MC13155D [FREESCALE]

Wideband FM IF; WIDEBAND FM IF
MC13155D
型号: MC13155D
厂家: Freescale    Freescale
描述:

Wideband FM IF
WIDEBAND FM IF

文件: 总16页 (文件大小:306K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor, Inc.  
Order this document by MC13155/D  
The MC13155 is a complete wideband FM detector designed for satellite  
TV and other wideband data and analog FM applications. This device may  
be cascaded for higher IF gain and extended Receive Signal Strength  
Indicator (RSSI) range.  
WIDEBAND FM IF  
12 MHz Video/Baseband Demodulator  
Ideal for Wideband Data and Analog FM Systems  
Limiter Output for Cascade Operation  
Low Drain Current: 7.0 mA  
SEMICONDUCTOR  
TECHNICAL DATA  
Low Supply Voltage: 3.0 to 6.0 V  
Operates to 300 MHz  
MAXIMUM RATINGS  
16  
Rating  
Pin  
11, 14  
1, 16  
Symbol  
V (max)  
EE  
Value  
6.5  
Unit  
Vdc  
Vrms  
°C  
1
Power Supply Voltage  
Input Voltage  
V
in  
1.0  
Junction Temperature  
Storage Temperature Range  
T
J
+150  
D SUFFIX  
PLASTIC PACKAGE  
CASE 751B  
T
stg  
– 65 to +150  
°C  
NOTE: Devices should not be operated at or outside these values. The “Recommended  
(SO–16)  
Operating Conditions” provide for actual device operation.  
PIN CONNECTIONS  
Input  
1
2
3
4
5
6
7
8
Input  
16  
15  
14  
13  
12  
11  
10  
9
Figure 1. Representative Block Diagram  
Decouple  
Decouple  
Buffered  
V
1
V
1
EE  
CC  
RSSI  
Output  
RSSI  
Output  
Limiter  
Output  
Decouple  
15  
Output  
Output  
RSSI Buffer  
RSSI  
13  
12  
10  
V
2
V
2
CC  
EE  
16  
1
9
8
Input  
Input  
Limiter Out  
Quad Coil  
Limiter Out  
Quad Coil  
Three Stage  
Amplifier  
Quad  
Coil  
Detector  
(Top View)  
2
Decouple  
4
5
7
Balanced  
Outputs  
Limiter  
Output  
ORDERING INFORMATION  
Operating  
Temperature Range  
Device  
Package  
MC13155D  
T
A
= – 40 to +85°C  
SO–16  
NOTE: This device requires careful layout and decoupling to ensure stable operation.  
Motorola, Inc. 1996  
Rev 1  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MC13155  
RECOMMENDED OPERATING CONDITIONS  
Rating  
Pin  
Symbol  
Value  
Unit  
Power Supply Voltage (T = 25°C)  
11, 14  
3, 6  
V
V
– 3.0 to – 6.0  
Grounded  
Vdc  
A
EE  
CC  
– 40°C T 85°C  
A
Maximum Input Frequency  
Ambient Temperature Range  
1, 16  
f
300  
MHz  
in  
T
– 40 to + 85  
°C  
J
DC ELECTRICAL CHARACTERISTICS (T = 25°C, no input signal.)  
A
Characteristic  
Pin  
Symbol  
Min  
Typ  
Max  
Unit  
Drain Current  
11  
14  
14  
I
I
I
2.0  
3.0  
3.0  
2.8  
4.3  
4.3  
4.0  
6.0  
6.0  
mA  
11  
14  
14  
(V  
EE  
(V  
EE  
= – 5.0 Vdc)  
= – 5.0 Vdc)  
Drain Current Total (see Figure 3)  
11, 14  
I
5.0  
5.0  
5.0  
4.7  
7.1  
7.5  
7.5  
6.6  
10  
mA  
Total  
(V  
EE  
(V  
EE  
(V  
EE  
= – 5.0 Vdc)  
= – 6.0 Vdc)  
= – 3.0 Vdc)  
10.5  
10.5  
9.5  
AC ELECTRICAL CHARACTERISTICS (T = 25°C, f = 70 MHz, V  
IF  
= – 5.0 Vdc Figure 2, unless otherwise noted.)  
EE  
A
Characteristic  
Input for – 3 dB Limiting Sensitivity  
Differential Detector Output Voltage (V = 10 mVrms)  
Pin  
1, 16  
4, 5  
Min  
Typ  
Max  
Unit  
1.0  
2.0  
mVrms  
mV  
p–p  
in  
(f  
dev  
= ± 3.0 MHz) (V  
= – 6.0 Vdc)  
= – 5.0 Vdc)  
= – 3.0 Vdc)  
470  
450  
380  
590  
570  
500  
700  
680  
620  
EE  
EE  
EE  
(V  
(V  
Detector DC Offset Voltage  
RSSI Slope  
4, 5  
13  
– 250  
1.4  
250  
2.8  
39  
mVdc  
µA/dB  
dB  
2.1  
35  
RSSI Dynamic Range  
RSSI Output  
13  
31  
12  
µA  
(V = 100 µVrms)  
(V = 1.0 mVrms)  
in  
16  
2.1  
2.4  
24  
65  
75  
36  
in  
(V = 10 mVrms)  
in  
(V = 100 mVrms)  
in  
(V = 500 mVrms)  
in  
RSSI Buffer Maximum Output Current (V = 10 mVrms)  
in  
13  
2.3  
mAdc  
Differential Limiter Output  
mVrms  
(V = 1.0 mVrms)  
(V = 10 mVrms)  
in  
7, 10  
100  
140  
180  
in  
Demodulator Video 3.0 dB Bandwidth  
4, 5  
12  
MHz  
Input Impedance (Figure 14)  
1, 16  
@ 70 MHz Rp (V  
= – 5.0 Vdc)  
450  
4.8  
pF  
EE  
@ 70 MHz Cp (C =C = 100 p)  
2
15  
Differential IF Power Gain  
1, 7, 10, 16  
46  
dB  
NOTE: Positive currents are out of the pins of the device.  
2
MOTOROLA ANALOG IC DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MC13155  
CIRCUIT DESCRIPTION  
The MC13155 consists of a wideband three–stage limiting  
amplifier, a wideband quadrature detector which may be  
operated up to 200 MHz, and a received signal strength  
indicator (RSSI) circuit which provides a current output  
linearly proportional to the IF input signal level for  
approximately 35 dB range of input level.  
Figure 2. Test Circuit  
1.0n  
1.0n  
27  
V
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
IN1  
IN2  
in  
10n  
49.9  
DEC1  
DEC2  
V
1
V
1
CC  
EE  
V
EE  
1.0n  
100n  
1.0k  
10  
µ
µ
+
+
RSSI  
Buffer  
DETO1  
DETO2  
Video  
Output  
RSSI  
V
V
EE  
1.0n  
1.0n  
V
2
V
2
CC  
EE  
EE  
10  
100n  
Limiter 1  
Output  
Limiter 2  
Output  
LIMO1  
LIMO2  
1.0n  
1.0n  
330  
330  
QUAD1  
QUAD2  
499  
20p  
L1 – Coilcraft part number 146–09J08S  
L1  
260n  
APPLICATIONS INFORMATION  
Evaluation PC Board  
The evaluation PCB shown in Figures 19 and 20 is very  
versatile and is designed to cascade two ICs. The center  
section of the board provides an area for attaching all surface  
mount components to the circuit side and radial leaded  
components to the component ground side of the PCB (see  
Figures 17 and 18). Additionally, the peripheral area  
surrounding the RF core provides pads to add supporting  
and interface circuitry as a particular application dictates.  
This evaluation board will be discussed and referenced in  
this section.  
Scattering parameter (S–parameter) characterization of  
the IF as a two port linear amplifier is useful to implement  
maximum stable power gain, input matching, and stability  
over a desired bandpass response and to ensure stable  
operation outside the bandpass as well. The MC13155 is  
unconditionally stable over most of its useful operating  
frequency range; however, it can be made unconditionally  
stable over its entire operating range with the proper  
decoupling of Pins 2 and 15. Relatively small decoupling  
capacitors of about 100 pF have a significant effect on the  
wideband response and stability. This is shown in the  
scattering parameter tables where S–parameters are shown  
Limiting Amplifier  
Differential input and output ports interfacing the three  
stage limiting amplifier provide a differential power gain of  
typically 46 dB and useable frequency range of 300 MHz.  
The IF gain flatness may be controlled by decoupling of the  
internal feedback network at Pins 2 and 15.  
for various values of C2 and C15 and at V  
– 5.0 Vdc.  
of – 3.0 and  
EE  
3
MOTOROLA ANALOG IC DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MC13155  
TYPICAL PERFORMANCE AT TEMPERATURE  
(See Figure 2. Test Circuit)  
Figure 4. RSSI Output versus Frequency and  
Input Signal Level  
Figure 3. Drain Current versus Supply Voltage  
10  
100  
80  
T
= 25  
°C  
V
= – 5.0Vdc  
A
EE  
0 dBm  
8.0  
I
= I + I  
Total 14 11  
–10 dBm  
60  
6.0  
4.0  
2.0  
0.0  
I
14  
– 20 dBm  
40  
20  
0
– 30 dBm  
– 40 dBm  
0.0  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
10  
100  
f, FREQUENCY (MHz)  
1000  
V
, SUPPLY VOLTAGE (–Vdc)  
EE  
Figure 5. Total Drain Current versus Ambient  
Temperature and Supply Voltage  
Figure 6. Detector Drain Current and Limiter  
Drain Current versus Ambient Temperature  
9.0  
8.5  
8.0  
5.5  
5.0  
f = 70 MHz  
V
= – 5.0 Vdc  
– 5.0 Vdc  
EE  
V
= – 6.0 Vdc  
– 3.0 Vdc  
EE  
I
14  
4.5  
4.0  
3.5  
3.0  
2.5  
7.5  
7.0  
6.5  
I
11  
6.0  
5.5  
5.0  
2.0  
– 50  
– 50  
– 30  
–10  
10  
30  
50  
70  
C)  
90  
110  
– 30  
–10  
10  
30  
50  
70  
C)  
90  
110  
T
AMBIENT TEMPERATURE (  
°
T
AMBIENT TEMPERATURE (°  
A,  
A,  
Figure 7. RSSI Output versus Ambient  
Temperature and Supply Voltage  
Figure 8. RSSI Output versus Input Signal  
Voltage (V at Temperature)  
in  
25.0  
24.5  
100  
80  
V
= – 6.0 Vdc  
EE  
T
= + 85°C  
A
24.0  
23.5  
23.0  
22.5  
22.0  
21.5  
+ 25  
°C  
60  
V
= – 5.0 Vdc  
EE  
– 40°C  
40  
20  
0
V
= – 3.0 Vdc  
EE  
– 50  
– 30  
–10  
10  
30  
50  
70  
C)  
90  
110  
0.1  
1.0  
10  
V , INPUT VOLTAGE (mVrms)  
in  
100  
1000  
T
AMBIENT TEMPERATURE (  
°
A,  
4
MOTOROLA ANALOG IC DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MC13155  
Figure 9. Differential Detector Output  
Voltage versus Ambient Temperature  
and Supply Voltage  
Figure 10. Differential Limiter Output Voltage  
versus Ambient Temperature  
(V = 1 and 10 mVrms)  
in  
750  
700  
650  
600  
220  
200  
180  
V
= – 6.0 Vdc  
f = 70 MHz  
= – 5.0 Vdc  
EE  
V
= 10 mVrms  
in  
V
EE  
– 5.0 Vdc  
– 3.0 Vdc  
550  
500  
450  
400  
350  
160  
140  
120  
V
= 1.0 mVrms  
in  
– 50  
– 30  
–10  
10  
30  
50  
70  
C)  
90  
110  
– 50  
– 30  
–10  
AMBIENT TEMPERATURE (  
A,  
10  
30  
50  
70  
90  
T
AMBIENT TEMPERATURE (  
°
T
°
C)  
A,  
Figure 11A. Differential Detector Output Voltage  
versus Q of Quadrature LC Tank  
Figure 11B. Differential Detector Output Voltage  
versus Q of Quadrature LC Tank  
1600  
1400  
2400  
2000  
1600  
1200  
800  
V
V
f
= – 30 dBm  
= – 5.0 Vdc  
= 70 MHz  
V
V
f
= – 30 dBm  
= – 5.0 Vdc  
= 70 MHz  
in  
EE  
c
in  
EE  
c
f
=
±
6.0 MHz  
dev  
f
=
±
±
±
6.0 MHz  
5.0 MHz  
4.0 MHz  
dev  
f
= 1.0 MHz  
f
= 1.0 MHz  
1200 mod  
mod  
±
±
5.0 MHz  
4.0 MHz  
(Figure 16 no external capacitors  
1000 between Pins 7, 8 and 9, 10)  
(Figure 16 no external capacitors  
between Pins 7, 8 and 9, 10)  
±
±
3.0 MHz  
2.0 MHz  
800  
600  
400  
200  
0
±
±
±
3.0 MHz  
2.0 MHz  
1.0 MHz  
±
1.0 MHz  
5.5  
400  
0
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
6.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
Q OF QUADRATURE LC TANK  
Q OF QUADRATURE LC TANK  
Figure 12. RSSI Output Voltage versus IF Input  
Figure 13. – S+N, N versus IF Input  
10  
0
0
V
f
= – 5.0 Vdc  
= 70 MHz  
EE  
c
S+N  
Capacitively coupled  
interstage: no attenuation  
1.0  
(See Figure 16)  
–10  
– 20  
– 30  
– 40  
– 50  
– 60  
– 70  
2.0  
3.0  
15 dB Interstage  
Attenuator  
4.0  
5.0  
f
f
f
= 70 MHz  
c
N
= 1.0 MHz  
mod  
dev  
EE  
=
± 5.0 MHz  
V
= – 5.0 Vdc  
– 80  
– 60  
– 40  
– 20  
0
20  
– 90  
– 70  
– 50  
– 30  
–10  
10  
IF INPUT, (dBm)  
IF INPUT (dBm)  
5
MOTOROLA ANALOG IC DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MC13155  
In the S–parameters measurements, the IF is treated as a  
Available Gain (MAG). These terms are related in the  
following equations:  
two–port linear class A amplifier. The IF amplifier is  
measured with a single–ended input and output configuration  
in which the Pins 16 and 7 are terminated in the series  
2
2
2
K = (1– IS I – I S I + I I ) / ( 2 I S  
S
I )  
11  
22  
12 21  
where: I I = I S  
S
– S  
S
I.  
11 22  
12 21  
combination of a 47 resistor and a 10 nF capacitor to V  
ground (see Figure 14. S–Parameter Test Circuit).  
CC  
2
1/2  
I
MAG = 10 log I S I / I S I + 10 log I K – ( K – 1)  
21 12  
The S–parameters are in polar form as the magnitude  
(MAG) and angle (ANG). Also listed in the tables are the  
calculated values for the stability factor (K) and the Maximum  
where: K > 1. The necessary and sufficient conditions for  
unconditional stability are given as K > 1:  
2
2
2
B1 = 1 + I S I – I S I – I I > 0  
11  
22  
Figure 14. S–Parameter Test Circuit  
1.0n  
C15  
SMA  
1.0n  
47  
IF  
Input  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
IN1  
IN2  
C2  
DEC1  
DEC2  
V
V
1
V
1
EE  
CC  
EE  
1.0n  
100n  
10µ  
+
RSSI  
Buffer  
DETO1  
DETO2  
RSSI  
V
2
V
2
CC  
EE  
SMA  
IF  
Output  
LIMO1  
LIMO2  
1.0n  
1.0n  
47  
QUAD1  
QUAD2  
6
MOTOROLA ANALOG IC DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MC13155  
S–Parameters (V  
= – 5.0 Vdc, T = 25°C, C and C = 0 pF)  
15  
EE  
Input S11  
A
2
Frequency  
Forward S21  
Rev S12  
Output S22  
MAG  
K
MAG  
dB  
32  
MHz  
1.0  
2.0  
5.0  
7.0  
10  
MAG  
0.94  
0.78  
0.48  
0.59  
0.75  
0.95  
0.98  
0.95  
0.93  
0.91  
0.87  
0.89  
0.61  
0.56  
0.54  
ANG  
–13  
– 23  
1.0  
MAG  
8.2  
ANG  
143  
109  
51  
MAG  
ANG  
7.0  
ANG  
– 22  
– 31  
–17  
–13  
–1.0  
0
MAG  
2.2  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.002  
0.022  
0.03  
0.87  
0.64  
0.34  
0.33  
0.41  
0.45  
0.52  
0.54  
0.53  
0.50  
0.42  
0.40  
0.52  
0.47  
0.44  
23.5  
39.2  
40.3  
40.9  
42.9  
42.2  
39.8  
44.2  
39.5  
34.9  
11.1  
3.5  
– 40  
– 97  
– 41  
– 82  
– 42  
– 9.0  
112  
80  
4.2  
33.5  
33.7  
34.6  
36.7  
46.4  
8.7  
15  
34  
10.6  
5.7  
17  
19  
20  
7.0  
– 6.0  
– 48  
– 68  
– 93  
–139  
–179  
– 58  
–164  
92  
1.05  
0.29  
1.05  
0.76  
0.94  
0.97  
0.75  
2.6  
50  
–10  
–16  
– 23  
– 34  
– 47  
–103  
–156  
162  
131  
– 3.0  
–16  
– 22  
– 34  
– 44  
–117  
179  
112  
70  
46.4  
100  
150  
200  
500  
700  
900  
1000  
106  
77  
57  
0
13.7  
4.5  
0.4  
1.2  
0.048  
0.072  
– 44  
– 48  
4.7  
0.8  
42  
76  
5.1  
S–Parameters (V  
= – 5.0 Vdc, T = 25°C, C and C = 100 pF)  
15  
EE  
Input S11  
A
2
Frequency  
Forward S21  
Rev S12  
Output S22  
K
MAG  
1.2  
6.0  
4.2  
3.1  
2.4  
2.4  
2.3  
2.2  
1.3  
1.4  
1.3  
1.7  
6.3  
13.3  
12.5  
MAG  
dB  
MHz  
1.0  
2.0  
5.0  
7.0  
10  
MAG  
0.98  
0.50  
0.87  
0.90  
0.92  
0.92  
0.91  
0.91  
0.91  
0.90  
0.86  
0.80  
0.62  
0.56  
0.54  
ANG  
–15  
MAG  
ANG  
174  
MAG  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.002  
0.012  
0.013  
0.020  
0.034  
ANG  
–14  
–108  
100  
– 40  
– 40  
– 87  
85  
MAG  
0.84  
0.62  
0.47  
0.45  
0.44  
0.49  
0.50  
0.52  
0.50  
0.43  
0.43  
0.57  
0.49  
0.44  
0.44  
ANG  
– 27  
– 35  
– 9.0  
– 8.0  
– 5.0  
– 6.0  
– 5.0  
– 4.0  
–11  
11.7  
39.2  
39.9  
40.4  
41  
37.4  
35.5  
39.2  
40.3  
41.8  
41.9  
42  
– 2.0  
8.0  
85.5  
19  
5.0  
9.0  
3.0  
1.0  
20  
– 2.0  
– 8.0  
–11  
42.4  
41.2  
39.1  
43.4  
38.2  
35.5  
8.3  
–14  
50  
– 45  
– 63  
– 84  
–126  
–160  
– 9.0  
– 95  
–171  
154  
70  
76  
41.6  
43.6  
41.8  
39.4  
23.5  
12.5  
2.8  
100  
150  
200  
500  
700  
900  
1000  
–15  
85  
– 22  
– 33  
– 66  
– 96  
–120  
–136  
96  
– 22  
– 21  
– 63  
–111  
–150  
–179  
78  
75  
2.9  
50  
1.0  
53  
0.69  
65  
– 0.8  
7
MOTOROLA ANALOG IC DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MC13155  
S–Parameters (V  
= – 5.0 Vdc, T = 25°C, C and C = 680 pF)  
15  
EE  
Input S11  
A
2
Frequency  
Forward S21  
Rev S12  
MAG  
Output S22  
MAG  
K
MAG  
0.58  
1.4  
MAG  
dB  
MHz  
1.0  
2.0  
5.0  
7.0  
10  
MAG  
0.74  
0.90  
0.91  
0.91  
0.91  
0.91  
0.90  
0.90  
0.91  
0.94  
0.95  
0.82  
0.66  
0.56  
0.54  
ANG  
4.0  
MAG  
53.6  
70.8  
87.1  
90.3  
92.4  
95.5  
89.7  
82.6  
77.12  
62.0  
56.9  
12.3  
3.8  
ANG  
110  
55  
ANG  
101  
60  
ANG  
– 35  
– 34  
– 60  
– 67  
– 67  
–15  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.003  
0.007  
0.014  
0.028  
0.048  
0.97  
0.68  
0.33  
0.25  
0.14  
0.12  
0.24  
0.33  
0.42  
0.42  
0.33  
0.44  
0.40  
0.39  
0.41  
3.0  
45.6  
49  
0
21  
–121  
–18  
33  
1.1  
0
11  
1.2  
48.4  
47.5  
48.2  
46.5  
47.4  
49  
– 2.0  
– 4.0  
– 8.0  
–10  
–14  
– 20  
– 33  
– 63  
– 98  
–122  
–139  
2.0  
1.5  
20  
–16  
– 50  
–70  
–93  
–122  
–148  
–12  
–107  
177  
141  
63  
1.3  
50  
– 43  
92  
26  
1.8  
70  
21  
1.4  
100  
150  
200  
500  
700  
900  
1000  
23  
–1.0  
– 22  
– 62  
– 67  
–115  
–166  
165  
1.05  
0.54  
0.75  
1.8  
96  
146  
79  
26.9  
14.6  
4.7  
84  
4.8  
1.3  
78  
8.0  
0.87  
76  
7.4  
0.96  
S–Parameters (V  
= – 3.0 Vdc, T = 25°C, C and C = 0 pF)  
15  
EE  
Input S11  
A
2
Frequency  
Forward S21  
Rev S12  
Output S22  
K
MAG  
3.2  
3.5  
10.6  
9.1  
5.7  
0.94  
1.4  
2.2  
3.0  
1.7  
2.4  
2.4  
3.0  
5.1  
7.5  
MAG  
dB  
MHz  
1.0  
2.0  
5.0  
7.0  
10  
MAG  
0.89  
0.76  
0.52  
0.59  
0.78  
0.95  
0.96  
0.93  
0.91  
0.86  
0.81  
0.70  
0.62  
0.39  
0.44  
ANG  
–14  
– 22  
5.0  
MAG  
ANG  
136  
105  
46  
MAG  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.003  
0.015  
0.049  
0.11  
ANG  
2.0  
MAG  
0.84  
0.67  
0.40  
0.40  
0.40  
0.51  
0.48  
0.52  
0.51  
0.49  
0.55  
0.40  
0.40  
0.25  
0.33  
ANG  
– 27  
– 37  
–13  
9.3  
30.7  
34.3  
33.3  
34.6  
36.3  
24.2  
35.7  
38.1  
37.2  
38.2  
39.1  
36.8  
34.7  
33.8  
27.8  
6.2  
– 90  
– 32  
– 41  
– 92  
47  
12  
34  
–10  
15  
16  
–1.0  
– 4.0  
– 6.0  
–13  
20  
5.0  
– 9.0  
– 50  
– 71  
– 99  
–143  
86  
50  
–11  
–17  
– 25  
– 37  
– 49  
– 93  
–144  
–176  
166  
–103  
– 76  
–152  
53  
43.7  
41.4  
39.0  
39.1  
35.1  
19.5  
8.25  
–1.9  
– 4.8  
70  
100  
150  
200  
500  
700  
900  
1000  
–19  
– 34  
– 56  
–110  
–150  
163  
76  
– 41  
–133  
125  
80  
93  
1.9  
56  
0.72  
0.49  
–18  
– 52  
0.10  
127  
8
MOTOROLA ANALOG IC DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MC13155  
S–Parameters (V  
= – 3.0 Vdc, T = 25°C, C and C = 100 pF)  
15  
EE  
Input S11  
A
2
Frequency  
Forward S21  
Rev S12  
MAG  
Output S22  
MAG  
K
MAG  
1.4  
6.0  
3.4  
2.3  
2.0  
1.9  
2.3  
2.3  
1.7  
1.6  
1.7  
1.9  
4.1  
10.0  
15.4  
MAG  
dB  
MHz  
1.0  
2.0  
5.0  
7.0  
10  
MAG  
0.97  
0.53  
0.88  
0.90  
0.92  
0.92  
0.91  
0.91  
0.91  
0.89  
0.86  
0.78  
0.64  
0.54  
0.53  
ANG  
–15  
MAG  
11.7  
37.1  
37.7  
37.7  
38.3  
39.6  
38.5  
36.1  
39.6  
34.4  
32  
ANG  
171  
80  
ANG  
– 4.0  
– 91  
– 9.0  
–11  
– 59  
29  
ANG  
– 27  
– 31  
– 7.0  
– 7.0  
– 9.0  
– 3.0  
– 7.0  
– 8.0  
–13  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.002  
0.013  
0.027  
0.040  
0.043  
0.84  
0.57  
0.48  
0.49  
0.51  
0.48  
0.51  
0.50  
0.52  
0.48  
0.40  
0.46  
0.42  
0.35  
0.38  
36.8  
34.8  
39.7  
41  
2.0  
7.0  
18  
5.0  
8.0  
2.0  
1.0  
41.8  
42.5  
41.4  
40.8  
37.8  
40.1  
37.8  
22.1  
10.1  
– 0.14  
– 4.52  
20  
– 2.0  
– 8.0  
–11  
–15  
– 46  
– 64  
– 85  
–128  
–163  
–12  
–102  
179  
144  
50  
– 21  
49  
70  
100  
150  
200  
500  
700  
900  
1000  
–15  
114  
120  
86  
– 22  
– 33  
– 64  
– 98  
–122  
–136  
– 23  
– 26  
– 71  
–109  
–147  
–171  
7.6  
94  
2.3  
58  
0.78  
0.47  
38.6  
23  
S–Parameters (V  
= – 3.0 Vdc, T = 25°C, C and C = 680 pF)  
15  
EE  
Input S11  
A
2
Frequency  
Forward S21  
MAG ANG  
Rev S12  
Output S22  
K
MAG  
1.1  
MAG  
dB  
MHz  
1.0  
2.0  
5.0  
7.0  
10  
MAG  
0.81  
0.90  
0.91  
0.90  
0.91  
0.91  
0.90  
0.90  
0.91  
0.93  
0.90  
0.79  
0.65  
0.56  
0.55  
ANG  
3.0  
MAG  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.001  
0.003  
0.008  
0.016  
0.031  
0.50  
ANG  
–19  
– 82  
104  
– 76  
105  
59  
MAG  
0.90  
0.66  
0.37  
0.26  
0.18  
0.11  
0.22  
0.29  
0.36  
0.35  
0.17  
0.44  
0.38  
0.38  
0.41  
ANG  
– 32  
– 39  
– 56  
– 55  
– 52  
–13  
33  
37  
101  
52.7  
20  
43.5  
2.0  
47.8  
58.9  
60.3  
61.8  
63.8  
60.0  
56.5  
52.7  
44.5  
41.2  
7.3  
0.72  
2.3  
0
44  
–1  
11  
2.04  
2.2  
44  
– 2.0  
– 4.0  
– 8.0  
–11  
3.0  
43.9  
44.1  
43.7  
43.2  
43  
20  
– 15  
– 48  
– 67  
– 91  
–126  
–162  
–13  
–107  
174  
137  
2.0  
50  
96  
2.3  
70  
113  
177  
155  
144  
80  
15  
2.3  
100  
150  
200  
500  
700  
900  
1000  
–14  
– 21  
– 43  
– 65  
– 97  
–122  
–139  
5.0  
2.0  
–17  
– 31  
– 75  
–124  
–174  
157  
1.8  
42.7  
34.1  
22  
1.6  
3.0  
2.3  
86  
7.1  
10.2  
0.37  
– 3.4  
0.80  
0.52  
73  
12  
71  
11.3  
9
MOTOROLA ANALOG IC DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MC13155  
DC Biasing Considerations  
The DC biasing scheme utilizes two V  
connections  
selection of the resistor from Pin 12 to V . The RSSI slope  
EE  
CC  
connections (Pins 14 and 11).  
(Pins 3 and 6) and two V  
is typically 2.1 µA/dB ; thus, for a dynamic range of 35 dB, the  
current output is approximately 74 µA. A 47 k resistor will  
yield an RSSI output voltage swing of 3.5 Vdc. The RSSI  
buffer output at Pin 13 is an emitter–follower and needs an  
EE  
1 (Pin 14) is connected internally to the IF and RSSI  
V
EE  
circuits’ negative supply bus while V 2 (Pin 11) is connected  
EE  
internally to the quadrature detector’s negative bus. Under  
positive ground operation, this unique configuration offers the  
ability to bias the RSSI and IF separately from the quadrature  
detector. When two ICs are cascaded as shown in the 70  
MHz application circuit and provided by the PCB (see  
Figures 17 and 18), the first MC13155 is used without biasing  
its quadrature detector, thereby saving approximately 3.0  
mA. A total current of 7.0 mA is used to fully bias each IC,  
thus the total current in the application circuit is  
external emitter resistor of 10 k to V  
.
EE  
In a cascaded configuration (see circuit application in  
Figure 16), only one of the RSSI Buffer outputs (Pin 13) is  
used; the RSSI outputs (Pin 12 of each IC) are tied together  
and the one closest to the V  
supply trace is decoupled to  
ground. The two pins are connected to V through a 47  
EE  
V
CC  
EE  
k resistor. This resistor sources a RSSI current which is  
proportional to the signal level at the IF input; typically,  
1.0 mVrms (– 47 dBm) is required to place the MC13155 into  
limiting. The measured RSSI output voltage response of the  
application circuit is shown in Figure 12. Since the RSSI  
current output is dependent upon the input signal level at the  
IF input, a careful accounting of filter losses, matching and  
other losses and gains must be made in the entire receiver  
system. In the block diagram of the application circuit shown  
below, an accounting of the signal levels at points throughout  
the system shows how the RSSI response in Figure 12 is  
justified.  
approximately 11 mA. Both V  
pins are biased by the same  
CC  
supply. V 1 (Pin 3) is connected internally to the positive  
CC  
bus of the first half of the IF limiting amplifier, while V 2 is  
CC  
internally connected to the positive bus of the RSSI, the  
quadrature detector circuit, and the second half of the IF  
limiting amplifier (see Figure 15). This distribution of the V  
enhances the stability of the IC.  
CC  
RSSI Circuitry  
The RSSI circuitry provides typically 35 dB of linear  
dynamic range and its output voltage swing is adjusted by  
Block Diagram of 70 MHz Video Receiver Application Circuit  
Input  
Level:  
– 45 dBm  
1.26 mVrms  
– 70 dBm  
71 Vrms  
– 72 dBm  
57 Vrms  
– 32 dBm  
57 Vrms  
– 47 dBm  
1.0 mVrms  
Minimum Input to Acquire  
Limiting in MC13155  
µ
µ
µ
IF  
Input  
16  
1
16  
1
10  
7
Saw  
Filter  
MC13155  
MC13155  
1:4  
Transformer  
2.0 dB  
(Insertion Loss)  
– 25 dB  
(Insertion Loss)  
40 dB Gain  
–15 dB  
(Attenuator)  
40 dB Gain  
Cascading Stages  
The limiting IF output is pinned–out differentially,  
cascading is easily achieved by AC coupling stage to stage.  
In the evaluation PCB, AC coupling is shown, however,  
interstage filtering may be desirable in some applications. In  
which case, the S–parameters provide a means to implement  
a low loss interstage match and better receiver sensitivity.  
Where a linear response of the RSSI output is desired  
when cascading the ICs, it is necessary to provide at least  
10 dB of interstage loss. Figure 12 shows the RSSI response  
with and without interstage loss. A 15 dB resistive attenuator  
is an inexpensive way to linearize the RSSI response. This  
has its drawbacks since it is a wideband noise source that is  
dependent upon the source and load impedance and the  
amount of attenuation that it provides. A better, although  
more costly, solution would be a bandpass filter designed to  
the desired center frequency and bandpass response while  
carefully selecting the insertion loss. A network topology  
shown below may be used to provide a bandpass response  
with the desired insertion loss.  
Network Topology  
1.0n  
10  
7
16  
1
0.22µ  
1.0n  
10  
MOTOROLA ANALOG IC DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MC13155  
Quadrature Detector  
The quadrature detector is coupled to the IF with internal  
2.0 pF capacitors between Pins 7 and 8 and Pins 9 and 10.  
For wideband data applications, such as FM video and  
satellite receivers, the drive to the detector can be increased  
with additional external capacitors between these pins, thus,  
the recovered video signal level output is increased for a  
given bandwidth (see Figure 11A and Figure 11B).  
The wideband performance of the detector is controlled by  
the loaded Q of the LC tank circuit. The following equation  
defines the components which set the detector circuit’s  
bandwidth:  
The value of the total damping resistor to obtain the  
required loaded Q of 5 can be calculated by rearranging  
Equation 1:  
R = Q(2πfL)  
T
R = 5 (2π)(70)(0.22) = 483.8 .  
T
The internal resistance, Rint between the quadrature tank  
Pins 8 and 9 is approximately 3200 and is considered in  
determining the external resistance, Rext which is calculated  
from:  
Rext = ((R )(Rint))/ (Rint – R )  
T
T
Q = R /X  
(1)  
T
L
Rext = 570, thus, choose the standard value.  
Rext = 560 .  
where: R is the equivalent shunt resistance across the LC  
T
Tank and X is the reactance of the quadrature inductor at the  
L
SAW Filter  
IF frequency (X = 2πfL).  
L
In wideband video data applications, the IF occupied  
bandwidth may be several MHz wide. A good rule of thumb is  
to choose the IF frequency about 10 or more times greater  
than the IF occupied bandwidth. The IF bandpass filter is a  
SAW filter in video data applications where a very selective  
response is needed (i.e., very sharp bandpass response).  
The evaluation PCB is laid out to accommodate two SAW  
filter package types: 1) A five–leaded plastic SIP package.  
Recommended part numbers are Siemens X6950M which  
operates at 70 MHz; 10.4 MHz 3 dB passband, X6951M  
(X252.8) which operates at 70 MHz; 9.2 MHz 3 dB passband;  
and X6958M which operates at 70 MHz, 6.3 MHz 3 dB  
passband, and 2) A four–leaded TO–39 metal can package.  
Typical insertion loss in a wide bandpass SAW filter is 25 dB.  
The above SAW filters require source and load  
impedances of 50 to assure stable operation. On the PC  
board layout, space is provided to add a matching network,  
such as a 1:4 surface mount transformer between the SAW  
filter output and the input to the MC13155. A 1:4 transformer,  
made by Coilcraft and Mini Circuits, provides a suitable  
interface (see Figures 16, 17 and 18). In the circuit and  
layout, the SAW filter and the MC13155 are differentially  
configured with interconnect traces which are equal in length  
and symmetrical. This balanced feed enhances RF stability,  
phase linearity, and noise performance.  
The inductor and capacitor are chosen to form a resonant  
LC Tank with the PCB and parasitic device capacitance at the  
desired IF center frequency as predicted by:  
–1  
(2)  
fc = (2π (LC ))  
p
where: L is the parallel tank inductor and C is the equivalent  
p
parallel capacitance of the parallel resonant tank circuit.  
The following is a design example for a wideband detector  
at 70 MHz and a loaded Q of 5. The loaded Q of the  
quadrature detector is chosen somewhat less than the Q of  
the IF bandpass. For an IF frequency of 70 MHz and an  
IF bandpass of 10.9 MHz, the IF bandpass Q is  
approximately 6.4.  
Example:  
Let the external Cext = 20 pF. (The minimum value here  
should be greater than 15 pF making it greater than the  
internal device and PCB parasitic capacitance, Cint ≈  
3.0 pF).  
C = Cint + Cext = 23 pF  
p
Rewrite Equation 2 and solve for L:  
2
2
L = (0.159) /(C fc )  
p
L = 198 nH, thus, a standard value is chosen.  
L = 0.22 µH (tunable shielded inductor).  
11  
MOTOROLA ANALOG IC DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MC13155  
12  
MOTOROLA ANALOG IC DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MC13155  
Figure 16. 70 MHz Video Receiver Application Circuit  
If Input  
1:4  
1
5
4
SAW Filter  
2
3
220  
SAW Filter is Siemens  
Part Number X6950M  
1.0n  
1.0n  
RSSI  
Output  
MC13155  
1
2
3
4
5
6
7
8
IN1  
IN2 16  
DEC1  
DEC2 15  
10k  
100p  
100p  
10n  
V
1
V
1
14  
13  
CC  
EE  
RSSI  
Buffer  
47k  
DETO1  
DETO2  
100n  
RSSI 12  
1.0n  
10n  
V
2
V
2
11  
CC  
EE  
LIMO1  
LIMO2 10  
QUAD1  
QUAD2  
9
V
1
EE  
10µ  
+
820  
820  
820  
820  
1.0n  
1.0n  
MC13155  
1
2
3
4
5
6
7
8
IN1  
IN2 16  
DEC1  
DEC2 15  
100p  
100p  
10n  
V
1
V
1
14  
13  
CC  
EE  
100n  
RSSI  
Buffer  
DETO1  
DETO2  
Detector  
Output  
33p 1.0k  
33p  
RSSI 12  
1.0k  
100n  
V
2
V
2
11  
V
2
CC  
EE  
EE  
10µ  
10n  
+
LIMO1  
LIMO2 10  
2.0p  
2.0p  
QUAD1  
QUAD2  
9
560  
20p  
L
L– Coilcraft part number 146–08J08S  
0.22µ  
13  
MOTOROLA ANALOG IC DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MC13155  
Figure 17. Component Placement (Circuit Side)  
Figure 18. Component Placement (Ground Side)  
14  
MOTOROLA ANALOG IC DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MC13155  
Figure 19. Circuit Side View  
4.0″  
4.0″  
Figure 20. Ground Side View  
15  
MOTOROLA ANALOG IC DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MC13155  
OUTLINE DIMENSIONS  
D SUFFIX  
PLASTIC PACKAGE  
CASE 751B  
(SO–16)  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. 751B–03 IS OBSOLETE, NEW STANDARD  
751B–04.  
–A  
16  
1
9
M
M
0.25 (0.010)  
B
–B  
P
C
8 PL  
8
MILLIMETERS  
INCHES  
DIM  
A
B
C
D
MIN  
9.80  
3.80  
1.35  
0.35  
0.40  
MAX  
10.00  
4.00  
1.75  
0.49  
MIN  
MAX  
0.393  
0.157  
0.068  
0.019  
0.049  
0.386  
0.150  
0.054  
0.014  
0.016  
G
R X 45°  
F
1.25  
1.27 BSC  
0.050 BSC  
G
J
K
SEATING  
PLANE  
0.19  
0.10  
0.25  
0.25  
0.008  
0.004  
0.009  
0.009  
–T  
J
M
F
D
16 PL  
K
M
P
R
0
5.80  
0.25  
°
7
6.20  
0.50  
°
0
°
7°  
0.244  
0.019  
0.229  
0.010  
M
S
S
0.25 (0.010)  
T
B
A
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
Mfax is a trademark of Motorola, Inc.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447  
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4–32–1,  
Nishi–Gotanda, Shinagawa–ku, Tokyo 141, Japan. 81–3–5487–8488  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
INTERNET: http://motorola.com/sps  
MC13155/D  
For More Information On This Product,  
Go to: www.freescale.com  

相关型号:

MC13155DR2

Telecom Circuit, 1-Func, Bipolar, PDSO16, PLASTIC, SO-16
MOTOROLA

MC13156

Wideband FM IF System
MOTOROLA

MC13156DW

WIDEBAND FM IF SYSTEM FOR DIGITAL AND ANALOG APPLICATIONS
MOTOROLA

MC13156DW

Wideband FM IF System
LANSDALE

MC13156DWR2

RF and Baseband Circuit, Bipolar, PDSO24, PLASTIC, SO-24
MOTOROLA

MC13156FB

WIDEBAND FM IF SYSTEM FOR DIGITAL AND ANALOG APPLICATIONS
MOTOROLA

MC13156FB

Wideband FM IF System
LANSDALE

MC13156FBR2

Telecom Circuit, 1-Func, Bipolar, PQFP32, PLASTIC, LQFP-32
MOTOROLA

MC13158

WIDEBAND FM IF SUBSYSTEM FOR DECT AND DIGITAL APPLICATIONS
MOTOROLA

MC13158FTB

WIDEBAND FM IF SUBSYSTEM FOR DECT AND DIGITAL APPLICATIONS
MOTOROLA

MC13158FTB

Wideband FM IF Subsystem For Dect and Digital Applications
LANSDALE

MC13158FTBR2

TELECOM, CORDLESS, RF AND BASEBAND CIRCUIT, PQFP32, PLASTIC, TQFP-32
MOTOROLA