FDI3632 [FAIRCHILD]

N-Channel PowerTrench MOSFET 100V, 80A, 9mз; N沟道PowerTrench MOSFET的100V , 80A , 9mз
FDI3632
型号: FDI3632
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

N-Channel PowerTrench MOSFET 100V, 80A, 9mз
N沟道PowerTrench MOSFET的100V , 80A , 9mз

文件: 总11页 (文件大小:261K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
April 2003  
FDB3632 / FDP3632 / FDI3632  
N-Channel PowerTrench® MOSFET  
100V, 80A, 9mΩ  
Features  
Applications  
rDS(ON) = 7.5m(Typ.), VGS = 10V, ID = 80A  
Qg(tot) = 84nC (Typ.), VGS = 10V  
Low Miller Charge  
DC/DC converters and Off-Line UPS  
Distributed Power Architectures and VRMs  
Primary Switch for 24V and 48V Systems  
High Voltage Synchronous Rectifier  
Direct Injection / Diesel Injection Systems  
42V Automotive Load Control  
Low QRR Body Diode  
UIS Capability (Single Pulse and Repetitive Pulse)  
Qualified to AEC Q101  
Formerly developmental type 82784  
Electronic Valve Train Systems  
D
DRAIN  
(FLANGE)  
SOURCE  
DRAIN  
(FLANGE)  
DRAIN  
SOURCE  
DRAIN  
GATE  
GATE  
GATE  
G
SOURCE  
TO-220AB  
FDP SERIES  
DRAIN  
(FLANGE)  
TO-262AB  
FDI SERIES  
TO-263AB  
FDB SERIES  
S
MOSFET Maximum Ratings TC = 25°C unless otherwise noted  
Symbol  
VDSS  
VGS  
Parameter  
Ratings  
100  
Units  
Drain to Source Voltage  
Gate to Source Voltage  
Drain Current  
V
V
±20  
Continuous (TC < 111oC, VGS = 10V)  
Continuous (Tamb = 25oC, VGS = 10V, RθJA = 43oC/W)  
Pulsed  
80  
12  
A
A
ID  
Figure 4  
393  
A
EAS  
Single Pulse Avalanche Energy (Note 1)  
Power dissipation  
Derate above 25oC  
mJ  
W
W/oC  
oC  
310  
PD  
2.07  
TJ, TSTG  
Operating and Storage Temperature  
-55 to 175  
Thermal Characteristics  
RθJC  
RθJA  
RθJA  
Thermal Resistance Junction to Case TO-220, TO-263, TO-262  
Thermal Resistance Junction to Ambient TO-220, TO-262 (Note 2)  
Thermal Resistance Junction to Ambient TO-263, 1in2 copper pad area  
0.48  
62  
oC/W  
oC/W  
oC/W  
43  
This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a  
copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/  
Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html.  
All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems  
certification.  
©2003 Fairchild Semiconductor Corporation  
FDB3632 / FDP3632 / FDI3632 Rev. B1  
Package Marking and Ordering Information  
Device Marking  
FDB3632  
Device  
FDB3632  
FDP3632  
FDI3632  
Package  
TO-263AB  
TO-220AB  
TO-262AA  
Reel Size  
330mm  
Tube  
Tape Width  
24mm  
N/A  
Quantity  
800 units  
50 units  
50 units  
FDP3632  
FDI3632  
Tube  
N/A  
Electrical Characteristics TC = 25°C unless otherwise noted  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
Off Characteristics  
BVDSS  
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
Gate to Source Leakage Current  
ID = 250µA, VGS = 0V  
100  
-
-
-
-
-
V
V
DS = 80V  
-
-
-
1
IDSS  
µA  
nA  
VGS = 0V  
TC= 150oC  
250  
±100  
IGSS  
VGS = ±20V  
On Characteristics  
VGS(TH)  
Gate to Source Threshold Voltage  
VGS = VDS, ID = 250µA  
ID=80A, VGS=10V  
2
-
-
4
V
0.0075 0.009  
0.009 0.015  
0.018 0.022  
rDS(ON)  
Drain to Source On Resistance  
ID =40A, VGS = 6V,  
ID=80A, VGS=10V, TC=175oC  
-
-
Dynamic Characteristics  
CISS  
Input Capacitance  
-
-
-
-
-
-
-
-
6000  
820  
200  
84  
-
pF  
pF  
pF  
nC  
nC  
nC  
nC  
nC  
VDS = 25V, VGS = 0V,  
f = 1MHz  
COSS  
CRSS  
Qg(TOT)  
Qg(TH)  
Qgs  
Output Capacitance  
-
Reverse Transfer Capacitance  
Total Gate Charge at 10V  
Threshold Gate Charge  
-
110  
14  
-
VGS = 0V to 10V  
VGS = 0V to 2V  
11  
VDD = 50V  
D = 80A  
Ig = 1.0mA  
Gate to Source Gate Charge  
Gate Charge Threshold to Plateau  
Gate to Drain “Miller” Charge  
I
30  
Qgs2  
20  
-
Qgd  
20  
-
Resistive Switching Characteristics (VGS = 10V)  
tON  
td(ON)  
tr  
Turn-On Time  
Turn-On Delay Time  
Rise Time  
-
-
-
-
-
-
-
102  
ns  
ns  
ns  
ns  
ns  
ns  
30  
39  
96  
46  
-
-
-
V
V
DD = 50V, ID = 80A  
GS = 10V, RGS = 3.6Ω  
td(OFF)  
tf  
Turn-Off Delay Time  
Fall Time  
-
-
tOFF  
Turn-Off Time  
213  
Drain-Source Diode Characteristics  
I
SD = 80A  
-
-
-
-
-
-
-
-
1.25  
1.0  
64  
V
V
VSD  
Source to Drain Diode Voltage  
ISD = 40A  
trr  
Reverse Recovery Time  
ISD = 75A, dISD/dt= 100A/µs  
ISD = 75A, dISD/dt= 100A/µs  
ns  
nC  
QRR  
Reverse Recovered Charge  
120  
Notes:  
1: Starting T = 25°C, L = 0.12mH, I = 75A.  
J
AS  
2: Pulse Width = 100s  
©2003 Fairchild Semiconductor Corporation  
FDB3632 / FDP3632 / FDI3632 Rev. B1  
Typical Characteristics TA = 25°C unless otherwise noted  
1.2  
125  
CURRENT LIMITED  
BY PACKAGE  
1.0  
100  
0.8  
75  
V
= 10V  
GS  
0.6  
0.4  
0.2  
0
50  
25  
0
150  
0
25  
50  
75  
100  
175  
125  
o
25  
50  
75  
100  
125  
150  
175  
o
T
, CASE TEMPERATURE ( C)  
C
T
, CASE TEMPERATURE ( C)  
C
Figure 1. Normalized Power Dissipation vs  
Ambient Temperature  
Figure 2. Maximum Continuous Drain Current vs  
Case Temperature  
2
DUTY CYCLE - DESCENDING ORDER  
0.5  
0.2  
1
0.1  
0.05  
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
NOTES:  
DUTY FACTOR: D = t /t  
SINGLE PULSE  
1
2
PEAK T = P  
x Z  
x R  
+ T  
J
DM  
θJC  
θJC C  
0.01  
10  
-5  
-4  
-3  
-2  
-1  
0
1
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
10  
10  
10  
Figure 3. Normalized Maximum Transient Thermal Impedance  
2000  
1000  
o
T
= 25 C  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
C
FOR TEMPERATURES  
o
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
175 - T  
150  
C
V
= 10V  
I = I  
GS  
25  
100  
50  
-5  
-4  
-3  
-2  
-1  
0
1
10  
10  
10  
10  
t, PULSE WIDTH (s)  
10  
10  
10  
Figure 4. Peak Current Capability  
©2003 Fairchild Semiconductor Corporation  
FDB3632 / FDP3632 / FDI3632 Rev. B1  
Typical Characteristics TA = 25°C unless otherwise noted  
400  
100  
200  
If R = 0  
10µs  
t
AV  
= (L)(I )/(1.3*RATED BV  
- V  
DD  
)
AS  
DSS  
If R 0  
t
AV  
= (L/R)ln[(I *R)/(1.3*RATED BV  
- V ) +1]  
DD  
AS  
DSS  
100  
100µs  
o
STARTING T = 25 C  
J
OPERATION IN THIS  
AREA MAY BE  
10  
1
LIMITED BY r  
DS(ON)  
1ms  
o
STARTING T = 150 C  
J
10ms  
DC  
SINGLE PULSE  
T
T
= MAX RATED  
= 25 C  
J
o
C
10  
0.1  
1
10  
, DRAIN TO SOURCE VOLTAGE (V)  
100  
200  
0.01  
0.1  
1
10  
V
t , TIME IN AVALANCHE (ms)  
DS  
AV  
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515  
Figure 6. Unclamped Inductive Switching  
Capability  
Figure 5. Forward Bias Safe Operating Area  
150  
150  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 6V  
GS  
V
= 10V  
GS  
V
= 15V  
V
= 5.5V  
DD  
GS  
120  
90  
60  
30  
0
120  
90  
60  
30  
0
o
T
= 175 C  
J
V
= 5V  
GS  
o
T
= 25 C  
J
o
o
T
= 25 C  
T
= -55 C  
C
J
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
0
1
2
3
4
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
V
, GATE TO SOURCE VOLTAGE (V)  
V
, DRAIN TO SOURCE VOLTAGE (V)  
GS  
DS  
Figure 7. Transfer Characteristics  
Figure 8. Saturation Characteristics  
10  
9
2.5  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 6V  
GS  
2.0  
8
1.5  
1.0  
0.5  
V
= 10V  
GS  
7
V
= 10V, I =80A  
D
GS  
6
-80  
-40  
0
40  
80  
120  
160  
200  
0
20  
40  
I , DRAIN CURRENT (A)  
62  
80  
o
T , JUNCTION TEMPERATURE ( C)  
D
J
Figure 9. Drain to Source On Resistance vs Drain  
Current  
Figure 10. Normalized Drain to Source On  
Resistance vs Junction Temperature  
©2003 Fairchild Semiconductor Corporation  
FDB3632 / FDP3632 / FDI3632 Rev. B1  
Typical Characteristics TA = 25°C unless otherwise noted  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
1.2  
1.1  
1.0  
0.9  
V
= V , I = 250µA  
DS D  
I
= 250µA  
GS  
D
-80  
-40  
0
40  
80  
120  
160  
200  
-80  
-40  
0
40  
80  
120  
160  
200  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
Figure 11. Normalized Gate Threshold Voltage vs  
Junction Temperature  
Figure 12. Normalized Drain to Source  
Breakdown Voltage vs Junction Temperature  
10000  
10  
V
= 50V  
DD  
C
= C + C  
GS GD  
ISS  
8
6
4
2
0
C
C
+ C  
GD  
OSS  
DS  
1000  
C
= C  
RSS  
GD  
WAVEFORMS IN  
DESCENDING ORDER:  
I
I
= 80A  
= 40A  
D
D
V
= 0V, f = 1MHz  
1
GS  
100  
0.1  
10  
100  
0
20  
40  
60  
80  
100  
V
, DRAIN TO SOURCE VOLTAGE (V)  
Q , GATE CHARGE (nC)  
DS  
g
Figure 13. Capacitance vs Drain to Source  
Voltage  
Figure 14. Gate Charge Waveforms for Constant  
Gate Currents  
©2003 Fairchild Semiconductor Corporation  
FDB3632 / FDP3632 / FDI3632 Rev. B1  
Test Circuits and Waveforms  
V
BV  
DSS  
DS  
t
P
V
DS  
L
I
AS  
V
DD  
VARY t TO OBTAIN  
P
+
-
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
GS  
DUT  
t
P
I
0V  
0
AS  
0.01Ω  
t
AV  
Figure 15. Unclamped Energy Test Circuit  
Figure 16. Unclamped Energy Waveforms  
V
DS  
V
Q
DD  
g(TOT)  
V
DS  
L
V
= 10V  
GS  
V
GS  
+
V
DD  
V
GS  
-
V
= 2V  
DUT  
GS  
Q
gs2  
0
I
g(REF)  
Q
g(TH)  
Q
Q
gd  
gs  
I
g(REF)  
0
Figure 17. Gate Charge Test Circuit  
Figure 18. Gate Charge Waveforms  
V
DS  
t
t
ON  
OFF  
t
d(OFF)  
t
d(ON)  
R
t
t
f
L
r
V
0
DS  
90%  
90%  
+
V
GS  
V
DD  
10%  
10%  
-
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
0
Figure 19. Switching Time Test Circuit  
Figure 20. Switching Time Waveforms  
©2003 Fairchild Semiconductor Corporation  
FDB3632 / FDP3632 / FDI3632 Rev. B1  
Thermal Resistance vs. Mounting Pad Area  
The maximum rated junction temperature, TJM, and the  
thermal resistance of the heat dissipating path determines  
the maximum allowable device power dissipation, PDM, in an  
80  
60  
40  
20  
R
= 26.51+ 19.84/(0.262+Area) EQ.2  
θJA  
R
= 26.51+ 128/(1.69+Area) EQ.3  
θJA  
application.  
Therefore the applications ambient  
temperature, TA (oC), and thermal resistance RθJA (oC/W)  
must be reviewed to ensure that TJM is never exceeded.  
Equation 1 mathematically represents the relationship and  
serves as the basis for establishing the rating of the part.  
(T  
T )  
JM  
A
(EQ. 1)  
P
= -----------------------------  
DM  
Rθ JA  
In using surface mount devices such as the TO-263  
package, the environment in which it is applied will have a  
significant influence on the parts current and maximum  
power dissipation ratings. Precise determination of PDM is  
complex and influenced by many factors:  
0.1  
(0.645)  
1
10  
(6.45)  
(64.5)  
2
2
AREA, TOP COPPER AREA in (cm )  
Figure 21. Thermal Resistance vs Mounting  
Pad Area  
1. Mounting pad area onto which the device is attached and  
whether there is copper on one side or both sides of the  
board.  
2. The number of copper layers and the thickness of the  
board.  
3. The use of external heat sinks.  
4. The use of thermal vias.  
5. Air flow and board orientation.  
6. For non steady state applications, the pulse width, the  
duty cycle and the transient thermal response of the part,  
the board and the environment they are in.  
Fairchild provides thermal information to assist the  
designers preliminary application evaluation. Figure 21  
defines the RθJA for the device as a function of the top  
copper (component side) area. This is for a horizontally  
positioned FR-4 board with 1oz copper after 1000 seconds  
of steady state power with no air flow. This graph provides  
the necessary information for calculation of the steady state  
junction temperature or power dissipation. Pulse  
applications can be evaluated using the Fairchild device  
Spice thermal model or manually utilizing the normalized  
maximum transient thermal impedance curve.  
Thermal resistances corresponding to other copper areas  
can be obtained from Figure 21 or by calculation using  
Equation 2 or 3. Equation 2 is used for copper area defined  
in inches square and equation 3 is for area in centimeters  
square. The area, in square inches or square centimeters is  
the top copper area including the gate and source pads.  
19.84  
(0.262 + Area)  
R
= 26.51 + ------------------------------------  
(EQ. 2)  
θ JA  
θ JA  
Area in Inches Squared  
128  
= 26.51 + ---------------------------------  
(1.69 + Area)  
R
(EQ. 3)  
Area in Centimeters Squared  
©2003 Fairchild Semiconductor Corporation  
FDB3632 / FDP3632 / FDI3632 Rev. B1  
PSPICE Electrical Model  
.SUBCKT FDB3632 2 1 3 ;  
CA 12 8 1.7e-9  
rev May 2002  
Cb 15 14 2.5e-9  
Cin 6 8 6.0e-9  
LDRAIN  
DPLCAP  
DRAIN  
2
5
10  
Dbody 7 5 DbodyMOD  
Dbreak 5 11 DbreakMOD  
Dplcap 10 5 DplcapMOD  
RLDRAIN  
RSLC1  
51  
DBREAK  
+
RSLC2  
5
ESLC  
11  
51  
Ebreak 11 7 17 18 102.5  
Eds 14 8 5 8 1  
Egs 13 8 6 8 1  
Esg 6 10 6 8 1  
Evthres 6 21 19 8 1  
Evtemp 20 6 18 22 1  
-
+
50  
-
17  
DBODY  
RDRAIN  
6
8
EBREAK 18  
-
ESG  
EVTHRES  
+
16  
21  
+
-
19  
8
MWEAK  
LGATE  
EVTEMP  
RGATE  
GATE  
1
6
+
-
18  
22  
It 8 17 1  
MMED  
9
20  
MSTRO  
8
RLGATE  
Lgate 1 9 5.61e-9  
Ldrain 2 5 1.0e-9  
Lsource 3 7 2.7e-9  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RLSOURCE  
RLgate 1 9 56.1  
RLdrain 2 5 10  
RLsource 3 7 27  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RVTEMP  
19  
-
S1B  
S2B  
Mmed 16 6 8 8 MmedMOD  
Mstro 16 6 8 8 MstroMOD  
Mweak 16 21 8 8 MweakMOD  
13  
CB  
CA  
IT  
14  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
Rbreak 17 18 RbreakMOD 1  
Rdrain 50 16 RdrainMOD 3.8e-3  
Rgate 9 20 1.1  
-
-
8
22  
RVTHRES  
RSLC1 5 51 RSLCMOD 1.0e-6  
RSLC2 5 50 1.0e3  
Rsource 8 7 RsourceMOD 2.5e-3  
Rvthres 22 8 RvthresMOD 1  
Rvtemp 18 19 RvtempMOD 1  
S1a 6 12 13 8 S1AMOD  
S1b 13 12 13 8 S1BMOD  
S2a 6 15 14 13 S2AMOD  
S2b 13 15 14 13 S2BMOD  
Vbat 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*350),3))}  
.MODEL DbodyMOD D (IS=5.9E-11 N=1.07 RS=2.3e-3 TRS1=3.0e-3 TRS2=1.0e-6  
+ CJO=4e-9 M=0.58 TT=4.8e-8 XTI=4.2)  
.MODEL DbreakMOD D (RS=0.17 TRS1=3.0e-3 TRS2=-8.9e-6)  
.MODEL DplcapMOD D (CJO=15e-10 IS=1.0e-30 N=10 M=0.6)  
.MODEL MstroMOD NMOS (VTO=4.1 KP=200 IS=1e-30 N=10 TOX=1 L=1u W=1u)  
.MODEL MmedMOD NMOS (VTO=3.4 KP=10.0 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=1.1)  
.MODEL MweakMOD NMOS (VTO=2.75 KP=0.05 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=1.1e+1 RS=0.1)  
.MODEL RbreakMOD RES (TC1=1.0e-3 TC2=-1.7e-6)  
.MODEL RdrainMOD RES (TC1=8.5e-3 TC2=2.8e-5)  
.MODEL RSLCMOD RES (TC1=2.0e-3 TC2=2.0e-6)  
.MODEL RsourceMOD RES (TC1=4e-3 TC2=1e-6)  
.MODEL RvthresMOD RES (TC1=-4.0e-3 TC2=-1.8e-5)  
.MODEL RvtempMOD RES (TC1=-4.4e-3 TC2=2.2e-6)  
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-2)  
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2 VOFF=-4)  
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.8 VOFF=0.4)  
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=0.4 VOFF=-0.8)  
.ENDS  
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank  
Wheatley.  
©2003 Fairchild Semiconductor Corporation  
FDB3632 / FDP3632 / FDI3632 Rev. B1  
SABER Electrical Model  
REV May 2002  
template FDB3632 n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
dp..model dbodymod = (isl=5.9e-11,nl=1.07,rs=2.3e-3,trs1=3.0e-3,trs2=1.0e-6,cjo=4e-9,m=0.58,tt=4.8e-8,xti=4.2)  
dp..model dbreakmod = (rs=0.17,trs1=3.0e-3,trs2=-8.9e-6)  
dp..model dplcapmod = (cjo=15e-10,isl=10.0e-30,nl=10,m=0.6)  
m..model mstrongmod = (type=_n,vto=4.1,kp=200,is=1e-30, tox=1)  
m..model mmedmod = (type=_n,vto=3.4,kp=10.0,is=1e-30, tox=1)  
m..model mweakmod = (type=_n,vto=2.75,kp=0.05,is=1e-30, tox=1,rs=0.1)  
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-2)  
LDRAIN  
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-2,voff=-4)  
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-0.8,voff=0.4)  
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0.4,voff=-0.8)  
c.ca n12 n8 = 1.7e-9  
c.cb n15 n14 = 2.5e-9  
c.cin n6 n8 = 6.0e-9  
DPLCAP  
DRAIN  
2
5
10  
RLDRAIN  
RSLC1  
51  
RSLC2  
ISCL  
dp.dbody n7 n5 = model=dbodymod  
dp.dbreak n5 n11 = model=dbreakmod  
dp.dplcap n10 n5 = model=dplcapmod  
DBREAK  
11  
50  
-
RDRAIN  
6
8
ESG  
DBODY  
EVTHRES  
+
16  
21  
+
-
19  
8
spe.ebreak n11 n7 n17 n18 = 102.5  
MWEAK  
LGATE  
EVTEMP  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
RGATE  
GATE  
1
6
+
-
18  
22  
EBREAK  
+
MMED  
9
20  
spe.esg n6 n10 n6 n8 = 1  
spe.evthres n6 n21 n19 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
MSTRO  
8
17  
18  
-
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
i.it n8 n17 = 1  
RLSOURCE  
S1A  
S2A  
l.lgate n1 n9 = 5.61e-9  
l.ldrain n2 n5 = 1.0e-9  
l.lsource n3 n7 = 2.7e-9  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RVTEMP  
19  
S1B  
S2B  
13  
CB  
res.rlgate n1 n9 = 56.1  
res.rldrain n2 n5 = 10  
res.rlsource n3 n7 = 27  
CA  
IT  
14  
-
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
22  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
RVTHRES  
res.rbreak n17 n18 = 1, tc1=1.0e-3,tc2=-1.7e-6  
res.rdrain n50 n16 = 3.8e-3, tc1=8.5e-3,tc2=2.8e-5  
res.rgate n9 n20 = 1.1  
res.rslc1 n5 n51 = 1.0e-6, tc1=2.0e-3,tc2=2.0e-6  
res.rslc2 n5 n50 = 1.0e3  
res.rsource n8 n7 = 2.5e-3, tc1=4e-3,tc2=1e-6  
res.rvthres n22 n8 = 1, tc1=-4.0e-3,tc2=-1.8e-5  
res.rvtemp n18 n19 = 1, tc1=-4.4e-3,tc2=2.2e-6  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51->n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/350))** 3))  
}
}
©2003 Fairchild Semiconductor Corporation  
FDB3632 / FDP3632 / FDI3632 Rev. B1  
SPICE Thermal Model  
JUNCTION  
th  
REV May 2002  
FDB3632  
CTHERM1 TH 6 7.5e-3  
CTHERM2 6 5 8.0e-3  
CTHERM3 5 4 9.0e-3  
CTHERM4 4 3 2.4e-2  
CTHERM5 3 2 3.4e-2  
CTHERM6 2 TL 6.5e-2  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM1  
6
RTHERM1 TH 6 3.1e-4  
RTHERM2 6 5 2.5e-3  
RTHERM3 5 4 2.2e-2  
RTHERM4 4 3 8.1e-2  
RTHERM5 3 2 1.35e-1  
RTHERM6 2 TL 1.5e-1  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
5
SABER Thermal Model  
SABER thermal model FDB3632  
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 6 =7.5e-3  
ctherm.ctherm2 6 5 =8.0e-3  
ctherm.ctherm3 5 4 =9.0e-3  
ctherm.ctherm4 4 3 =2.4e-2  
ctherm.ctherm5 3 2 =3.4e-2  
ctherm.ctherm6 2 tl =6.5e-2  
4
3
2
rtherm.rtherm1 th 6 =3.1e-4  
rtherm.rtherm2 6 5 =2.5e-3  
rtherm.rtherm3 5 4 =2.2e-2  
rtherm.rtherm4 4 3 =8.1e-2  
rtherm.rtherm5 3 2 =1.35e-1  
rtherm.rtherm6 2 tl =1.5e-1  
}
tl  
CASE  
©2003 Fairchild Semiconductor Corporation  
FDB3632 / FDP3632 / FDI3632 Rev. B1  
TRADEMARKS  
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not  
intended to be an exhaustive list of all such trademarks.  
ACEx™  
FACT™  
ImpliedDisconnect™ PACMAN™  
SPM™  
ActiveArray™  
Bottomless™  
CoolFET™  
FACT Quiet Series™ ISOPLANAR™  
POP™  
Stealth™  
®
FAST  
LittleFET™  
MicroFET™  
MicroPak™  
Power247™  
PowerTrench  
QFET™  
SuperSOT™-3  
SuperSOT™-6  
SuperSOT™-8  
®
FASTr™  
CROSSVOLT™ FRFET™  
DOME™  
GlobalOptoisolator™ MICROWIRE™  
QS™  
SyncFET™  
®
EcoSPARK™  
GTO™  
MSX™  
QT Optoelectronics™ TinyLogic  
Quiet Series™  
RapidConfigure™  
RapidConnect™  
SILENT SWITCHER VCX™  
SMART START™  
2
E CMOS™  
HiSeC™  
I C™  
MSXPro™  
OCX™  
TruTranslation™  
2
EnSigna™  
UHC™  
UltraFET  
®
Across the board. Around the world.™ OCXPro™  
The Power Franchise™  
Programmable Active Droop™  
®
®
OPTOLOGIC  
OPTOPLANAR™  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY  
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY  
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;  
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT  
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR  
CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or systems  
which, (a) are intended for surgical implant into the body,  
or (b) support or sustain life, or (c) whose failure to perform  
when properly used in accordance with instructions for use  
provided in the labeling, can be reasonably expected to  
result in significant injury to the user.  
2. A critical component is any component of a life support  
device or system whose failure to perform can be  
reasonably expected to cause the failure of the life support  
device or system, or to affect its safety or effectiveness.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification  
Product Status  
Definition  
Advance Information  
Formative or In  
Design  
This datasheet contains the design specifications for  
product development. Specifications may change in  
any manner without notice.  
Preliminary  
First Production  
This datasheet contains preliminary data, and  
supplementary data will be published at a later date.  
Fairchild Semiconductor reserves the right to make  
changes at any time without notice in order to improve  
design.  
No Identification Needed  
Obsolete  
Full Production  
This datasheet contains final specifications. Fairchild  
Semiconductor reserves the right to make changes at  
any time without notice in order to improve design.  
Not In Production  
This datasheet contains specifications on a product  
that has been discontinued by Fairchild semiconductor.  
The datasheet is printed for reference information only.  
Rev. I2  

相关型号:

FDI3652

N-Channel PowerTrench MOSFET 100V, 61A, 16mз
FAIRCHILD

FDI42AN15A0

Power Field-Effect Transistor, 5A I(D), 150V, 0.042ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-262AA, TO-262AA, 3 PIN
FAIRCHILD

FDI8441

N-Channel PowerTrench㈢ MOSFET
FAIRCHILD

FDI8441_10

N-Channel PowerTrench® MOSFET 40V, 80A, 2.7mΩ
FAIRCHILD

FDI8441_F085

Power Field-Effect Transistor, 26A I(D), 40V, 0.0027ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-262AB, ROHS COMPLIANT PACKAGE-3
FAIRCHILD

FDI8442

N-Channel PowerTrench㈢ MOSFET
FAIRCHILD

FDI9406-F085

40 V、110 A、1.7 mΩ、TO-262N 沟道 PowerTrench®
ONSEMI

FDI9409-F085

N 沟道,PowerTrench® MOSFET,40V,80A,3.8mΩ
ONSEMI

FDJ1027P

P-Channel 1.8V Specified PowerTrench MOSFET
FAIRCHILD

FDJ1027P_06

P-Channel 1.8V Specified PowerTrench MOSFET
FAIRCHILD

FDJ1028N

N-Channel 2.5 Vgs Specified PowerTrench MOSFET
FAIRCHILD

FDJ1028N_06

N-Channel 2.5 Vgs Specified PowerTrench MOSFET
FAIRCHILD