ISL9V2040S3STS62Z [FAIRCHILD]

Insulated Gate Bipolar Transistor, 10A I(C), 390V V(BR)CES, N-Channel, TO-263AB, PLASTIC, D2PAK-3;
ISL9V2040S3STS62Z
型号: ISL9V2040S3STS62Z
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Insulated Gate Bipolar Transistor, 10A I(C), 390V V(BR)CES, N-Channel, TO-263AB, PLASTIC, D2PAK-3

汽车点火 栅 晶体管
文件: 总8页 (文件大小:123K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
January 2002  
ISL9V2040D3S / ISL9V2040S3S / ISL9V2040P3  
TM  
EcoSPARK 200mJ, 400V, N-Channel Ignition IGBT  
General Description  
Applications  
The ISL9V2040D3S, ISL9V2040S3S, and ISL9V2040P3 are the  
next generation ignition IGBTs that offer outstanding SCIS  
capability in the space saving D-Pak (TO-252), as well as the  
industry standard D²-Pak (TO-263) and TO-220 plastic packages.  
This device is intended for use in automotive ignition circuits,  
specifically as a coil driver. Internal diodes provide voltage clamping  
without the need for external components.  
Automotive Ignition Coil Driver Circuits  
Coil- On Plug Applications  
Features  
Space saving D - Pak package available  
o
SCIS Energy = 200mJ at T = 25 C  
J
Logic Level Gate Drive  
EcoSPARK™ devices can be custom made to specific clamp  
voltages. Contact your nearest Fairchild sales office for more  
information.  
Formerly Developmental Type 49444  
Package  
Symbol  
COLLECTOR  
JEDEC TO-252AA  
D-Pak  
JEDEC TO-263AB  
D²-Pak  
JEDEC TO-220AB  
R1  
R2  
GATE  
G
G
E
E
EMITTER  
COLLECTOR  
(FLANGE)  
COLLECTOR  
(FLANGE)  
Device Maximum Ratings T = 25°C unless otherwise noted  
A
Symbol  
Parameter  
Collector to Emitter Breakdown Voltage (I = 1 mA)  
Ratings  
Units  
V
BV  
BV  
430  
24  
CER  
ECS  
C
Emitter to Collector Voltage - Reverse Battery Condition (I = 10 mA)  
V
C
E
At Starting T = 25°C, I = 11.5A, L = 3.0mHy  
SCIS  
200  
mJ  
mJ  
A
SCIS25  
J
E
At Starting T = 150°C, I = 8.9A, L = 3.0mHy  
SCIS  
120  
SCIS150  
J
I
Collector Current Continuous, At T = 25°C, See Fig 9  
10  
C25  
C
I
Collector Current Continuous, At T = 110°C, See Fig 9  
10  
A
C110  
C
V
Gate to Emitter Voltage Continuous  
±10  
V
GEM  
P
Power Dissipation Total T = 25°C  
130  
W
D
C
Power Dissipation Derating T > 25°C  
0.87  
-40 to 175  
-40 to 175  
300  
W/°C  
°C  
°C  
°C  
°C  
kV  
C
T
Operating Junction Temperature Range  
J
T
Storage Junction Temperature Range  
STG  
T
Max Lead Temp for Soldering (Leads at 1.6mm from Case for 10s)  
Max Lead Temp for Soldering (Package Body for 10s)  
Electrostatic Discharge Voltage at 100pF, 1500Ω  
L
T
260  
pkg  
ESD  
4
©2002 Fairchild Semiconductor Corporation  
ISL9V2040D3S / ISL9V2040S3S / ISL9V2040P3 Rev. B, February 2002  
Package Marking and Ordering Information  
Device Marking  
V2040D  
Device  
Package  
TO-252AA  
TO-263AB  
TO-252AA  
TO-263AB  
TO-220AB  
Reel Size  
330mm  
330mm  
Tube  
Tape Width  
16mm  
24mm  
N/A  
Quantity  
2500 units  
800 units  
75 units  
ISL9V2040D3ST  
ISL9V2040S3ST  
ISL9V2040D3S  
ISL9V2040S3S  
ISL9V2040P3  
V2040S  
V2040D  
V2040S  
Tube  
N/A  
50 units  
V2040P  
Tube  
N/A  
50 units  
Electrical Characteristics T = 25°C unless otherwise noted  
A
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
400  
420  
-
Max  
Units  
Off State Characteristics  
BV  
BV  
Collector to Emitter Breakdown Voltage  
Collector to Emitter Breakdown Voltage  
Emitter to Collector Breakdown Voltage  
I
R
= 2mA, V = 0,  
370  
390  
30  
430  
450  
-
V
V
V
CER  
C
GE  
= 1KΩ, See Fig. 15  
T = -40 to 150°C  
G
J
I
R
= 10mA, V = 0,  
GE  
= 0, See Fig. 15  
T = -40 to 150°C  
CES  
C
G
J
BV  
BV  
I = -75mA, V = 0V,  
C GE  
ECS  
T
= 25°C  
C
Gate to Emitter Breakdown Voltage  
Collector to Emitter Leakage Current  
I
= ± 2mA  
±12  
±14  
-
V
GES  
GES  
I
V
R
= 250V,  
= 1KΩ, See  
Fig. 11  
T
T
= 25°C  
-
-
-
-
25  
1
µA  
mA  
CER  
CER  
C
G
= 150°C  
C
I
Emitter to Collector Leakage Current  
V
= 24V,  
T
T
= 25°C  
-
-
-
1
40  
-
mA  
mA  
ECS  
EC  
C
See Fig. 11  
= 150°C  
-
-
C
R
R
Series Gate Resistance  
70  
-
1
2
Gate to Emitter Resistance  
10K  
26K  
On State Characteristics  
V
Collector to Emitter Saturation Voltage  
I
V
= 6A,  
T = 25°C,  
C
See Fig. 3  
T = 150°C  
C
-
-
1.45  
1.95  
1.9  
2.3  
V
V
CE(SAT)  
C
= 4V  
GE  
V
Collector to Emitter Saturation Voltage  
I
= 10A,  
CE(SAT)  
C
V
= 4.5V  
See Fig. 4  
GE  
Dynamic Characteristics  
Q
Gate Charge  
I
= 10A, V = 12V,  
-
12  
-
nC  
G(ON)  
C
CE  
V
= 5V, See Fig. 14  
GE  
V
Gate to Emitter Threshold Voltage  
I
V
= 1.0mA,  
T
T
= 25°C  
1.3  
-
-
2.3  
1.8  
V
V
GE(TH)  
C
C
C
= V  
CE  
GE,  
= 150°C  
0.75  
See Fig. 10  
V
Gate to Emitter Plateau Voltage  
I
= 10A,  
-
3.4  
-
V
GEP  
C
V
= 12V  
CE  
Switching Characteristics  
t
Current Turn-On Delay Time-Resistive  
Current Rise Time-Resistive  
V
V
= 14V, R = 1Ω,  
-
-
0.61  
2.17  
-
-
µs  
µs  
d(ON)R  
CE  
GE  
L
= 5V, R = 1KΩ  
t
G
riseR  
T = 25°C  
J
t
Current Turn-Off Delay Time-Inductive  
Current Fall Time-Inductive  
V
V
= 300V, L = 500µHy,  
-
-
3.64  
2.36  
-
-
µs  
µs  
d(OFF)L  
CE  
GE  
= 5V, R = 1KΩ  
t
G
fL  
T = 25°C, See Fig. 12  
J
SCIS  
Self Clamped Inductive Switching  
T = 25°C, L = 3.0mHy,  
-
-
200  
mJ  
J
R
= 1KΩ, V = 5V, See  
G
GE  
Fig. 1 & 2  
Thermal Characteristics  
R
Thermal Resistance Junction-Case  
TO-252, TO-263, TO-220  
-
-
1.15  
°C/W  
θJC  
©2002 Fairchild Semiconductor Corporation  
ISL9V2040D3S / ISL9V2040S3S / ISL9V2040P3 Rev. B February 2002  
Typical Performance Curves (Continued)  
20  
20  
18  
16  
14  
12  
10  
8
R
= 1K, V = 5V,V = 14V  
GE dd  
G
R = 1K, V = 5V,V = 14V  
G GE dd  
18  
16  
14  
12  
10  
8
T
= 25°C  
J
T
= 25°C  
J
T
= 150°C  
J
T
= 150°C  
J
6
6
4
4
2
2
SCIS Curves valid for V  
Voltages of <430V  
SCIS Curves valid for V  
Voltages of <430V  
clamp  
clamp  
0
0
0
2
4
6
8
10  
0
20  
40  
60  
80 100 120 140 160 180 200  
, TIME IN CLAMP (µS)  
t
L, INDUCTANCE (mHy)  
CLP  
Figure 1. Self Clamped Inductive Switching  
Current vs Time in Clamp  
Figure 2. Self Clamped Inductive Switching  
Current vs Inductance  
2.4  
1.60  
I
= 10A  
CE  
I
= 6A  
CE  
1.55  
1.50  
V
= 3.7V  
GE  
V
= 3.7V  
GE  
2.2  
2.0  
1.8  
1.6  
1.4  
V
= 4.0V  
GE  
V
= 4.0V  
GE  
1.45  
1.40  
V
= 4.5V  
GE  
V
= 4.5V  
GE  
1.35  
1.30  
1.25  
V
= 5.0V  
GE  
V
= 5.0V  
GE  
V
= 8.0V  
V
= 8.0V  
GE  
GE  
-75  
-25  
25  
75  
125  
175  
-75  
-25  
25  
75  
125  
175  
T , JUNCTION TEMPERATURE (°C)  
T , JUNCTION TEMPERATURE (°C)  
J
J
Figure 3. Collector to Emitter On-State Voltage vs  
Junction Temperature  
Figure 4. Collector to Emitter On-State Voltage  
vs Junction Temperature  
20  
20  
V
V
= 8.0V  
= 5.0V  
V
V
V
V
V
= 8.0V  
= 5.0V  
= 4.5V  
= 4.0V  
= 3.7V  
GE  
GE  
GE  
GE  
GE  
GE  
GE  
V
V
V
= 4.5V  
= 4.0V  
= 3.7V  
GE  
GE  
GE  
15  
10  
5
15  
10  
5
0
T
= 25°C  
J
T
= - 40°C  
J
0
0
1.0  
2.0  
3.0  
4.0  
0
1.0  
2.0  
3.0  
4.0  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
CE  
Figure 5. Collector to Emitter On-State Voltage vs  
Collector Current  
Figure 6. Collector to Emitter On-State Voltage  
vs Collector Current  
©2002 Fairchild Semiconductor Corporation  
ISL9V2040D3S / ISL9V2040S3S / ISL9V2040P3 Rev. B February 2002  
Typical Performance Curves (Continued)  
30  
25  
20  
15  
10  
5
20  
DUTY CYCLE < 0.5%, V = 5V  
CE  
V
= 8.0V  
= 5.0V  
= 4.5V  
= 4.0V  
= 3.7V  
GE  
PULSE DURATION = 250µs  
V
V
V
GE  
GE  
GE  
15  
10  
5
V
GE  
T
= 150°C  
J
T
= 25°C  
J
T
= 175°C  
J
T
= -40°C  
J
0
0
0
1.0  
2.0  
3.0  
4.0  
1.0  
2.0  
V , GATE TO EMITTER VOLTAGE (V)  
GE  
3.0  
4.0  
5.0  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
Figure 7. Collector to Emitter On-State Voltage vs  
Collector Current  
Figure 8. Transfer Characteristics  
2.4  
15.0  
V
= V  
GE  
CE  
V
= 4.0V  
GE  
I
= 1mA  
CE  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
12.5  
10.0  
7.5  
5.0  
2.5  
0
-50  
-25  
0
25  
JUNCTION TEMPERATURE (°C)  
J
50  
75  
100 125 150 175  
25  
50  
75  
100  
125  
150  
175  
T , CASE TEMPERATURE (°C)  
T
C
Figure 9. DC Collector Current vs Case  
Temperature  
Figure 10. Threshold Voltage vs Junction  
Temperature  
10000  
1000  
100  
10  
10  
I
= 6.5A, V = 5V, R = 1KΩ  
GE G  
CE  
V
= 24V  
ECS  
Inductive t  
OFF  
8
6
4
2
Resistive t  
OFF  
V
= 300V  
CES  
1
Resistive t  
150  
V
= 250V  
ON  
CES  
0.1  
-50  
-25  
0
25  
50  
75  
100 125 150 175  
25  
50  
75  
100  
125  
175  
T , JUNCTION TEMPERATURE (°C)  
T , JUNCTION TEMPERATURE (°C)  
J
J
Figure 11. Leakage Current vs Junction  
Temperature  
Figure 12. Switching Time vs Junction  
Temperature  
©2002 Fairchild Semiconductor Corporation  
ISL9V2040D3S / ISL9V2040S3S / ISL9V2040P3 Rev. B February 2002  
Typical Performance Curves (Continued)  
8
7
6
5
4
3
2
1
0
1200  
I
= 1mA, R = 1.25Ω, T = 25°C  
FREQUENCY = 1 MHz  
G(REF)  
L
J
1000  
800  
V
= 12V  
CE  
C
IES  
600  
400  
200  
0
C
RES  
V
= 6V  
10  
CE  
C
OES  
0
5
15  
20  
25  
0
5
10  
15  
20  
25  
V
, COLLECTOR TO EMITTER VOLTAGE (V)  
CE  
Q
, GATE CHARGE (nC)  
G
Figure 13. Capacitance vs Collector to Emitter  
Voltage  
Figure 14. Gate Charge  
415  
410  
405  
400  
395  
I
= 10mA  
CER  
T
= - 40°C  
J
T
= 175°C  
J
390  
385  
380  
375  
370  
T
= 25°C  
J
10  
100  
, SERIES GATE RESISTANCE (k)  
1000  
2000  
3000  
R
G
Figure 15. Breakdown Voltage vs Series Gate Resistance  
0
10  
0.5  
0.2  
t
0.1  
1
-1  
10  
P
D
0.05  
t
2
0.02  
DUTY FACTOR, D = t / t  
1
2
0.01  
PEAK T = (P X Z  
X R ) + T  
J
D
θJC  
θJC C  
SINGLE PULSE  
-2  
10  
-5  
-4  
-3  
-2  
-1  
0
10  
10  
10  
10  
10  
10  
T , RECTANGULAR PULSE DURATION (s)  
1
Figure 16. IGBT Normalized Transient Thermal Impedance, Junction to Case  
©2002 Fairchild Semiconductor Corporation  
ISL9V2040D3S / ISL9V2040S3S / ISL9V2040P3 Rev. B February 2002  
Test Circuit and Waveforms  
L
VCE  
R
or  
L
LOAD  
C
C
RG  
RG = 1KΩ  
PULSE  
+
-
G
DUT  
GEN  
VCE  
DUT  
G
5V  
E
E
Figure 17. Inductive Switching Test Circuit  
Figure 18. tON and tOFF Switching Test Circuit  
V
BV  
CES  
CE  
t
P
V
CE  
L
I
AS  
V
DD  
VARY t TO OBTAIN  
P
+
-
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
GE  
DUT  
t
P
I
0V  
AS  
0
0.01Ω  
t
AV  
Figure 19. Unclamped Energy Test Circuit  
Figure 20. Unclamped Energy Waveforms  
©2002 Fairchild Semiconductor Corporation  
ISL9V2040D3S / ISL9V2040S3S / ISL9V2040P3 Rev. B February 2002  
SPICE Thermal Model  
JUNCTION  
th  
REV 16 August 2001  
ISL9V2040D3S, ISL9V2040S3S, ISL9V2040P3  
CTHERM1 th 6 1.6e -3  
CTHERM2 6 5 2.8e -4  
CTHERM3 5 4 1.5e -3  
CTHERM4 4 3 4.8e -2  
CTHERM5 3 2 4.7e -2  
CTHERM6 2 tl 4.8e -2  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM1  
6
RTHERM1 th 6 1.2e -1  
RTHERM2 6 5 3.2e -1  
RTHERM3 5 4 1.7e -1  
RTHERM4 4 3 1.2e -1  
RTHERM5 3 2 1.3e -1  
RTHERM6 2 tl 2.5e -1  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
5
SABER Thermal Model  
SABER thermal model  
ISL9V2040D3S, ISL9V2040S3S, ISL9V2040P3  
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 6 = 1.6e -3  
ctherm.ctherm2 6 5 = 2.8e -4  
ctherm.ctherm3 5 4 = 1.5e -3  
ctherm.ctherm4 4 3 = 4.8e -2  
ctherm.ctherm5 3 2 = 4.7e -2  
ctherm.ctherm6 2 tl = 4.8e -2  
4
3
2
rtherm.rtherm1 th 6 = 1.2e -1  
rtherm.rtherm2 6 5 = 3.2e -1  
rtherm.rtherm3 5 4 = 1.7e -1  
rtherm.rtherm4 4 3 = 1.2e -1  
rtherm.rtherm5 3 2 = 1.3e -1  
rtherm.rtherm6 2 tl = 2.5e -1  
}
tl  
CASE  
©2002 Fairchild Semiconductor Corporation  
ISL9V2040D3S / ISL9V2040S3S / ISL9V2040P3 Rev. B February 2002  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is  
not intended to be an exhaustive list of all such trademarks.  
â
SMART START™  
STAR*POWER™  
Stealth™  
VCX™  
FAST  
ACEx™  
Bottomless™  
CoolFET™  
OPTOLOGIC™  
OPTOPLANAR™  
PACMAN™  
FASTr™  
FRFET™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SyncFET™  
GlobalOptoisolator™  
GTO™  
HiSeC™  
ISOPLANAR™  
LittleFET™  
MicroFET™  
MicroPak™  
MICROWIRE™  
CROSSVOLT™  
DenseTrench™  
DOME™  
POP™  
Power247™  
PowerTrenchâ  
QFET™  
EcoSPARK™  
E2CMOSTM  
TinyLogic™  
QS™  
EnSignaTM  
TruTranslation™  
UHC™  
QT Optoelectronics™  
Quiet Series™  
SILENTSWITCHERâ  
FACT™  
FACT Quiet Series™  
UltraFETâ  
STAR*POWER is used under license  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER  
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD  
DOES NOT ASSUME ANY LIABILITYARISING OUT OF THE APPLICATION OR USE OFANY PRODUCT  
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT  
RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICESORSYSTEMSWITHOUTTHEEXPRESSWRITTENAPPROVALOFFAIRCHILDSEMICONDUCTORCORPORATION.  
As used herein:  
1. Life support devices or systems are devices or  
systems which, (a) are intended for surgical implant into  
the body, or (b) support or sustain life, or (c) whose  
failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be  
reasonably expected to result in significant injury to the  
user.  
2. A critical component is any component of a life  
support device or system whose failure to perform can  
be reasonably expected to cause the failure of the life  
support device or system, or to affect its safety or  
effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or  
In Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. H4  

相关型号:

ISL9V2540S3S

EcoSPARK N-Channel Ignition IGBT
FAIRCHILD

ISL9V2540S3ST

EcoSPARK N-Channel Ignition IGBT
FAIRCHILD

ISL9V2540S3ST

430 V、15 A、1.77 V、250 mJ、D2PAKEcoSPARK® I、N 沟道点火 IGBT
ONSEMI

ISL9V2540S3ST-F085C

IGBT, 430V, 15A, 1.77V, 250mJ, D2PAKEcoSPARK® I, N-Channel Ignition
ONSEMI

ISL9V2540S3ST-SB49015

Insulated Gate Bipolar Transistor, 15.5A I(C), 450V V(BR)CES, N-Channel
FAIRCHILD

ISL9V2540S3ST_09

EcoSPARK N-Channel Ignition IGBT 250mJ, 400V
FAIRCHILD

ISL9V2540S3ST_NL

Insulated Gate Bipolar Transistor, 15.5A I(C), 390V V(BR)CES, N-Channel, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
FAIRCHILD

ISL9V2540S3S_NL

Insulated Gate Bipolar Transistor, 15.5A I(C), 390V V(BR)CES, N-Channel, TO-263AB, LEAD FREE, PLASTIC, D2PAK-3
FAIRCHILD

ISL9V3036D3S

EcoSPARKTM 300mJ, 360V, N-Channel Ignition IGBT
FAIRCHILD

ISL9V3036D3ST

EcoSPARKTM 300mJ, 360V, N-Channel Ignition IGBT
FAIRCHILD

ISL9V3036D3STV

IGBT, 360V, 17A, 1.58V, 300mJ, D2PAKEcoSPARK® I, N-Channel Ignition
ONSEMI

ISL9V3036D3S_04

EcoSPARKTM 300mJ, 360V, N-Channel Ignition IGBT
FAIRCHILD