FDB2532_10 [FAIRCHILD]

N-Channel PowerTrench® MOSFET 150V, 79A, 16mΩ; N沟道MOSFET PowerTrench® 150V , 79A , 26km朝©
FDB2532_10
型号: FDB2532_10
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

N-Channel PowerTrench® MOSFET 150V, 79A, 16mΩ
N沟道MOSFET PowerTrench® 150V , 79A , 26km朝©

文件: 总11页 (文件大小:210K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
September 2010  
FDB2532_F085  
N-Channel PowerTrench® MOSFET  
150V, 79A, 16mΩ  
Features  
Applications  
rDS(ON) = 14mΩ (Typ.), VGS = 10V, ID = 33A  
Qg(tot) = 82nC (Typ.), VGS = 10V  
Low Miller Charge  
DC/DC converters and Off-Line UPS  
Distributed Power Architectures and VRMs  
Primary Switch for 24V and 48V Systems  
High Voltage Synchronous Rectifier  
Direct Injection / Diesel Injection Systems  
42V Automotive Load Control  
Low QRR Body Diode  
UIS Capability (Single Pulse and Repetitive Pulse)  
Qualified to AEC Q101  
RoHS Compliant  
Formerly developmental type 82884  
Electronic Valve Train Systems  
D
DRAIN  
(FLANGE)  
GATE  
SOURCE  
G
TO-263AB  
FDB SERIES  
S
MOSFET Maximum Ratings TC = 25°C unless otherwise noted  
Symbol  
VDSS  
VGS  
Parameter  
Ratings  
150  
Units  
V
V
Drain to Source Voltage  
Gate to Source Voltage  
Drain Current  
20  
79  
A
Continuous (TC = 25oC, VGS = 10V)  
Continuous (TC = 100oC, VGS = 10V)  
Continuous (Tamb = 25oC, VGS = 10V, RθJA = 43oC/W)  
Pulsed  
ID  
56  
8
Figure 4  
400  
310  
2.07  
A
A
A
mJ  
W
W/oC  
oC  
EAS  
Single Pulse Avalanche Energy (Note 1)  
Power dissipation  
Derate above 25oC  
PD  
TJ, TSTG  
Operating and Storage Temperature  
-55 to 175  
Thermal Characteristics  
RθJC  
Thermal Resistance Junction to Case TO-263  
Thermal Resistance Junction to Ambient TO-263, 1in2 copper pad area  
0.48  
43  
oC/W  
oC/W  
RθJA  
This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a  
copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/  
Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html.  
All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems  
certification.  
©2010 Fairchild Semiconductor Corporation  
FDB2532_F085 Rev. A  
Package Marking and Ordering Information  
Device Marking  
Device  
Package  
Reel Size  
Tape Width  
Quantity  
FDB2532  
FDB2532_F085  
TO-263AB  
330mm  
24mm  
800 units  
Electrical Characteristics TC = 25°C unless otherwise noted  
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
Off Characteristics  
BVDSS  
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
Gate to Source Leakage Current  
ID = 250μA, VGS = 0V  
150  
-
-
-
-
-
1
250  
100  
V
V
DS = 120V  
-
-
-
IDSS  
μA  
nA  
VGS = 0V  
TC = 150oC  
IGSS  
VGS = 20V  
On Characteristics  
VGS(TH)  
Gate to Source Threshold Voltage  
VGS = VDS, ID = 250μA  
D = 33A, VGS = 10V  
ID = 16A, VGS = 6V,  
2
-
-
-
4
V
I
0.014 0.016  
0.016 0.024  
rDS(ON)  
Drain to Source On Resistance  
Ω
I
D = 33A, VGS = 10V,  
-
0.040 0.048  
T
C = 175oC  
Dynamic Characteristics  
CISS  
Input Capacitance  
Output Capacitance  
-
-
-
-
-
-
-
-
5870  
615  
135  
82  
11  
23  
-
-
pF  
pF  
pF  
nC  
nC  
nC  
nC  
nC  
V
DS = 25V, VGS = 0V,  
COSS  
CRSS  
Qg(TOT)  
Qg(TH)  
Qgs  
f = 1MHz  
Reverse Transfer Capacitance  
Total Gate Charge at 10V  
Threshold Gate Charge  
Gate to Source Gate Charge  
Gate Charge Threshold to Plateau  
Gate to Drain “Miller” Charge  
-
107  
14  
-
-
-
VGS = 0V to 10V  
VGS = 0V to 2V  
V
DD = 75V  
= 33A  
I
D
Ig = 1.0mA  
Qgs2  
Qgd  
13  
19  
Resistive Switching Characteristics (VGS = 10V)  
tON  
td(ON)  
tr  
td(OFF)  
tf  
Turn-On Time  
Turn-On Delay Time  
Rise Time  
Turn-Off Delay Time  
Fall Time  
-
-
-
-
-
-
-
69  
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
16  
30  
39  
17  
-
VDD = 75V, ID = 33A  
VGS = 10V, RGS = 3.6Ω  
tOFF  
Turn-Off Time  
84  
Drain-Source Diode Characteristics  
ISD = 33A  
-
-
-
-
-
-
-
-
1.25  
1.0  
105  
327  
V
V
ns  
nC  
VSD  
Source to Drain Diode Voltage  
I
SD = 16A  
trr  
QRR  
Reverse Recovery Time  
Reverse Recovery Charge  
ISD = 33A, dISD/dt= 100A/μs  
ISD = 33A, dISD/dt= 100A/μs  
Notes:  
1: Starting T = 25°C, L = 0.5 mH, I = 40A.  
J
AS  
2: Pulse Width = 100s  
©2010 Fairchild Semiconductor Corporation  
FDB2532_F085 Rev. A  
Typical Characteristics TA = 25°C unless otherwise noted  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
125  
100  
75  
50  
25  
0
V
= 10V  
GS  
150  
0
25  
50  
75  
100  
175  
125  
o
25  
50  
75  
100  
125  
150  
175  
o
T
, CASE TEMPERATURE ( C)  
C
T
, CASE TEMPERATURE ( C)  
C
Figure 1. Normalized Power Dissipation vs  
Ambient Temperature  
Figure 2. Maximum Continuous Drain Current vs  
Case Temperature  
2.0  
DUTY CYCLE - DESCENDING ORDER  
0.5  
1.0  
0.2  
0.1  
0.05  
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
NOTES:  
DUTY FACTOR: D = t /t  
SINGLE PULSE  
1
2
PEAK T = P x Z  
x R  
+ T  
J
DM  
θJC  
θJC C  
0.01  
-5  
-4  
-3  
-2  
0
1
10  
10  
10  
10  
10-1  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
Figure 3. Normalized Maximum Transient Thermal Impedance  
2000  
o
T
= 25 C  
C
FOR TEMPERATURES  
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
o
1000  
175 - T  
150  
C
I = I  
25  
V
= 10V  
GS  
100  
50  
-5  
-4  
-3  
-2  
-1  
0
1
10  
10  
10  
10  
t, PULSE WIDTH (s)  
10  
10  
10  
Figure 4. Peak Current Capability  
©2010 Fairchild Semiconductor Corporation  
FDB2532_F085 Rev. A  
Typical Characteristics TA = 25°C unless otherwise noted  
1000  
100  
10  
200  
100  
10μs  
o
STARTING T = 25 C  
J
100μs  
o
OPERATION IN THIS  
AREA MAY BE  
1ms  
STARTING T = 150 C  
J
10  
LIMITED BY r  
DS(ON)  
10ms  
DC  
1
If R = 0  
= (L)(I )/(1.3*RATED BV  
SINGLE PULSE  
t
- V  
DD  
)
AV  
If R 0  
AS  
DSS  
T
T
= MAX RATED  
J
o
t
= (L/R)ln[(I *R)/(1.3*RATED BV  
- V ) +1]  
DSS DD  
= 25 C  
AV  
AS  
C
1
0.1  
0.001  
0.01  
0.1  
1
1
10  
, DRAIN TO SOURCE VOLTAGE (V)  
100  
300  
V
t , TIME IN AVALANCHE (ms)  
AV  
DS  
NOTE: Refer to Fairchild Application Notes AN7515 and AN7517  
Figure 6. Unclamped Inductive Switching  
Capability  
Figure 5. Forward Bias Safe Operating Area  
180  
180  
V
= 7V  
GS  
PULSE DURATION = 80μs  
V
= 10V  
GS  
DUTY CYCLE = 0.5% MAX  
DD  
150  
120  
90  
60  
30  
0
150  
V
= 15V  
V
= 6V  
GS  
120  
90  
60  
30  
0
o
T
= 175 C  
J
o
T
= 25 C  
C
V
= 5V  
GS  
o
o
T
J
= 25 C  
T
= -55 C  
J
PULSE DURATION = 80μs  
DUTY CYCLE = 0.5% MAX  
0.0  
1.0  
V
DS  
2.0  
3.0  
4.0  
5.0  
6.0  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
V
, GATE TO SOURCE VOLTAGE (V)  
, DRAIN TO SOURCE VOLTAGE (V)  
GS  
Figure 7. Transfer Characteristics  
Figure 8. Saturation Characteristics  
18  
17  
16  
15  
14  
13  
3.0  
PULSE DURATION = 80μs  
DUTY CYCLE = 0.5% MAX  
PULSE DURATION = 80μs  
DUTY CYCLE = 0.5% MAX  
2.5  
2.0  
1.5  
1.0  
0.5  
V
= 6V  
GS  
V
= 10V  
GS  
V
= 10V, I =33A  
D
GS  
0
20  
40  
I , DRAIN CURRENT (A)  
60  
80  
-80  
-40  
0
40  
80  
120  
160  
200  
o
T , JUNCTION TEMPERATURE ( C)  
D
J
Figure 9. Drain to Source On Resistance vs Drain  
Current  
Figure 10. Normalized Drain to Source On  
Resistance vs Junction Temperature  
©2010 Fairchild Semiconductor Corporation  
FDB2532_F085 Rev. A  
Typical Characteristics TA = 25°C unless otherwise noted  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
1.2  
1.1  
1.0  
0.9  
V
= V , I = 250μA  
DS D  
I
= 250μA  
GS  
D
-80  
-40  
0
40  
80  
120  
160  
200  
-80  
-40  
0
40  
80  
120  
160  
200  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
Figure 11. Normalized Gate Threshold Voltage vs  
Junction Temperature  
Figure 12. Normalized Drain to Source  
Breakdown Voltage vs Junction Temperature  
10000  
10  
V
= 75V  
DD  
C
= C + C  
GS GD  
ISS  
8
6
4
2
0
C
C + C  
DS GD  
OSS  
1000  
C
= C  
GD  
RSS  
WAVEFORMS IN  
DESCENDING ORDER:  
I
I
= 33A  
= 16A  
100  
50  
D
D
V
= 0V, f = 1MHz  
1
GS  
0
20  
40  
60  
80  
100  
0.1  
10  
150  
V
, DRAIN TO SOURCE VOLTAGE (V)  
Q , GATE CHARGE (nC)  
DS  
g
Figure 13. Capacitance vs Drain to Source  
Voltage  
Figure 14. Gate Charge Waveforms for Constant  
Gate Currents  
©2010 Fairchild Semiconductor Corporation  
FDB2532_F085 Rev. A  
Test Circuits and Waveforms  
V
BV  
DSS  
DS  
t
P
V
DS  
L
I
AS  
V
DD  
VARY t TO OBTAIN  
P
+
-
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
GS  
DUT  
t
P
I
0V  
0
AS  
0.01Ω  
t
AV  
Figure 15. Unclamped Energy Test Circuit  
Figure 16. Unclamped Energy Waveforms  
V
DS  
V
Q
DD  
g(TOT)  
V
DS  
L
V
= 10V  
GS  
V
GS  
+
-
V
DD  
V
GS  
V
= 2V  
DUT  
GS  
Q
gs2  
0
g(TH)  
I
g(REF)  
Q
Q
Q
gd  
gs  
I
g(REF)  
0
Figure 17. Gate Charge Test Circuit  
Figure 18. Gate Charge Waveforms  
V
DS  
t
t
ON  
OFF  
t
d(OFF)  
t
d(ON)  
R
t
t
f
L
r
V
0
DS  
90%  
90%  
+
V
GS  
V
DD  
10%  
10%  
-
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
0
Figure 19. Switching Time Test Circuit  
Figure 20. Switching Time Waveforms  
©2010 Fairchild Semiconductor Corporation  
FDB2532_F085 Rev. A  
Thermal Resistance vs. Mounting Pad Area  
The maximum rated junction temperature, TJM, and the  
thermal resistance of the heat dissipating path determines  
the maximum allowable device power dissipation, PDM, in an  
80  
60  
40  
20  
R
= 26.51+ 19.84/(0.262+Area) EQ.2  
θJA  
R
= 26.51+ 128/(1.69+Area) EQ.3  
θJA  
application.  
Therefore the application’s ambient  
temperature, TA (oC), and thermal resistance RθJA (oC/W)  
must be reviewed to ensure that TJM is never exceeded.  
Equation 1 mathematically represents the relationship and  
serves as the basis for establishing the rating of the part.  
(T  
T )  
JM  
A
(EQ. 1)  
P
= -----------------------------  
DM  
RθJA  
In using surface mount devices such as the TO-263  
package, the environment in which it is applied will have a  
significant influence on the part’s current and maximum  
power dissipation ratings. Precise determination of PDM is  
complex and influenced by many factors:  
0.1  
1
10  
(0.645)  
(6.45)  
(64.5)  
2
2
AREA, TOP COPPER AREA in (cm )  
Figure 21. Thermal Resistance vs Mounting  
Pad Area  
1. Mounting pad area onto which the device is attached and  
whether there is copper on one side or both sides of the  
board.  
2. The number of copper layers and the thickness of the  
board.  
3. The use of external heat sinks.  
4. The use of thermal vias.  
5. Air flow and board orientation.  
6. For non steady state applications, the pulse width, the  
duty cycle and the transient thermal response of the part,  
the board and the environment they are in.  
Fairchild provides thermal information to assist the  
designer’s preliminary application evaluation. Figure 21  
defines the RθJA for the device as a function of the top  
copper (component side) area. This is for a horizontally  
positioned FR-4 board with 1oz copper after 1000 seconds  
of steady state power with no air flow. This graph provides  
the necessary information for calculation of the steady state  
junction temperature or power dissipation. Pulse  
applications can be evaluated using the Fairchild device  
Spice thermal model or manually utilizing the normalized  
maximum transient thermal impedance curve.  
Thermal resistances corresponding to other copper areas  
can be obtained from Figure 21 or by calculation using  
Equation 2 or 3. Equation 2 is used for copper area defined  
in inches square and equation 3 is for area in centimeter  
square. The area, in square inches or square centimeters is  
the top copper area including the gate and source pads.  
19.84  
R
= 26.51 + ------------------------------------  
(EQ. 2)  
θJA  
θJA  
(0.262 + Area)  
Area in Inches Squared  
128  
R
= 26.51 + ---------------------------------  
(EQ. 3)  
(1.69 + Area)  
Area in Centimeters Squared  
©2010 Fairchild Semiconductor Corporation  
FDB2532_F085 Rev. A  
PSPICE Electrical Model  
.SUBCKT FDB2532 2 1 3 ;  
CA 12 8 1.4e-9  
rev April 2002  
CB 15 14 1.6e-9  
LDRAIN  
CIN 6 8 5.61e-9  
DPLCAP  
DRAIN  
2
5
10  
Dbody 7 5 DbodyMOD  
Dbreak 5 11 DbreakMOD  
Dplcap 10 5 DplcapMOD  
RLDRAIN  
RSLC1  
51  
DBREAK  
11  
+
RSLC2  
5
ESLC  
51  
Ebreak 11 7 17 18 159  
Eds 14 8 5 8 1  
-
50  
+
17  
-
Egs 13 8 6 8 1  
DBODY  
RDRAIN  
6
8
EBREAK 18  
-
Esg 6 10 6 8 1  
ESG  
EVTHRES  
Evthres 6 21 19 8 1  
Evtemp 20 6 18 22 1  
+
16  
21  
+
-
19  
MWEAK  
LGATE  
EVTEMP  
8
RGATE  
GATE  
1
6
+
-
18  
22  
It 8 17 1  
MMED  
9
20  
MSTRO  
8
RLGATE  
Lgate 1 9 9.56e-9  
Ldrain 2 5 1.0e-9  
Lsource 3 7 7.71e-9  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RLSOURCE  
RLgate 1 9 95.6  
RLdrain 2 5 10  
RLsource 3 7 77.1  
S1A  
S2A  
RBREAK  
12  
15  
13  
14  
17  
18  
8
13  
RVTEMP  
19  
S1B  
S2B  
Mmed 16 6 8 8 MmedMOD  
Mstro 16 6 8 8 MstroMOD  
Mweak 16 21 8 8 MweakMOD  
13  
CB  
+
CA  
IT  
14  
-
+
VBAT  
6
8
5
8
EGS  
EDS  
+
Rbreak 17 18 RbreakMOD 1  
Rdrain 50 16 RdrainMOD 9.6e-3  
Rgate 9 20 1.01  
RSLC1 5 51 RSLCMOD 1.0e-6  
RSLC2 5 50 1.0e3  
-
-
8
22  
RVTHRES  
Rsource 8 7 RsourceMOD 3.0e-3  
Rvthres 22 8 RvthresMOD 1  
Rvtemp 18 19 RvtempMOD 1  
S1a 6 12 13 8 S1AMOD  
S1b 13 12 13 8 S1BMOD  
S2a 6 15 14 13 S2AMOD  
S2b 13 15 14 13 S2BMOD  
Vbat 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*190),3))}  
.MODEL DbodyMOD D (IS=6.0E-11 N=1.09 RS=2.3e-3 TRS1=3.0e-3 TRS2=1.0e-6  
+ CJO=3.9e-9 M=0.65 TT=4.8e-8 XTI=4.2)  
.MODEL DbreakMOD D (RS=0.17 TRS1=3.0e-3 TRS2=-8.9e-6)  
.MODEL DplcapMOD D (CJO=1.0e-9 IS=1.0e-30 N=10 M=0.6)  
.MODEL MmedMOD NMOS (VTO=3.55 KP=10 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=1.01)  
.MODEL MstroMOD NMOS (VTO=4.2 KP=145 IS=1e-30 N=10 TOX=1 L=1u W=1u)  
.MODEL MweakMOD NMOS (VTO=2.9 KP=0.05 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=10.1 RS=0.1)  
.MODEL RbreakMOD RES (TC1=1.1e-3 TC2=-9.0e-7)  
.MODEL RdrainMOD RES (TC1=9.0e-3 TC2=3.5e-5)  
.MODEL RSLCMOD RES (TC1=3.4e-3 TC2=1.5e-6)  
.MODEL RsourceMOD RES (TC1=4.0e-3 TC2=1.0e-6)  
.MODEL RvthresMOD RES (TC1=-4.1e-3 TC2=-1.4e-5)  
.MODEL RvtempMOD RES (TC1=-4.0e-3 TC2=3.5e-6)  
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-6.0 VOFF=-4.0)  
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4.0 VOFF=-6.0)  
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1.4 VOFF=1.0)  
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=1.0 VOFF=-1.4)  
.ENDS  
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank  
Wheatley.  
©2010 Fairchild Semiconductor Corporation  
FDB2532_F085 Rev. A  
SABER Electrical Model  
REV April 2002  
ttemplate FDB2532 n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
dp..model dbodymod = (isl=6.0e-11,nl=1.09,rs=2.3e-3,trs1=3.0e-3,trs2=1.0e-6,cjo=3.9e-9,m=0.65,tt=4.8e-8,xti=4.2)  
dp..model dbreakmod = (rs=0.17,trs1=3.0e-3,trs2=-8.9e-6)  
dp..model dplcapmod = (cjo=1.0e-9,isl=10.0e-30,nl=10,m=0.6)  
m..model mmedmod = (type=_n,vto=3.55,kp=10,is=1e-30, tox=1)  
m..model mstrongmod = (type=_n,vto=4.2,kp=145,is=1e-30, tox=1)  
m..model mweakmod = (type=_n,vto=2.9,kp=0.05,is=1e-30, tox=1,rs=0.1)  
LDRAIN  
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-6.0,voff=-4.0)  
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-4.0,voff=-6.0)  
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-1.4,voff=1.0)  
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=1.0,voff=-1.4)  
c.ca n12 n8 = 1.4e-9  
DPLCAP  
DRAIN  
2
5
10  
RLDRAIN  
RSLC1  
51  
RSLC2  
c.cb n15 n14 = 1.6e-9  
ISCL  
c.cin n6 n8 = 5.61e-9  
DBREAK  
11  
50  
-
dp.dbody n7 n5 = model=dbodymod  
dp.dbreak n5 n11 = model=dbreakmod  
dp.dplcap n10 n5 = model=dplcapmod  
RDRAIN  
6
8
ESG  
DBODY  
EVTHRES  
+
16  
21  
+
-
19  
MWEAK  
LGATE  
EVTEMP  
8
spe.ebreak n11 n7 n17 n18 = 159  
RGATE  
GATE  
6
+
-
18  
EBREAK  
+
spe.eds n14 n8 n5 n8 = 1  
MMED  
1
22  
9
20  
spe.egs n13 n8 n6 n8 = 1  
MSTRO  
8
17  
RLGATE  
spe.esg n6 n10 n6 n8 = 1  
18  
LSOURCE  
CIN  
spe.evthres n6 n21 n19 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
-
SOURCE  
3
7
RSOURCE  
RLSOURCE  
i.it n8 n17 = 1  
S1A  
S2A  
RBREAK  
12  
15  
13  
14  
l.lgate n1 n9 = 9.56e-9  
l.ldrain n2 n5 = 1.0e-9  
l.lsource n3 n7 = 7.71e-9  
17  
18  
8
13  
RVTEMP  
19  
S1B  
S2B  
13  
CB  
+
CA  
IT  
14  
-
+
res.rlgate n1 n9 = 95.6  
res.rldrain n2 n5 = 10  
res.rlsource n3 n7 = 77.1  
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
RVTHRES  
res.rbreak n17 n18 = 1, tc1=1.1e-3,tc2=-9.0e-7  
res.rdrain n50 n16 = 9.6e-3, tc1=9.0e-3,tc2=3.5e-5  
res.rgate n9 n20 = 1.01  
res.rslc1 n5 n51 = 1.0e-6, tc1=3.4e-3,tc2=1.5e-6  
res.rslc2 n5 n50 = 1.0e3  
res.rsource n8 n7 = 3.0e-3, tc1=4.0e-3,tc2=1.0e-6  
res.rvthres n22 n8 = 1, tc1=-4.1e-3,tc2=-1.4e-5  
res.rvtemp n18 n19 = 1, tc1=-4.0e-3,tc2=3.5e-6  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51->n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/190))** 3))  
}
}
©2010 Fairchild Semiconductor Corporation  
FDB2532_F085 Rev. A  
SPICE Thermal Model  
JUNCTION  
th  
REV 26 February 2002  
FDB2532  
CTHERM1 TH 6 7.5e-3  
CTHERM2 6 5 8.0e-3  
CTHERM3 5 4 9.0e-3  
CTHERM4 4 3 2.4e-2  
CTHERM5 3 2 3.4e-2  
CTHERM6 2 TL 6.5e-2  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM1  
6
RTHERM1 TH 6 3.1e-4  
RTHERM2 6 5 2.5e-3  
RTHERM3 5 4 2.0e-2  
RTHERM4 4 3 8.0e-2  
RTHERM5 3 2 1.2e-1  
RTHERM6 2 TL 1.3e-1  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
5
SABER Thermal Model  
SABER thermal model FDB2532  
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 6 =7.5e-3  
ctherm.ctherm2 6 5 =8.0e-3  
ctherm.ctherm3 5 4 =9.0e-3  
ctherm.ctherm4 4 3 =2.4e-2  
ctherm.ctherm5 3 2 =3.4e-2  
ctherm.ctherm6 2 tl =6.5e-2  
4
3
2
rrtherm.rtherm1 th 6 =3.1e-4  
rtherm.rtherm2 6 5 =2.5e-3  
rtherm.rtherm3 5 4 =2.0e-2  
rtherm.rtherm4 4 3 =8.0e-2  
rtherm.rtherm5 3 2 =1.2e-1  
rtherm.rtherm6 2 tl =1.3e-1  
}
tl  
CASE  
©2010 Fairchild Semiconductor Corporation  
FDB2532_F085 Rev. A  
TRADEMARKS  
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not  
intended to be an exhaustive list of all such trademarks.  
®
*
AccuPowerA  
Auto-SPMA  
Build it NowA  
CorePLUSA  
CorePOWERA  
CROSSVOLTA  
CTLA  
F-PFSA  
Power-SPMA  
PowerTrench®  
PowerXS™  
FRFET®  
The Power Franchise®  
Global Power ResourceSM  
Green FPSA  
Green FPSA e-SeriesA  
GmaxA  
GTOA  
IntelliMAXA  
Programmable Active DroopA  
QFET®  
QSA  
Quiet SeriesA  
RapidConfigureA  
A
TinyBoostA  
TinyBuckA  
TinyCalcA  
Current Transfer LogicA  
DEUXPEED®  
Dual Cool™  
TinyLogic®  
ISOPLANARA  
MegaBuckA  
MICROCOUPLERA  
MicroFETA  
TINYOPTOA  
TinyPowerA  
TinyPWMA  
TinyWireA  
TriFault DetectA  
TRUECURRENTA*  
SerDesA  
Saving our world, 1mW/W/kW at a time™  
SignalWiseA  
EcoSPARK®  
EfficientMaxA  
SmartMaxA  
ESBCA  
MicroPakA  
SMART STARTA  
®
SPM®  
MicroPak2A  
MillerDriveA  
MotionMaxA  
Motion-SPMA  
OptoHiT™  
Fairchild®  
STEALTHA  
Fairchild Semiconductor®  
FACT Quiet SeriesA  
FACT®  
SuperFETA  
SuperSOTA-3  
SuperSOTA-6  
SuperSOTA-8  
SupreMOSA  
OPTOLOGIC®  
UHC®  
FAST®  
OPTOPLANAR®  
Ultra FRFETA  
UniFETA  
VCXA  
FastvCoreA  
®
SyncFETA  
Sync-Lock™  
FETBenchA  
FlashWriter®  
*
PDP SPM™  
VisualMaxA  
XS™  
FPSA  
* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.  
DISCLAIMER  
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE  
RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR  
CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE  
SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN,  
WHICH COVERS THESE PRODUCTS.  
LIFE SUPPORT POLICY  
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE  
EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.  
As used herein:  
1. Life support devices or systems are devices or systems which, (a) are  
intended for surgical implant into the body or (b) support or sustain life,  
and (c) whose failure to perform when properly used in accordance  
with instructions for use provided in the labeling, can be reasonably  
expected to result in a significant injury of the user.  
2. A critical component in any component of a life support, device, or  
system whose failure to perform can be reasonably expected to  
cause the failure of the life support device or system, or to affect its  
safety or effectiveness.  
ANTI-COUNTERFEITING POLICY  
Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com,  
under Sales Support.  
Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts.  
Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications,  
and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of  
counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are  
listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have  
full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information.  
Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide  
any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our  
customers to do their part in stopping this practice by buying direct or from authorized distributors.  
PRODUCT STATUS DEFINITIONS  
Definition of Terms  
Datasheet Identification Product Status  
Definition  
Datasheet contains the design specifications for product development. Specifications may change in  
any manner without notice.  
Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild  
Semiconductor reserves the right to make changes at any time without notice to improve design.  
Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes  
at any time without notice to improve the design.  
Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor.  
The datasheet is for reference information only.  
Advance Information  
Preliminary  
Formative / In Design  
First Production  
Full Production  
Not In Production  
No Identification Needed  
Obsolete  
Rev. I48  
© Fairchild Semiconductor Corporation  
www.fairchildsemi.com  

相关型号:

FDB2532_F085

N-Channel PowerTrench® MOSFET 150V, 79A, 16mΩ
FAIRCHILD

FDB2532_NL

Power Field-Effect Transistor, 8A I(D), 150V, 0.016ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, TO-263AB, 3 PIN
FAIRCHILD

FDB2552

N-Channel PowerTrench MOSFET 150V, 37A, 36mз
FAIRCHILD

FDB2552

N-Channel PowerTrench MOSFET
KEXIN

FDB2552

rDS(ON) = 32m (Typ.), VGS = 10V, ID = 16A UIS Capability (Single Pulse and Repetitive Pulse)
TYSEMI

FDB2552

N 沟道,PowerTrench® MOSFET,150V,37A,36mΩ
ONSEMI

FDB2552-F085

N-Channel PowerTrench® MOSFET 150V, 37A, 36mΩ
FAIRCHILD

FDB2552-F085

N 沟道 PowerTrench® MOSFET 150V,37A,36mΩ
ONSEMI

FDB2552F085

N-Channel PowerTrench® MOSFET 150V, 37A, 36mΩ
FAIRCHILD

FDB2552_F085

N-Channel PowerTrench® MOSFET 150V, 37A, 36mΩ
FAIRCHILD

FDB2552_NL

Power Field-Effect Transistor, 5A I(D), 150V, 0.036ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-263AB, TO-263AB, 3 PIN
FAIRCHILD

FDB2570

150V N-Channel PowerTrench MOSFET
FAIRCHILD