FSB50550A [FAIRCHILD]

Smart Power Module (SPM®); 智能功率模块( SPM® )
FSB50550A
型号: FSB50550A
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Smart Power Module (SPM®)
智能功率模块( SPM® )

文件: 总10页 (文件大小:1372K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
December 2011  
TM  
Motion-SPM  
FSB50550A  
Smart Power Module (SPM )  
®
Features  
Applications  
500V RDS(on)=1.4W(max) 3-phase FRFET inverter including  
high voltage integrated circuit (HVIC)  
• Three-phase inverter driver for small power ac motor drives  
General Description  
3 divided negative dc-link terminals for inverter current sens-  
ing applications  
FSB50550A is a tiny smart power module (SPM®) based on  
FRFET technology as a compact inverter solution for small  
power motor drive applications such as fan motors and water  
suppliers. It is composed of 6 fast-recovery MOSFET (FRFET),  
and 3 half-bridge HVICs for FRFET gate driving. FSB50550A  
provides low electromagnetic interference (EMI) characteristics  
with optimized switching speed. Moreover, since it employs  
FRFET as a power switch, it has much better ruggedness and  
larger safe operation area (SOA) than that of an IGBT-based  
power module or one-chip solution. The package is optimized  
for the thermal performance and compactness for the use in the  
built-in motor application and any other application where the  
assembly space is concerned. FSB50550A is the best solution  
for the compact inverter providing the energy efficiency,  
compactness, and low electromagnetic interference.  
HVIC for gate driving and undervoltage protection  
3/5V CMOS/TTL compatible, active-high interface  
Optimized for low electromagnetic interference  
Isolation voltage rating of 1500Vrms for 1min.  
HVIC temperature sensing  
Embedded bootstrap diode in the package  
RoHS compliant  
©2011 Fairchild Semiconductor Corporation  
FSB50550A Rev. A  
1
www.fairchildsemi.com  
Absolute Maximum Ratings  
Inverter Part (Each FRFET Unless Otherwise Specified)  
Symbol  
Parameter  
Conditions  
Rating  
Units  
DC Link Input Voltage,  
VPN  
500  
V
Drain-source Voltage of each FRFET  
Each FRFET Drain Current, Continuous  
Each FRFET Drain Current, Continuous  
Each FRFET Drain Current, Peak  
Each FRFET Drain Current, Rms  
Maximum Power Dissipation  
*ID25  
*ID80  
*IDP  
TC = 25°C  
TC = 80°C  
2.0  
1.5  
5
A
A
TC = 25°C, PW < 100ms  
A
*IDRMS  
*PD  
TC = 80°C, FPWM < 20KHz  
TC = 25°C, For Each FRFET  
1.1  
14.5  
Arms  
W
Control Part (Each HVIC Unless Otherwise Specified)  
Symbol  
VCC  
Parameter  
Conditions  
Rating  
Units  
Control Supply Voltage  
Applied between VCC and COM  
Applied between VB and VS  
Applied between IN and COM  
20  
20  
V
V
V
VBS  
High-side Bias Voltage  
Input Signal Voltage  
VIN  
-0.3 ~ VCC+0.3  
Bootstrap Diode Part (Each Bootstrap diode Unless Otherwise Specified)  
Symbol  
Parameter  
Conditions  
Rating  
Units  
VRRMB  
Maixmum Repetitive Reverse Voltage  
V
A
A
500  
0.5  
* IFB  
Forward Current  
TC = 25°C  
* IFPB  
Forward Current (Peak)  
TC = 25°C, Under 1ms Pulse Width  
1.5  
Thermal Resistance  
Symbol  
Parameter  
Conditions  
Rating  
Units  
Each FRFET under inverter operat-  
ing condition (Note 1)  
Junction to Case Thermal Resistance  
°C/W  
RqJC  
8.6  
Total System  
Symbol  
Parameter  
Conditions  
Rating  
-40 ~ 150  
-40 ~ 125  
Units  
°C  
TJ  
Operating Junction Temperature  
Storage Temperature  
TSTG  
°C  
60Hz, Sinusoidal, 1 minute, Con-  
nection pins to heatsink  
VISO  
Isolation Voltage  
1500  
Vrms  
Note:  
1. For the measurement point of case temperature T , please refer to Figure 4.  
C
2. Marking “ * “ is calculation value or design factor.  
2
www.fairchildsemi.com  
FSB50550A Rev. A  
Pin descriptions  
Pin Number  
Pin Name  
Pin Description  
1
2
COM  
VB(U)  
VCC(U)  
IN(UH)  
IN(UL)  
N.C  
IC Common Supply Ground  
Bias Voltage for U Phase High Side FRFET Driving  
Bias Voltage for U Phase IC and Low Side FRFET Driving  
Signal Input for U Phase High-side  
3
4
5
Signal Input for U Phase Low-side  
6
N.C  
7
VB(V)  
VCC(V)  
IN(VH)  
IN(VL)  
Vts  
Bias Voltage for V Phase High Side FRFET Driving  
Bias Voltage for V Phase IC and Low Side FRFET Driving  
Signal Input for V Phase High-side  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Signal Input for V Phase Low-side  
Output for HVIC temperature sensing  
VB(W)  
VCC(W)  
IN(WH)  
IN(WL)  
N.C  
Bias Voltage for W Phase High Side FRFET Driving  
Bias Voltage for W Phase IC and Low Side FRFET Driving  
Signal Input for W Phase High-side  
Signal Input for W Phase Low-side  
N.C  
P
Positive DC–Link Input  
U, VS(U)  
NU  
Output for U Phase & Bias Voltage Ground for High Side FRFET Driving  
Negative DC–Link Input for U Phase  
NV  
Negative DC–Link Input for V Phase  
V, VS(V)  
NW  
Output for V Phase & Bias Voltage Ground for High Side FRFET Driving  
Negative DC–Link Input for W Phase  
W, VS(W)  
Output for W Phase & Bias Voltage Ground for High Side FRFET Driving  
(1) COM  
(2) VB(U)  
(3) VCC(U)  
(4) IN (UH)  
(5) IN (UL)  
(17) P  
VCC  
HIN  
VB  
HO  
VS  
LO  
(18) U, VS(U)  
LIN  
COM  
(6) N.C  
(19) NU  
(20) NV  
(7) VB(V)  
(8) VCC(V)  
(9) IN (VH)  
(10) IN (VL)  
VCC  
HIN  
LIN  
VB  
HO  
VS  
LO  
(21) V, VS(V)  
COM  
Vts  
(11) Vts  
(12) V B(W)  
(13) VCC(W)  
(14) IN (WH)  
(15) IN (WL)  
VCC  
HIN  
VB  
HO  
VS  
LO  
(22) NW  
(23) W, VS(W)  
LIN  
COM  
(16)  
N.C  
Note:  
®
Source terminal of each low-side MOSFET is not connected to supply ground or bias voltage ground inside SPM . External connections should be made as indicated in Figure 3  
Figure 1. Pin Configuration and Internal Block Diagram (Bottom View)  
3
www.fairchildsemi.com  
FSB50550A Rev. A  
Electrical Characteristics (TJ = 25°C, VCC=VBS=15V Unless Otherwise Specified)  
Inverter Part (Each FRFET Unless Otherwise Specified)  
Symbol  
Parameter  
Conditions  
Min Typ Max Units  
Drain-Source Breakdown  
Voltage  
BVDSS  
VIN= 0V, ID = 1mA (Note 1)  
500  
-
-
-
V
mA  
W
Zero Gate Voltage  
Drain Current  
IDSS  
RDS(on)  
VSD  
VIN= 0V, VDS = 500V  
-
-
-
1
Static Drain-Source  
On-Resistance  
VCC = VBS = 15V, VIN = 5V, ID = 1.2A  
VCC = VBS = 15V, VIN = 0V, ID = -1.2A  
1.0  
-
1.4  
1.2  
Drain-Source Diode  
Forward Voltage  
V
tON  
tOFF  
trr  
-
-
-
-
-
600  
500  
100  
60  
-
-
-
-
-
ns  
ns  
ns  
mJ  
mJ  
VPN = 300V, VCC = VBS = 15V, ID = 1.2A  
VIN = 0V « 5V, Inductive load L=3mH  
High- and low-side FRFET switching  
(Note 2)  
Switching Times  
EON  
EOFF  
10  
VPN = 400V, VCC = VBS = 15V, ID = IDP, VDS=BVDSS  
TJ = 150°C  
High- and low-side FRFET switching (Note 3)  
,
Reverse-bias Safe Oper-  
ating Area  
RBSOA  
Full Square  
Control Part (Each HVIC Unless Otherwise Specified)  
Symbol  
Parameter  
Conditions  
Min Typ Max Units  
IQCC  
Quiescent VCC Current  
VCC=15V, VIN=0V Applied between VCC and COM  
-
-
200  
mA  
Applied between VB(U)-U,  
VBS=15V, VIN=0V  
IQBS  
Quiescent VBS Current  
-
-
100  
mA  
VB(V)-V, VB(W)-W  
UVCCD  
UVCCR  
UVBSD  
UVBSR  
VCC Undervoltage Protection Detection Level  
VCC Undervoltage Protection Reset Level  
VBS Undervoltage Protection Detection Level  
VBS Undervoltage Protection Reset Level  
7.4  
8.0  
7.4  
8.0  
8.0  
8.9  
8.0  
8.9  
9.4  
9.8  
9.4  
9.8  
V
V
V
V
Low-side Undervoltage  
Protection (Figure 8)  
High-side Undervoltage  
Protection (Figure 9)  
HVIC Temperature sens-  
ing voltage output  
Vts  
mV  
VCC=15V, THVIC=25°C(Note 4)  
600  
790  
980  
VIH  
VIL  
ON Threshold Voltage  
OFF Threshold Voltage  
Logic High Level  
Applied between IN and COM  
Logic Low Level  
2.9  
-
-
-
-
V
V
0.8  
Bootstrap Diode Part (Each Bootstrap diode Unless Otherwise Specified)  
Symbol  
VFB  
Parameter  
Forward Voltage  
Conditions  
Min Typ Max Units  
IF = 0.1A, TC = 25°C(Note 5)  
IF = 0.1A, TC = 25°C  
-
-
2.5  
80  
-
-
V
trrB  
Reverse Recovery Time  
ns  
Note:  
®
1. BV  
is the absolute maximum voltage rating between drain and source terminal of each FRFET inside SPM . V should be sufficiently less than this value considering the  
PN  
DSS  
effect of the stray inductance so that V should not exceed BV  
in any case.  
DS  
DSS  
2.  
t
and t  
include the propagation delay time of the internal drive IC. Listed values are measured at the laboratory test condition, and they can be different according to the  
OFF  
ON  
field applcations due to the effect of different printed circuit boards and wirings. Please see Figure 6 for the switching time definition with the switching test circuit of Figure 7.  
3. The peak current and voltage of each FRFET during the switching operation should be included in the safe operating area (SOA). Please see Figure 7 for the RBSOA test cir-  
cuit that is same as the switching test circuit.  
4. V is only for sensing temperature of module and cannot shutdown MOSFETs automatically.  
ts  
5. Built in bootstrap diode includes around 15resistance characteristic. Please refer to Figure 2.  
4
www.fairchildsemi.com  
FSB50550A Rev. A  
Recommended Operating Condition  
Value  
Symbol  
Parameter  
Conditions  
Units  
Min.  
-
Typ. Max.  
VPN  
VCC  
VBS  
Supply Voltage  
Applied between P and N  
300  
15  
15  
-
400  
16.5  
16.5  
VCC  
V
V
V
V
V
Control Supply Voltage  
High-side Bias Voltage  
Applied between VCC and COM  
Applied between VB and VS  
13.5  
13.5  
3.0  
0
VIN(ON) Input ON Threshold Voltage  
VIN(OFF) Input OFF Threshold Voltage  
Applied between IN and COM  
-
0.6  
Blanking Time for Preventing  
Arm-short  
tdead  
VCC=VBS=13.5 ~ 16.5V, TJ £ 150°C  
TJ £ 150°C  
1.0  
-
-
-
-
ms  
fPWM  
PWM Switching Frequency  
15  
kHz  
Package Marking & Ordering Information  
Device Marking  
Device  
Package  
Reel Size  
Packing Type  
Quantity  
FSB50550A  
FSB50550A  
SPM23-FD  
-
-
15  
Built in Bootstrap Diode VF-IF Characteristic  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
VF [V]  
Tc=25°C  
Figure 2. Built in Bootstrap Diode Characteristics(typ.)  
5
www.fairchildsemi.com  
FSB50550A Rev. A  
These values depend on PWM  
control algorithm  
15V  
Line  
*
Example circuit : V phase  
C
1
VDC  
P
V
HIN  
0
LIN  
0
Output  
Note  
VCC  
HIN  
LIN  
VB  
HO  
VS  
LO  
Z
Both FRFET Off  
Low side FRFET On  
High side FRFET On  
Shoot through  
Inverter  
Output  
R
5
0
1
0
VDC  
1
0
C3  
C5  
COM  
Vts  
1
1
Forbidden  
Z
R
3
N
Open Open  
Same as (0,0)  
C
4
One Leg Diagram of SPM  
C2  
10mF  
*
Example of bootstrap param:ters  
C = C =1mF ceramic capacitor  
1
2
Note:  
1. Parameters for bootsrap circuit elements are dependent on PWM algorithm. For 15 kHz of switching frequency, typical example of parameters is shown above.  
®
®
2. RC coupling(R and C ) and C at each input of SPM and Micom (indicated as dotted lines) may be used to prevent improper signal due to surge noise. Signal input of SPM  
5
5
4
is compatible with standard CMOS or LSTTL outputs.  
3. Bold lines should be short and thick in PCB pattern to have small stray inductance of circuit, which results in the reduction of surge voltage. Bypass capacitors such as C , C  
1
2
and C should have good high-frequencycharacteristics to absorb high-frequency ripple current.  
3
Figure 3. Recommended CPU Interface and Bootstrap Circuit with Parameters  
Note:  
®
®
Attach the thermocouple on top of the heatsink-side of SPM (between SPM and heatsink if applied) to get the correct temperature measurement.  
Figure 4. Case Temperature Measurement  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
20  
40  
60  
80  
100  
120  
140  
160  
THVIC [deg]  
Figure 5. Temperature profile of Vts(typ.)  
6
www.fairchildsemi.com  
FSB50550A Rev. A  
V
V
IN  
IN  
Irr  
120% of ID  
100% of ID  
VDS  
ID  
10% of ID  
ID  
VDS  
tON  
trr  
tOFF  
(a) Turn-on  
(b) Turn-off  
Figure 6. Switching Time Definition  
CBS  
VCC  
ID  
VCC  
HIN  
LIN  
VB  
HO  
VS  
LO  
L
VDC  
+
VDS  
-
COM  
Vts  
One-leg Diagram of SPM  
Figure 7. Switching and RBSOA(Single-pulse) Test Circuit (Low-side)  
Input Signal  
UV Protection  
RESET  
DETECTION  
RESET  
Status  
UVCCR  
Low-side Supply, VCC  
UVCCD  
MOSFET Current  
Figure 8. Undervoltage Protection (Low-side)  
Input Signal  
UV Protection  
Status  
RESET  
DETECTION  
RESET  
UVBSR  
High-side Supply, VBS  
UVBSD  
MOSFET Current  
Figure 9. Undervoltage Protection (High-side)  
7
www.fairchildsemi.com  
FSB50550A Rev. A  
C1  
(1) COM  
(2)VB(U)  
(17)P  
(3)VCC(U)  
VCC  
HIN  
VB  
HO  
VS  
LO  
R5  
(4)IN  
(UH)  
(18)U,VS(U)  
(5)IN  
(UL)  
VDC  
C3  
LIN  
C5  
C2  
COM  
(6)N.C  
(7)VB(V)  
(8)VCC(V)  
(19)NU  
(20)NV  
VCC  
HIN  
LIN  
VB  
HO  
VS  
LO  
(9)IN  
(VH)  
(21)V,VS(V)  
(10)IN  
(VL)  
M
COM  
VTS  
(11)VTS  
(12)VB(W)  
(13)VCC(W)  
(22)NW  
VCC  
HIN  
VB  
HO  
VS  
LO  
(14)IN  
(WH)  
(23) W,VS(W)  
(15)IN  
(WL)  
LIN  
COM  
(16)N.C  
C4  
R4  
For current sensing and protection  
15-V  
Supply  
C6  
R3  
Note:  
1. About pin position, refer to Figure 2.  
®
2. RC coupling(R and C , R and C ) and C at each input of SPM and Micom are useful to prevent improper input signal caused by surge noise.  
5
5
4
6
4
3. The voltage drop across R affects the low side switching performance and the bootstrap characteristics since it is placed between COM and the source terminal of the low side  
3
MOSFET. For this reason, the voltage drop across R should be less than 1V in the steady-state.  
3
4. Ground wires and output terminals, should be thick and short in order to avoid surge voltage and malfunction of HVIC.  
®
5. All the filter capacitors shoud be connected close to SPM , and they should have good characteristics for rejecting high-frequency ripple current.  
Figure 10. Example of Application Circuit  
8
www.fairchildsemi.com  
FSB50550A Rev. A  
Detailed Package Outline Drawings  
Dimension unit : [mm]  
9
www.fairchildsemi.com  
FSB50550A Rev. A  
TRADEMARKS  
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not  
intended to be an exhaustive list of all such trademarks.  
Build it Now™  
CorePLUS™  
CorePOWER™  
CROSSVOLT™  
CTL™  
FRFET®  
Programmable Active Droop™  
QFET®  
QS™  
Quiet Series™  
RapidConfigure™  
Global Power ResourceSM  
Green FPS™  
Green FPS™ e-Series™  
GTO™  
TinyBoost™  
TinyBuck™  
TinyLogic®  
TINYOPTO™  
TinyPower™  
TinyPWM™  
TinyWire™  
Current Transfer Logic™  
IntelliMAX™  
ISOPLANAR™  
MegaBuck™  
MICROCOUPLER™  
MicroFET™  
MicroPak™  
MillerDrive™  
MotionMax™  
EcoSPARK®  
EfficentMax™  
Saving our world, 1mW /W /kW at a time™  
EZSWITCH™ *  
SmartMax™  
SMART START™  
SPM®  
TriFault Detect™  
mSerDes™  
STEALTH™  
SuperFET™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
SupreMOS™  
SyncFET™  
®
®
Fairchild®  
Motion-SPM™  
Fairchild Semiconductor®  
FACT Quiet Series™  
FACT®  
UHC®  
Ultra FRFET™  
UniFET™  
VCX™  
VisualMax™  
XS™  
OPTOLOGIC®  
OPTOPLANAR®  
®
FAST®  
FastvCore™  
PDP SPM™  
Power-SPM™  
PowerTrench®  
PowerXS™  
FlashWriter®  
FPS™  
*
The Power Franchise®  
F-PFS™  
* EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor.  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE  
RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY  
PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NORTHE RIGHTS OF OTHERS.  
THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY  
THEREIN, WHICH COVERS THESE PRODUCTS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE  
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are  
intended for surgical implant into the body or (b) support or sustain life,  
and (c) whose failure to perform when properly used in accordance with  
instructions for use provided in the labeling, can be reasonably  
expected to result in a significant injury of the user.  
2. A critical component in any component of a life support, device, or  
system whose failure to perform can be reasonably expected to cause  
the failure of the life support device or system, or to affect its safety or  
effectiveness.  
ANTI-COUNTERFEITING POLICY  
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website,  
www.Fairchildsemi.com, under Sales Support.  
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their  
parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed  
application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the  
proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild  
Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild  
Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handing and storage and provide access to Fairchild’s full range of  
up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and  
warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is  
committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Datasheet contains the design specifications for product development. Specifications  
may change in any manner without notice.  
Advance Information  
Formative / In Design  
Datasheet contains preliminary data; supplementary data will be published at a later  
date. Fairchild Semiconductor reserves the right to make changes at any time without  
notice to improve design.  
Preliminary  
First Production  
Datasheet contains final specifications. Fairchild Semiconductor reserves the right to  
make changes at any time without notice to improve the design.  
No Identification Needed  
Obsolete  
Full Production  
Datasheet contains specifications on a product that is discontinued by Fairchild  
Semiconductor. The datasheet is for reference information only.  
Not In Production  
Rev. I38  
10  
www.fairchildsemi.com  
FSB50550A Rev. A  

相关型号:

FSB50550ADL

AC Motor Controller, 5A
ONSEMI

FSB50550AS

AC Motor Controller, 5A, ROHS COMPLIANT, MODULE-23
FAIRCHILD

FSB50550AS

智能功率模块,500V,5A
ONSEMI

FSB50550ASE

智能功率模块,500 V,5A
ONSEMI

FSB50550AT

AC Motor Controller, 5A, ROHS COMPLIANT, MODULE-23
FAIRCHILD

FSB50550AT

智能功率模块 (IPM),运动控制
ONSEMI

FSB50550B

Motion SPM
ONSEMI

FSB50550BL

Intelligent Power Module, 500V, 3A, Slow ver for EMI optimization
ONSEMI

FSB50550BS

Motion SPM
ONSEMI

FSB50550BSL

Intelligent Power Module, 500V, 3A, Slow ver for EMI optimization
ONSEMI

FSB50550T

Smart Power Module (SPM)
FAIRCHILD

FSB50550T

Motion SPM® 5 系列
ONSEMI