Data Sheet, Rev. 2  
12  
Freescale Semiconductor  
Electrical Characteristics  
Table 7. DC Characteristics (continued)  
Num C  
Characteristic  
Single pin limit  
Symbol  
Condition  
Min.  
Typical1  
Max.  
Unit  
–0.2  
0.2  
mA  
DCinjection  
12 C current 3, 4,  
IIC  
VIN < VSS, VIN > VDD  
Total MCU limit, includes  
sum of all stressed pins  
5
–5  
5
mA  
13 C Input capacitance, all pins  
14 C RAM retention voltage  
15 C POR re-arm voltage6  
16 D POR re-arm time  
CIn  
0.6  
1.4  
8
pF  
V
VRAM  
VPOR  
tPOR  
1.0  
2.0  
0.9  
10  
V
μs  
Low-voltage detection threshold —  
high range  
P
P
C
P
P
VLVD1  
VLVD0  
VLVW3  
VLVW2  
VLVW1  
VLVW0  
V
V
V
V
V
V
VDD falling  
VDD rising  
3.9  
4.0  
4.0  
4.1  
4.1  
4.2  
17  
Low-voltage detection threshold —  
low range  
VDD falling  
VDD rising  
2.48  
2.54  
2.56  
2.62  
2.64  
2.70  
Low-voltage warning threshold —  
high range 1  
VDD falling  
VDD rising  
4.5  
4.6  
4.6  
4.7  
4.7  
4.8  
18  
Low-voltage warning threshold —  
high range 0  
VDD falling  
VDD rising  
4.2  
4.3  
4.3  
4.4  
4.4  
4.5  
Low-voltage warning threshold  
low range 1  
VDD falling  
VDD rising  
2.84  
2.90  
2.92  
2.98  
3.00  
3.06  
19  
20  
Low-voltage warning threshold —  
low range 0  
C
C
VDD falling  
VDD rising  
2.66  
2.72  
2.74  
2.80  
2.82  
2.88  
Low-voltage inhibit reset/recover  
hysteresis  
21 C Bandgap voltage reference7  
Vhys  
VBG  
100  
mV  
V
1.21  
1
2
Typical values are measured at 25 °C. Characterized, not tested.  
The specified resistor value is the actual value internal to the device. The pullup or pulldown value may appear higher when  
measured externally on the pin.  
3
4
All functional non-supply pins, except for PTA5 are internally clamped to VSS and VDD  
.
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate  
resistance values for positive and negative clamp voltages, then use the larger of the two values.  
5
Power supply must maintain regulation within operating VDD range during instantaneous and operating maximum current  
conditions. If the positive injection current (VIn > VDD) is greater than IDD, the injection current may flow out of VDD and could  
result in external power supply going out of regulation. Ensure that external VDD load will shunt current greater than maximum  
injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is  
present, or if clock rate is very low (which would reduce overall power consumption).  
6
7
Maximum is highest voltage that POR is guaranteed.  
Factory trimmed at VDD = 5.0 V, Temp = 25 °C  
MC9S08FL16 Series Data Sheet, Rev. 2  
Freescale Semiconductor  
13  
Electrical Characteristics  
Typical IOH vs. VDD-VOH VDD = 5 V (High Drive)  
50.000  
45.000  
40.000  
35.000  
30.000  
25.000  
20.000  
15.000  
10.000  
5.000  
-40C  
0C  
25C  
55C  
85C  
0.000  
0
0.3  
0.5  
0.8  
1
1.3  
2
V
Figure 6. Typical I Vs V –V (V = 5.0 V) (High Drive)  
OH  
DD OH  
DD  
MC9S08FL16 Series Data Sheet, Rev. 2  
14  
Freescale Semiconductor  
Electrical Characteristics  
Typical IOH vs. VDD-VOH VDD = 5V (Low Drive)  
10.000  
9.000  
8.000  
7.000  
6.000  
5.000  
4.000  
3.000  
2.000  
1.000  
0.000  
-40C  
0C  
25C  
55C  
85C  
0
0.3  
0.5  
0.8  
1
1.3  
2
V
Figure 7. Typical I Vs V –V (V = 5.0 V) (Low Drive)  
OH  
DD OH  
DD  
MC9S08FL16 Series Data Sheet, Rev. 2  
Freescale Semiconductor  
15  
Electrical Characteristics  
Typical IOL vs. VOL VDD = 5 V (High Drive)  
50.000  
45.000  
40.000  
35.000  
30.000  
25.000  
20.000  
15.000  
10.000  
5.000  
-40C  
0C  
25C  
55C  
85C  
0.000  
0
0.3  
0.5  
0.8  
1
1.3  
2
V
Figure 8. Typical I Vs V (V = 5.0 V) (High Drive)  
OH  
OL  
DD  
MC9S08FL16 Series Data Sheet, Rev. 2  
16  
Freescale Semiconductor  
Electrical Characteristics  
Typical IOL vs. VOL VDD = 5V (Low Drive)  
14.000  
12.000  
10.000  
8.000  
6.000  
4.000  
2.000  
0.000  
-40C  
0C  
25C  
55C  
85C  
0
0.3  
0.5  
0.8  
1
1.3  
2
V
Figure 9. Typical I Vs V (V = 5.0 V) (Low Drive)  
OH  
OL  
DD  
5.7  
Supply Current Characteristics  
This section includes information about power supply current in various operating modes.  
MC9S08FL16 Series Data Sheet, Rev. 2  
Freescale Semiconductor  
17  
Electrical Characteristics  
Table 8. Supply Current Characteristics  
Parameter  
VDD  
(V)  
Bus  
Freq  
Typical1  
Num  
C
Symbol  
Max  
Unit  
Temp  
5.66  
5.75  
5.80  
–40 °C  
25 °C  
85 °C  
P
10 MHz  
1 MHz  
10 MHz  
1 MHz  
Run supply current  
FEI mode, all modules off  
1
RIDD  
5
5
mA  
1.61  
1.65  
1.78  
–40 °C  
25 °C  
85 °C  
P
C
C
2.79  
2.86  
2.88  
–40 °C  
25 °C  
85 °C  
Wait mode supply current  
FEI mode, all modules off  
2
3
WIDD  
μA  
1.05  
1.06  
1.06  
–40 °C  
25 °C  
85 °C  
C
C
C
C
C
Stop2 mode supply current  
S2IDD  
S3IDD  
5
5
5
5
5
1.06  
1.17  
μA  
μA  
μA  
μA  
μA  
–40 to 85 °C  
–40 to 85 °C  
25 °C  
Stop3 mode supply current  
no clocks active  
4
5
6
ADC adder to stop3  
163.88  
1.25  
ICS adder to stop3  
EREFSTEN = 1  
25 °C  
LVD adder to stop3  
161.3  
25 °C  
1
Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.  
MC9S08FL16 Series Data Sheet, Rev. 2  
18  
Freescale Semiconductor  
Electrical Characteristics  
5.8  
External Oscillator (XOSC) and ICS Characteristics  
Refer to Figure 11 for crystal or resonator circuits.  
Table 9. XOSC and ICS Specifications (Temperature Range = –40 to 85 °C Ambient)  
Num  
C
Characteristic  
Symbol  
Min  
Typical1  
Max  
Unit  
Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1)  
Low range (RANGE = 0)  
High range (RANGE = 1) FEE or FBE mode2  
High range (RANGE = 1), high gain (HGO = 1), FBELP  
mode  
flo  
fhi  
fhi  
fhi  
32  
1
1
38.4  
5
16  
8
kHz  
MHz  
MHz  
MHz  
1
C
1
High range (RANGE = 1), low power (HGO = 0), FBELP  
mode  
C1  
C2  
See Note3  
2
3
D Load capacitors  
Feedback resistor  
Low range (32 kHz to 38.4 kHz)  
D
RF  
RS  
10  
1
MΩ  
MΩ  
High range (1 MHz to 16 MHz)  
Series resistor — Low range  
4
5
D
D
Low gain (HGO = 0)  
High gain (HGO = 1)  
0
100  
kΩ  
Series resistor — High range  
Low Gain (HGO = 0)  
High Gain (HGO = 1)  
8 MHz  
RS  
kΩ  
0
0
0
0
4 MHz  
1 MHz  
10  
20  
Crystal startup time4, 5  
Low range, low power  
Low range, high power  
High range, low power  
High range, high power  
200  
400  
5
t
CSTL  
6
C
ms  
t
CSTH  
15  
tIRST  
7
8
T Internal reference start-up time  
60  
100  
μs  
Square wave input clock frequency (EREFS = 0, ERCLKEN  
= 1)  
fextal  
D
0.03125  
0
5
20  
MHz  
MHz  
FEE or FBE mode2  
FBELP mode  
fint_t  
9
P Average internal reference frequency — trimmed  
31.25  
kHz  
DCO output frequency range — trimmed6  
P
fdco_t  
10  
16  
20  
MHz  
Low range (DRS = 00)  
Total deviation of DCO output from trimmed frequency4  
Over full voltage and temperature range  
Over fixed voltage and temperature range of 0 to 70°C  
Δfdco_t  
%fdco  
ms  
11  
12  
C
C
–1.0 to 0.5  
± 2  
± 1  
±0.5  
FLL acquisition time4,7  
tAcquire  
1
MC9S08FL16 Series Data Sheet, Rev. 2  
Freescale Semiconductor  
19  
Electrical Characteristics  
Table 9. XOSC and ICS Specifications (Temperature Range = –40 to 85 °C Ambient) (continued)  
Num  
C
Characteristic  
Symbol  
Min  
Typical1  
Max  
Unit  
Long term jitter of DCO output clock (averaged over 2 ms  
interval) 8  
CJitter  
%fdco  
13  
C
0.02  
0.2  
1
2
Data in Typical column was characterized at 3.0 V, 25 °C or is typical recommended value.  
When ICS is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of  
31.25 kHz to 39.0625 kHz.  
3
4
5
6
7
See crystal or resonator manufacturer’s recommendation.  
This parameter is characterized and not tested on each device.  
Proper PC board layout procedures must be followed to achieve specifications.  
The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.  
This specification applies to any time the FLL reference source or reference divider is changed, trim value changed, DMX32  
bit is changed, DRS bit is changed, or changing from FLL disabled (FBELP, FBILP) to FLL enabled (FEI, FEE, FBE, FBI). If  
a crystal/resonator is being used as the reference, this specification assumes it is already running.  
8
Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fBus  
.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise  
injected into the FLL circuitry via VDD and VSS and variation in crystal oscillator frequency increase the CJitter percentage for  
a given interval.  
XOSC  
EXTAL  
XTAL  
RS  
RF  
Crystal or Resonator  
C1  
C2  
Figure 10. Typical Crystal or Resonator Circuit  
MC9S08FL16 Series Data Sheet, Rev. 2  
20  
Freescale Semiconductor  
Electrical Characteristics  
1.00%  
0.50%  
0.00%  
-0.50%  
-1.00%  
-1.50%  
-2.00%  
-60  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Temperature  
Figure 11. Deviation of DCO Output from Trimmed Frequency (20 MHz, 5.0 V)  
5.9  
AC Characteristics  
This section describes timing characteristics for each peripheral system.  
MC9S08FL16 Series Data Sheet, Rev. 2  
Freescale Semiconductor  
21  
Electrical Characteristics  
5.9.1  
Control Timing  
Table 10. Control Timing  
Num  
C
D
D
D
D
Rating  
Symbol  
fBus  
tLPO  
textrst  
trstdrv  
Min  
Typical1  
Max  
10  
Unit  
MHz  
μs  
Bus frequency (tcyc = 1/fBus  
)
1
2
3
4
dc  
700  
Internal low power oscillator period  
1300  
External reset pulse width2  
Reset low drive  
100  
ns  
34 × tcyc  
ns  
BKGD/MS setup time after issuing background debug  
force reset to enter user or BDM modes  
tMSSU  
tMSH  
5
6
D
D
500  
100  
ns  
BKGD/MS hold time after issuing background debug  
force reset to enter user or BDM modes3  
μs  
IRQ pulse width  
Asynchronous path2  
Synchronous path4  
tILIH, IHIL  
t
100  
1.5 × tcyc  
ns  
7
D
Keyboard interrupt pulse width  
Asynchronous path2  
8
D
100  
1.5 × tcyc  
tILIH, IHIL  
t
ns  
ns  
Synchronous path4  
Port rise and fall time —  
Low output drive (PTxDS = 0) (load = 50 pF)5  
Slew rate control disabled (PTxSE = 0)  
Slew rate control enabled (PTxSE = 1)  
t
Rise, tFall  
16  
23  
9
C
Port rise and fall time —  
High output drive (PTxDS = 1) (load = 50 pF)5  
Slew rate control disabled (PTxSE = 0)  
Slew rate control enabled (PTxSE = 1)  
tRise, tFall  
ns  
5
9
1
Typical values are based on characterization data at VDD = 5.0 V, 25 °C unless otherwise stated.  
This is the shortest pulse that is guaranteed to be recognized as a reset pin request.  
2
3
To enter BDM mode following a POR, BKGD/MS must be held low during the power-up and for a hold time of tMSH after VDD  
rises above VLVD  
.
4
5
This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or  
may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.  
Timing is shown with respect to 20% VDD and 80% VDD levels. Temperature range –40 °C to 85 °C.  
textrst  
RESET PIN  
Figure 12. Reset Timing  
MC9S08FL16 Series Data Sheet, Rev. 2  
22  
Freescale Semiconductor  
Electrical Characteristics  
tIHIL  
KBIPx  
IRQ/KBIPx  
tILIH  
Figure 13. IRQ/KBIPx Timing  
5.9.2  
TPM Module Timing  
Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that  
can be used as the optional external source to the timer counter. These synchronizers operate from the  
current bus rate clock.  
Table 11. TPM Input Timing  
No.  
C
Function  
Symbol  
Min  
Max  
Unit  
1
2
3
4
5
D
D
D
D
D
External clock frequency  
External clock period  
fTCLK  
tTCLK  
tclkh  
0
fBus/4  
Hz  
tcyc  
tcyc  
tcyc  
tcyc  
4
External clock high time  
External clock low time  
Input capture pulse width  
1.5  
1.5  
1.5  
tclkl  
tICPW  
tTCLK  
tclkh  
TCLK  
tclkl  
Figure 14. Timer External Clock  
tICPW  
TPMCHn  
TPMCHn  
tICPW  
Figure 15. Timer Input Capture Pulse  
MC9S08FL16 Series Data Sheet, Rev. 2  
Freescale Semiconductor  
23  
Electrical Characteristics  
5.10 ADC Characteristics  
Table 12. 8-Bit ADC Operating Conditions  
Characteristic  
Conditions  
Symb  
Min  
Typical1  
Max  
Unit  
Comment  
Absolute  
Delta to VDD (VDD – VDDA  
VDDA  
ΔVDDA  
ΔVSSA  
VADIN  
4.5  
0
5.5  
100  
V
mV  
mV  
V
Supply voltage  
2
)
–100  
–100  
VREFL  
2
Ground voltage Delta to VSS (VSS – VSSA  
)
0
100  
Input voltage  
VREFH  
Input  
capacitance  
CADIN  
RADIN  
RAS  
4.5  
3
5.5  
5
pF  
kΩ  
kΩ  
Input resistance  
Analog source  
resistance  
8-bit mode (all valid fADCK  
)
10  
External to MCU  
High speed (ADLPC = 0)  
Low power (ADLPC = 1)  
0.4  
0.4  
8.0  
4.0  
ADC conversion  
clock frequency  
fADCK  
MHz  
1
Typical values assume VDDA = 5.0 V, Temp = 25 °C, fADCK= 1.0 MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
2
DC potential difference.  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
ZADIN  
CIRCUIT  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
ADC SAR  
ENGINE  
input  
protection  
RAS  
RADIN  
+
VADIN  
CAS  
VAS  
+
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 16. ADC Input Impedance Equivalency Diagram  
MC9S08FL16 Series Data Sheet, Rev. 2  
24  
Freescale Semiconductor  
Electrical Characteristics  
Table 13. 8-Bit ADC Characteristics (V  
= V  
, V  
= V  
)
SSA  
REFH  
Min  
DDA  
REFL  
C
Characteristic  
Conditions  
Symb  
Typ1  
Max  
Unit  
Comment  
Supply Current  
ADLPC=1  
ADLSMP=1  
ADCO=1  
T
IDDA  
133  
1
μA  
Supply Current  
ADLPC=1  
ADLSMP=0  
ADCO=1  
T
T
P
IDDA  
IDDA  
IDDA  
218  
327  
μA  
μA  
Supply Current  
ADLPC=0  
ADLSMP=1  
ADCO=1  
Supply Current  
ADLPC=0  
ADLSMP=0  
ADCO=1  
0.582  
mA  
C
P
Supply Current Stop, Reset, Module Off  
IDDA  
2
0.011  
3.3  
1
5
μA  
ADC  
Asynchronous  
Clock Source  
High Speed (ADLPC = 0)  
Low Power (ADLPC = 1)  
Short Sample (ADLSMP = 0)  
Long Sample (ADLSMP = 1)  
tADACK  
1/fADACK  
=
fADACK  
MHz  
1.25  
2
3.3  
Conversion  
Time(Including  
sample time)  
20  
40  
ADCK  
cycles  
P
P
tADC  
See reference  
manual for  
conversion  
Short Sample (ADLSMP = 0)  
Long Sample (ADLSMP = 1)  
–40°C– 25°C  
3.5  
ADCK  
cycles  
time variances  
Sample Time  
tADS  
23.5  
3.266  
3.638  
Temp Sensor  
Slope  
D
D
m
mV/°C  
25°C– 125°C  
Temp Sensor  
Voltage  
25 °C  
VTEMP25  
1.396  
mV  
Total  
Includes  
quantization  
LSB2  
ETUE  
P
Unadjusted  
Error  
8-bit mode  
±0.5  
±1.0  
Differential  
Non-Linearity  
LSB2  
LSB2  
LSB2  
LSB2  
P
T
P
T
8-bit mode3  
8-bit mode  
8-bit mode  
8-bit mode  
DNL  
INL  
±0.3  
±0.3  
±0.5  
±0.5  
±0.5  
±0.5  
±0.5  
±0.5  
Integral  
Non-Linearity  
Zero-Scale  
Error  
EZS  
VADIN = VSSA  
VADIN = VDDA  
Full-Scale  
Error  
EFS  
MC9S08FL16 Series Data Sheet, Rev. 2  
Freescale Semiconductor  
25  
Electrical Characteristics  
Table 13. 8-Bit ADC Characteristics (V  
= V  
, V  
= V  
) (continued)  
SSA  
REFH  
DDA  
REFL  
C
Characteristic  
Conditions  
8-bit mode  
Symb  
Min  
Typ1  
Max  
±0.5  
Unit  
Comment  
Quantization  
Error  
LSB2  
EQ  
EIL  
D
Pad leakage2  
* RAS  
Input Leakage  
Error  
LSB2  
D
8-bit mode  
±0.1  
±1  
1
2
Typical values assume VDDA = 5.0 V, Temp = 25 °C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
Based on input pad leakage current. Refer to pad electricals.  
5.11 Flash Specifications  
This section provides details about program/erase times and program-erase endurance for the flash  
memory.  
Program and erase operations do not require any special power sources other than the normal V supply.  
DD  
For more detailed information about program/erase operations, see the Memory section.  
Table 14. Flash Characteristics  
C
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
Supply voltage for program/erase  
–40 °C to 85 °C  
D
Vprog/erase  
VRead  
fFCLK  
4.5  
4.5  
150  
5
5.5  
5.5  
V
D
D
D
P
P
P
P
Supply voltage for read operation  
Internal FCLK frequency1  
Internal FCLK period (1/FCLK)  
Byte program time (random location)2  
Byte program time (burst mode)2  
Page erase time2  
Mass erase time2  
Byte program current3  
Page erase current3  
V
200  
6.67  
kHz  
μs  
tFcyc  
tprog  
9
tFcyc  
tFcyc  
tFcyc  
tFcyc  
mA  
mA  
tBurst  
4
4000  
20,000  
4
tPage  
tMass  
RIDDBP  
RIDDPE  
6
Program/erase endurance4  
TL to TH = –40 °C to 85 °C  
T = 25 °C  
C
C
5
10,000  
100  
cycles  
years  
Data retention5  
tD_ret  
1
2
The frequency of this clock is controlled by a software setting.  
These values are hardware state machine controlled. User code does not need to count cycles. This information supplied  
for calculating approximate time to program and erase.  
3
4
The program and erase currents are additional to the standard run IDD. These values are measured at room temperatures  
with VDD = 5.0 V, bus frequency = 4.0 MHz.  
Typical endurance for flash was evaluated for this product family on the 9S12Dx64. For additional information on how  
Freescale defines typical endurance, please refer to Engineering Bulletin EB619, Typical Endurance for Nonvolatile  
Memory.  
MC9S08FL16 Series Data Sheet, Rev. 2  
26  
Freescale Semiconductor  
Ordering Information  
Typical data retention values are based on intrinsic capability of the technology measured at high temperature and  
5
de-rated to 25°C using the Arrhenius equation. For additional information on how Freescale defines typical data retention,  
please refer to Engineering Bulletin EB618, Typical Data Retention for Nonvolatile Memory.  
5.12 EMC Performance  
Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the  
MCU resides. Board design and layout, circuit topology choices, location and characteristics of external  
components as well as MCU software operation all play a significant role in EMC performance. The  
system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263,  
AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.  
5.12.1 Radiated Emissions  
Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell  
method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed  
with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test  
software. The radiated emissions from the microcontroller are measured in a TEM cell in two package  
orientations (the North and East).  
The maximum radiated RF emissions of the tested configuration in all orientations are less than or equal  
to the reported emissions levels.  
Table 15. Radiated Emissions, Electric Field  
Level1  
Parameter  
Symbol  
Conditions  
Frequency  
fOSC/fBUS  
Unit  
(Max)  
Radiated emissions,  
electric field  
VRE_TEM  
VDD = 5.0 V  
TA = 25 οC  
package type  
32-pin LQFP  
0.15 – 50 MHz  
50 – 150 MHz  
150 – 500 MHz  
500 – 1000 MHz  
IEC Level  
4 MHz crystal  
19 MHz bus  
9
5
2
1
N
1
dBμV  
SAE Level  
1
Data based on qualification test results.  
6
Ordering Information  
This section contains ordering information for MC9S08FL16 series devices. See below for an example of  
the device numbering system.  
Table 16. Device Numbering System  
Memory  
Device Number1  
Available Packages2  
FLASH  
RAM  
MC9S08FL16  
MC9S08FL8  
16 KB  
8 KB  
1024  
768  
32 SDIP  
32 LQFP  
MC9S08FL16 Series Data Sheet, Rev. 2  
Freescale Semiconductor  
27  
Package Information  
1
2
See the reference manual, MC9S08FL16 Series Reference Manual, for a complete  
description of modules included on each device.  
See Table 17 for package information.  
Example of the device numbering system:  
FL 16  
C
XX  
9
MC S08  
Status  
(MC = Fully Qualified)  
Package designator (see Table 17)  
Temperature range  
(C =–40 °C to 85 °C)  
Memory  
(9 = Flash-based)  
Core  
Approximate flash size in KB  
Family  
7
Package Information  
Table 17. Package Descriptions  
Pin Count  
Package Type  
Abbreviation  
Designator  
Case No.  
Document No.  
32  
32  
Low Quad Flat Package  
LQFP  
SDIP  
LC  
873A-03  
1376-02  
98ASH70029A  
98ASA99330D  
Shrink Dual In-line Package  
BM  
7.1  
Mechanical Drawings  
The following pages are mechanical drawings for the packages described in Table 17.  
MC9S08FL16 Series Data Sheet, Rev. 2  
28  
Freescale Semiconductor  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Information in this document is provided solely to enable system and  
software implementers to use Freescale Semiconductor products. There are  
no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Freescale Semiconductor reserves the right to make changes without further  
notice to any products herein. Freescale Semiconductor makes no warranty,  
representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Freescale Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters that may be provided in Freescale  
Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer  
application by customer’s technical experts. Freescale Semiconductor does  
not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized  
for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other  
application in which the failure of the Freescale Semiconductor product could  
create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Freescale  
Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that Freescale Semiconductor was negligent  
regarding the design or manufacture of the part.  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Freescale™ and the Freescale logo are trademarks of  
Freescale Semiconductor, Inc. All other product or service names  
are the property of their respective owners.  
© Freescale Semiconductor, Inc. 2009. All rights reserved.  
MC9S08FL16  
Rev. 2  
7/2009  

相关型号:

MC9S08FL8CBM

MC9S08FL8CBM
FREESCALE

MC9S08FL8CLC

S08FL 8-bit MCU, S08 core, 8KB Flash, 20MHz, QFP 32
NXP

MC9S08FL8CLC

8-BIT, FLASH, 20 MHz, MICROCONTROLLER, QFP32, 7 X 7 MM, 1.40 MM HEIGHT, 0.80 MM PITRCH, ROHS COMPLIANT, MS-026BBA, LQFP-32
ROCHESTER

MC9S08GB32

Microcontrollers
MOTOROLA

MC9S08GB32

Microcontrollers
FREESCALE

MC9S08GB32A

HCS08 Microcontrollers
FREESCALE

MC9S08GB32ACFUE

8-BIT, FLASH, 40MHz, MICROCONTROLLER, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, 0.5 MM PITCH, MS-026BCD, LQFP-64
ROCHESTER

MC9S08GB32ACFUE

8 BIT 32K FLASH 4K RAM
NXP

MC9S08GB32ACFUER

8-BIT, FLASH, 40MHz, MICROCONTROLLER, PQFP64, 10 X 10 MM, 1.40 MM HEIGHT, 0.5 MM PITCH, MS-026BCD, LQFP-64
NXP

MC9S08GB32CB

Microcontrollers
FREESCALE

MC9S08GB32CFB

Microcontrollers
FREESCALE

MC9S08GB32CFD

Microcontrollers
FREESCALE