FAN7621SJX [FAIRCHILD]

PFM Controller for Half-Bridge Resonant Converters; PFM控制器半桥谐振转换器
FAN7621SJX
型号: FAN7621SJX
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

PFM Controller for Half-Bridge Resonant Converters
PFM控制器半桥谐振转换器

转换器 控制器
文件: 总17页 (文件大小:1054K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
July 2009  
FAN7621  
PFM Controller for Half-Bridge Resonant Converters  
Features  
Description  
The FAN7621 is a pulse frequency modulation controller  
for high-efficiency half-bridge resonant converters.  
Offering everything necessary to build a reliable and  
robust resonant converter, the FAN7621 simplifies  
designs and improves productivity, while improving  
performance. The FAN7621 includes a high-side gate-  
drive circuit, an accurate current controlled oscillator,  
frequency limit circuit, soft-start, and built-in protection  
ƒ
Variable Frequency Control with 50% Duty Cycle  
for Half-bridge Resonant Converter Topology  
High Efficiency through Zero Voltage Switching (ZVS)  
Fixed Dead Time (350ns)  
ƒ
ƒ
ƒ
ƒ
Up to 300kHz Operating Frequency  
Pulse Skipping for Frequency Limit (Programmable)  
at Light-Load Condition  
functions. The high-side gate-drive circuit has  
a
ƒ
ƒ
Remote On/Off Control using CON Pin  
Protection Functions: Over-Voltage Protection  
(OVP), Overload Protection (OLP), Over-Current  
Protection (OCP), Abnormal Over-Current Protection  
(AOCP), Internal Thermal Shutdown (TSD)  
common-mode noise cancellation capability, which  
guarantees stable operation with excellent noise  
immunity. Using the zero-voltage-switching (ZVS)  
technique dramatically reduces the switching losses and  
efficiency is significantly improved. The ZVS also  
reduces the switching noise noticeably, which allows a  
small-sized Electromagnetic Interference (EMI) filter.  
Applications  
The FAN7621 can be applied to various resonant  
converter topologies; such as series resonant, parallel  
resonant, and LLC resonant converters.  
ƒ
ƒ
ƒ
ƒ
ƒ
PDP and LCD TVs  
Desktop PCs and Servers  
Adapters  
Telecom Power Supplies  
Video Game Consoles  
Related Resources  
AN4151 — Half-bridge LLC Resonant Converter Design  
using FSFR-series Fairchild Power Switch (FPSTM  
)
Ordering Information  
Operating  
Junction  
Temperature  
Eco  
Status  
Part Number  
Package  
Packaging Method  
FAN7621N  
FAN7621SJ  
FAN7621SJX  
16-DIP  
16-SOP  
16-SOP  
Tube  
Tube  
RoHS  
-40°C ~ 130°C  
Tape & Reel  
For Fairchild’s definition of Eco Status, please visit: http://www.fairchildsemi.com/company/green/rohs_green.html.  
© 2009 Fairchild Semiconductor Corporation  
FAN7621 • Rev. 1.0.1  
www.fairchildsemi.com  
Application Circuit Diagram  
D1  
Cr  
Llk  
Np  
VO  
Ns  
Ns  
VCC  
LVcc  
Lm  
HVCC  
RT  
HO  
CF RF  
D2  
CON  
CS  
CTR  
CDL  
VIN  
KA431  
LO  
SG  
PG  
Rsense  
Figure 1. Typical Application Circuit (LLC Resonant Half-Bridge Converter)  
Block Diagram  
LVCC  
12  
+
LVCC good  
VREF  
VREF  
ICTC  
+
8.7 / 9.2V  
-
11.3 / 14.5V  
-
S
R
Q
HVCC good  
Internal  
Bias  
3 V  
1 V  
-
+
-Q  
ICTC  
+
2ICTC  
1
3
2
F/F  
HVCC  
HO  
-
2V  
+
-
High-Side  
Gate Drive  
Time  
Delay  
Level-Shift  
350ns  
8
6
RT  
CTR  
Counter (1/4)  
LVCC  
IOLP  
Low-Side  
Gate Drive  
Time  
Delay  
Balancing  
Delay  
-
14  
CON  
LO  
0.4 / 0.6 V  
+
350ns  
+
Shutdown without delay  
OLP  
S
Q
5 V  
-
R
-Q  
LVCC good  
+
-1  
LV  
+
-
CC  
50ns Delay  
Auto-restart  
Protection  
Q
S
R
0.9 V  
-
23 V  
-Q  
VAOCP  
OVP  
TSD  
LVCC < 5V  
16  
10  
Latch  
Protection  
PG  
SG  
VOCP  
0.58 V  
-
Delay  
1.5µs  
+
9
CS  
Figure 2. Internal Block Diagram  
© 2009 Fairchild Semiconductor Corporation  
FAN7621 • Rev. 1.0.1  
www.fairchildsemi.com  
2
Pin Configuration  
(1) HVCC  
(2) CTR  
(3) HO  
(4) NC  
(5) NC  
(6) CON  
(7) NC  
(8) RT  
PG (16)  
NC (15)  
LO (14)  
NC (13)  
LVCC (12)  
NC (11)  
SG (10)  
CS (9)  
FAN7621  
Figure 3. Package Diagram  
Pin Definitions  
Pin #  
Name  
HVCC  
CTR  
HO  
Description  
1
2
3
4
5
This is the supply voltage of the high-side gate-drive circuit IC.  
This is the drain of the low-side MOSFET. Typically, a transformer is connected to this pin.  
This is the high-side gate driving signal.  
NC  
No connection.  
NC  
No connection.  
This pin is for a protection and enabling/disabling the controller. When the voltage of this pin  
is above 0.6V, the IC operation is enabled. When the voltage of this pin drops below 0.4V,  
gate drive signals for both MOSFETs are disabled. When the voltage of this pin increases  
above 5V, protection is triggered.  
6
CON  
7
8
NC  
RT  
No connection.  
This pin programs the switching frequency. Typically, an opto-coupler is connected to  
control the switching frequency for the output voltage regulation.  
This pin senses the current flowing through the low-side MOSFET. Typically, negative  
voltage is applied on this pin.  
9
CS  
10  
11  
12  
13  
14  
15  
16  
SG  
NC  
This pin is the control ground.  
No connection.  
LVCC  
NC  
This pin is the supply voltage of the control IC.  
No connection.  
LO  
This is the low-side gate driving signal.  
NC  
No connection.  
PG  
This pin is the power ground. This pin is connected to the source of the low-side MOSFET.  
© 2009 Fairchild Semiconductor Corporation  
FAN7621 • Rev. 1.0.1  
www.fairchildsemi.com  
3
Absolute Maximum Ratings  
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be  
operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In  
addition, extended exposure to stresses above the recommended operating conditions may affect device reliability.  
The absolute maximum ratings are stress ratings only. TA=25°C unless otherwise specified.  
Symbol  
VHO  
Parameter  
High-Side Gate Driving Voltage  
Min.  
VCTR-0.3  
-0.3  
Max.  
HVCC  
LVCC  
25.0  
25.0  
600.0  
LVCC  
1.0  
Unit  
V
VLO  
Low-Side Gate Driving Voltage  
Low-Side Supply Voltage  
LVCC  
-0.3  
V
V
HVCC to VCTR High-Side VCC Pin to Center Voltage  
-0.3  
VCTR  
VCON  
Center Voltage  
-0.3  
V
Control Pin Input Voltage  
Current Sense (CS) Pin Input Voltage  
RT Pin Input Voltage  
-0.3  
V
VCS  
-5.0  
V
VRT  
-0.3  
5.0  
V
dVCTR/dt  
Allowable Center Voltage Slew Rate  
50  
V/ns  
W
W
16-DIP  
Total Power Dissipation  
16-SOP  
Maximum Junction Temperature(1)  
1.56  
1.13  
+150  
+130  
+150  
PD  
TJ  
°C  
°C  
Recommended Operating Junction Temperature(1)  
-40  
-55  
TSTG  
Storage Temperature Range  
Note:  
1. The maximum value of the recommended operating junction temperature is limited by thermal shutdown.  
Thermal Impedance  
Symbol  
Parameter  
Value  
80  
Unit  
16-DIP  
θJA  
Junction-to-Ambient Thermal Impedance  
ºC/W  
16-SOP  
110  
© 2009 Fairchild Semiconductor Corporation  
FAN7621 • Rev. 1.0.1  
www.fairchildsemi.com  
4
Electrical Characteristics  
TA=25°C and LVCC=17V unless otherwise specified.  
Min.  
Typ.  
Max.  
Symbol  
Parameter  
Test Conditions  
Unit  
Supply Section  
ILK  
Offset Supply Leakage Current  
Quiescent HVCC Supply Current  
Quiescent LVCC Supply Current  
HVCC=VCTR  
50  
μA  
μA  
μA  
IQHVCC  
IQLVCC  
(HVCCUV+) - 0.1V  
(LVCCUV+) - 0.1V  
50  
120  
200  
100  
fOSC=100kHz, VCON > 0.6V,  
CLoad=1nF  
5
100  
6
8
200  
9
mA  
μA  
Operating HVCC Supply Current  
(RMS Value)  
IOHVCC  
No Switching, VCON < 0.4V  
fOSC=100kHz, VCON > 0.6V,  
CLoad=1nF  
mA  
mA  
Operating LVCC Supply Current  
(RMS Value)  
IOLVCC  
No Switching, VCON < 0.4V  
2
4
UVLO Section  
LVCCUV+ LVCC Supply Under-Voltage Positive Going Threshold (LVCC Start)  
LVCCUV- LVCC Supply Under-Voltage Negative Going Threshold (LVCC Stop)  
LVCCUVH LVCC Supply Under-Voltage Hysteresis  
13.0  
10.2  
14.5  
11.3  
3.2  
16.0  
12.4  
V
V
V
V
V
V
HVCCUV+ HVCC Supply Under-Voltage Positive Going Threshold (HVCC Start)  
8.2  
7.8  
9.2  
10.2  
9.6  
HVCC Supply Under-Voltage Negative Going Threshold (HVCC Stop)  
HVCCUV-  
8.7  
HVCCUVH HVCC Supply Under-Voltage Hysteresis  
0.5  
Oscillator & Feedback Section  
VCONDIS  
VCONEN  
VRT  
Control Pin Disable Threshold Voltage  
Control Pin Enable Threshold Voltage  
V-I Converter Threshold Voltage  
Output Oscillation Frequency  
Output Duty Cycle  
0.36  
0.54  
1.5  
94  
0.40  
0.60  
2.0  
100  
50  
0.44  
0.66  
2.5  
V
V
V
fOSC  
RT=5.2kΩ  
106  
52  
kHz  
%
DC  
48  
fSS  
Internal Soft-Start Initial Frequency  
Internal Soft-Start Time  
140  
3
kHz  
ms  
fSS=fOSC+40kHz, RT=5.2kΩ  
tSS  
2
4
Output Section  
Isource  
Isink  
tr  
Peak Sourcing Current  
HVCC=17V  
HVCC=17V  
250  
460  
360  
600  
65  
mA  
mA  
ns  
Peak Sinking Current  
Rising Time  
CLoad=1nF, HVCC=17V  
tf  
Falling Time  
35  
ns  
High Level of High-Side Gate Driving  
VHOH  
VHOL  
VLOH  
VLOL  
1.0  
0.6  
1.0  
0.6  
V
V
V
V
Signal (VHVCC-VHO  
)
Low Level of High-Side Gate Driving  
Signal  
IO=20mA  
High Level of High-Side Gate Driving  
Signal (VLVCC-VLO  
)
Low Level of High-Side Gate Driving  
Signal  
© 2009 Fairchild Semiconductor Corporation  
FAN7621 • Rev. 1.0.1  
www.fairchildsemi.com  
5
Electrical Characteristics (Continued)  
TA=25°C and LVCC=17V unless otherwise specified.  
Min.  
Typ.  
Max.  
Symbol  
Parameter  
Test Conditions  
Unit  
Protection Section  
IOLP  
VOLP  
VOVP  
VAOCP  
tBAO  
OLP Delay Current  
VCON=4V  
3.8  
4.5  
21  
5.0  
5.0  
6.2  
5.5  
25  
μA  
V
OLP Protection Voltage  
VCON > 3.5V  
LVCC > 21V  
LVCC Over-Voltage Protection  
AOCP Threshold Voltage  
AOCP Blanking Time  
23  
V
-1.0  
-0.9  
50  
-0.8  
V
ns  
V
VOCP  
tBO  
OCP Threshold Voltage  
OCP Blanking Time(2)  
-0.64  
1.0  
-0.58  
1.5  
-0.52  
2.0  
μs  
Delay Time (Low-Side) Detecting from  
V
tDA  
TSD  
ISU  
250  
130  
100  
400  
150  
150  
ns  
°C  
μA  
AOCP to Switch Off(2)  
Thermal Shutdown Temperature(2)  
110  
5
Protection Latch Sustain LVCC Supply  
Current  
LVCC=7.5V  
Protection Latch Reset LVCC Supply  
Voltage  
VPRSET  
V
Dead-Time Control Section  
DT Dead Time  
350  
ns  
Note:  
2. These parameters, although guaranteed, are not tested in production.  
© 2009 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN7621 • Rev. 1.0.1  
6
Typical Performance Characteristics  
These characteristic graphs are normalized at TA=25ºC.  
1.1  
1.05  
1
1.1  
1.05  
1
0.95  
0.9  
0.95  
0.9  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temp (OC)  
Temp (OC)  
Figure 4. Low-Side MOSFET Duty Cycle  
vs. Temperature  
Figure 5. Switching Frequency vs. Temperature  
1.1  
1.05  
1
1.1  
1.05  
1
0.95  
0.9  
0.95  
0.9  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temp (OC)  
Temp (OC)  
Figure 6. High-Side VCC (HVCC) Start vs. Temperature  
Figure 7. High-Side VCC (HVCC) Stop vs. Temperature  
1.1  
1.1  
1.05  
1
1.05  
1
0.95  
0.9  
0.95  
0.9  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temp (OC)  
Temp (OC)  
Figure 8. Low-Side VCC (LVCC) Start vs. Temperature  
Figure 9. Low-Side VCC (LVCC) Stop vs. Temperature  
© 2009 Fairchild Semiconductor Corporation  
FAN7621 • Rev. 1.0.1  
www.fairchildsemi.com  
7
Typical Performance Characteristics (Continued)  
These characteristic graphs are normalized at TA=25ºC.  
1.1  
1.05  
1
1.1  
1.05  
1
0.95  
0.9  
0.95  
0.9  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temp (OC)  
Temp (OC)  
Figure 10. OLP Delay Current vs. Temperature  
Figure 11. OLP Protection Voltage vs. Temperature  
1.1  
1.1  
1.05  
1
1.05  
1
0.95  
0.9  
0.95  
0.9  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temp (OC)  
Temp (OC)  
Figure 12. LVCC OVP Voltage vs. Temperature  
Figure 13. RT Voltage vs. Temperature  
1.1  
1.1  
1.05  
1
1.05  
1
0.95  
0.9  
0.95  
0.9  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temp (OC)  
Temp (OC)  
Figure 14. CON Pin Enable Voltage vs. Temperature  
Figure 15. OCP Voltage vs. Temperature  
© 2009 Fairchild Semiconductor Corporation  
FAN7621 • Rev. 1.0.1  
www.fairchildsemi.com  
8
Functional Description  
Gain  
1.8  
1. Basic Operation: FAN7621 is designed to drive high-  
side and low-side MOSFETs complementarily with 50%  
duty cycle. A fixed dead time of 350ns is introduced  
between consecutive transitions, as shown in Figure 16.  
max  
f min  
f normal  
f ISS  
f
Dead t ime  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
High-side  
MOSFET  
gate drive  
Low-side  
MOSFET  
gate drve  
time  
Soft-sta rt  
Figure 16. MOSFETs Gate Drive Signal  
2. Internal Oscillator: FAN7621 employs a current-  
controlled oscillator, as shown in Figure 17. Internally,  
the voltage of RT pin is regulated at 2V and the charging  
/ discharging current for the oscillator capacitor, CT, is  
obtained by copying the current flowing out of RT pin  
(ICTC) using a current mirror. Therefore, the switching  
frequency increases as ICTC increases.  
150  
60  
70  
80  
90  
100  
110  
120  
130  
140  
Frequency (kHz)  
Figure 18. Resonant Converter Typical Gain Curve  
VCC  
LV  
CC  
ICTC  
VREF  
+
HV  
CC  
S
R
Q
3V  
1V  
-
-Q  
RT  
ICTC  
+
2ICTC  
CT  
Rmax  
F/F  
Rmin  
RSS  
HO  
CTR  
LO  
-
CON  
CS  
CSS  
+
2V  
-
Counter  
(1/4)  
RT  
Gate drive  
3
SG  
PG  
Figure 17. Current Controlled Oscillator  
Rsense  
3. Frequency Setting: Figure 18 shows the typical  
voltage gain curve of a resonant converter, where the  
gain is inversely proportional to the switching frequency  
in the ZVS region. The output voltage can be regulated  
by modulating the switching frequency. Figure 19 shows  
the typical circuit configuration for RT pin, where the  
opto-coupler transistor is connected to the RT pin to  
modulate the switching frequency.  
Figure 19. Frequency Control Circuit  
The minimum switching frequency is determined as:  
5.2kΩ  
f min  
=
×100(kHz)  
(1)  
Rmin  
Assuming the saturation voltage of opto-coupler  
transistor is 0.2V, the maximum switching frequency is  
determined as:  
5.2kΩ 4.68kΩ  
f max = (  
+
)×100(kHz)  
(2)  
Rmin  
Rmax  
To prevent excessive inrush current and overshoot of  
output voltage during startup, increase the voltage gain  
of the resonant converter progressively. Since the  
voltage gain of the resonant converter is inversely  
proportional to the switching frequency, the soft-start is  
© 2009 Fairchild Semiconductor Corporation  
FAN7621 • Rev. 1.0.1  
www.fairchildsemi.com  
9
implemented by sweeping down the switching frequency  
from an initial high frequency (fISS) until the output  
voltage is established. The soft-start circuit is made by  
connecting R-C series network on the RT pin, as shown  
in Figure 19. FAN7621 also has an internal soft-start for  
3ms to reduce the current overshoot during the initial  
cycles, which adds 40kHz to the initial frequency of the  
external soft-start circuit, as shown in Figure 20. The  
initial frequency of the soft-start is given as:  
VCC  
LV  
CC  
HV  
CC  
RT  
Rmax  
Rmin  
RSS  
HO  
5.2kΩ 5.2kΩ  
CON  
f ISS = (  
+
)×100+ 40 (kHz)  
(3)  
CTR  
LO  
CSS  
Rmin  
RSS  
It is typical to set the initial (soft-start) frequency of two ~  
three times the resonant frequency (fO) of the resonant  
network.  
CS  
The soft-start time is three to four times the RC time  
constant. The RC time constant is as follows:  
SG  
PG  
(4)  
TSS = RSS CSS  
Figure 22. Control Pin Configuration for Pulse  
Skipping  
fs  
f ISS  
Remote On / Off: When an auxiliary power supply is  
used for standby, the main power stage using FAN7621  
can be shut down by pulling down the control pin  
voltage, as shown in Figure 23. R1 and C1 are used to  
ensure soft-start when switching resumes.  
40kHz  
Control loop  
take over  
Main  
OP1  
Output  
time  
R1  
C1  
Figure 20. Frequency Sweeping of Soft-Start  
4. Control Pin: The FAN7621 has a control pin for  
protection, cycle skipping, and remote on/off. Figure 21  
shows the internal block diagram for control pin.  
Main Off  
FAN7621  
RT  
LVCC  
IOLP  
6
-
CON  
Aux  
Output  
Rmin  
0.4 / 0.6V  
+
Stop Switching  
+
OLP  
S
R
Q
5V  
-
+
-
CON  
-Q  
LVCC  
Auto-restart  
protection  
LVCC good  
23V  
OP1  
OVP  
Figure 21. Internal Block of Control Pin  
Figure 23. Remote On / Off Circuit  
Protection: When the control pin voltage exceeds 5V,  
protection is triggered. Detailed applications are  
described in the protection section.  
5. Protection Circuits: The FAN7621 has several self-  
protective functions, such as Overload Protection (OLP),  
Over-Current Protection (OCP), Abnormal Over-Current  
Protection (AOCP), Over-Voltage Protection (OVP), and  
Thermal Shutdown (TSD). OLP, OCP, and OVP are  
auto-restart mode protections; while AOCP and TSD are  
latch-mode protections, as shown in Figure 24.  
Pulse Skipping: FAN7621 stops switching when the  
control pin voltage drops below 0.4V and resumes  
switching when the control pin voltage rises above 0.6V.  
To use pulse-skipping, the control pin should be  
connected to the opto-coupler collector pin. The  
frequency that causes pulse skipping is given as:  
Auto-Restart Mode Protection: Once a fault condition  
is detected, switching is terminated and the MOSFETs  
remain off. When LVCC falls to the LVCC stop voltage of  
11.3V, the protection is reset. FAN7621 resumes normal  
operation when LVCC reaches the start voltage of 14.5V.  
5.2k  
4.16k  
SKIP  
=
+
x100  
(
kHz  
)
(5)  
Rmin  
Rmax  
© 2009 Fairchild Semiconductor Corporation  
FAN7621 • Rev. 1.0.1  
www.fairchildsemi.com  
10  
resistor may not be available due to the severe power  
dissipation in the resistor. In that case, indirect current  
sensing using the resonant capacitor voltage can be a  
good alternative because the amplitude of the resonant  
capacitor voltage (Vcrp-p) is proportional to the resonant  
current in the primary side (Ipp-p) as:  
Latch-Mode Protection: Once this protection is  
triggered, switching is terminated and the gate output  
signals remain off. The latch is reset only when LVCC is  
discharged below 5V.  
LVCC  
7
pp  
Ip  
pp  
+
LVCC good  
Internal  
Bias  
(6)  
VCr  
=
VREF  
-
11/ 14V  
2π fsCr  
To minimize power dissipation, a capacitive voltage  
divider is generally used for capacitor voltage sensing,  
as shown in Figure 27.  
Shutdown  
OCP  
Latch  
protection  
Auto-restart  
protection  
OLP  
AOCP  
Q
S
S
R
Q
OVP  
LVCC  
-Q  
R
CDL  
-Q  
LVCC good  
CON  
HVCC  
TSD  
F/F  
F/F  
20k  
RT  
LVCC < 5V  
HO  
Ip  
CON  
CTR  
Figure 24. Protection Blocks  
Current Sensing Using Resistor: FAN7621 senses  
drain current as a negative voltage, as shown in Figure  
25 and Figure 26. Half-wave sensing allows low power  
dissipation in the sensing resistor, while full-wave  
sensing has less switching noise in the sensing signal.  
LO  
CS  
SG  
PG  
CB  
Csense  
100  
Vsense  
Cr  
LVCC  
Ip  
HV CC  
RT  
HO  
CDL  
CON  
CTR  
VCr  
Ids  
LO  
VCS  
p-p  
CS  
VCr  
SG  
PG  
pk  
sense  
pp  
VCS  
pk  
V
V
CB  
sense+ CB  
Vsense  
2
Vsense  
=
Rsense  
=VCON  
C
Cr  
Ids  
pk  
Vsense  
VCON  
Figure 25. Half-Wave Sensing  
pk  
Vsense  
Ids  
t
=R C  
d d  
Delay  
Figure 27. Current Sensing Using Resonant  
Capacitor Voltage  
LVCC  
VCS  
HVCC  
RT  
5.1 Over-Current Protection (OCP): When the sensing  
pin voltage drops below -0.6V, OCP is triggered and the  
MOSFETs remain off. This protection has a shutdown  
time delay of 1.5µs to prevent premature shutdown  
during startup.  
HO  
CDL  
CON  
CTR  
LO  
VCS  
CS  
5.2 Abnormal Over-Current Protection: (AOCP): If the  
secondary rectifier diodes are shorted, large current with  
extremely high di/dt can flow through the MOSFET  
before OCP or OLP is triggered. AOCP is triggered  
without shutdown delay when the sensing pin voltage  
drops below -0.9V. This protection is latch mode and  
reset when LVCC is pulled down below 5V.  
SG  
PG  
Rsense  
I ds  
Figure 26. Full-Wave Sensing  
Current Sensing Using Resonant Capacitor Voltage:  
For high-power applications, current sensing using a  
© 2009 Fairchild Semiconductor Corporation  
FAN7621 • Rev. 1.0.1  
www.fairchildsemi.com  
11  
PCB layout. Figure 28 shows an example for the duty-  
balanced case. The yellow and blue lines show the  
primary current flows when the lower-side and higher-  
side MOSFETs turns on, respectively. The primary  
current does not enclose any component of controller.  
5.3 Overload Protection (OLP): Overload is defined as  
the load current exceeding its normal level due to an  
unexpected abnormal event. In this situation, the  
protection circuit should trigger to protect the power  
supply. However, even when the power supply is in the  
normal condition, the overload situation can occur during  
the load transition. To avoid premature triggering of  
protection, the overload protection circuit should be  
designed to trigger only after a specified time to  
determine whether it is a transient situation or a true  
overload situation. Figure 27 shows a typical overload  
protection circuit. By sensing the resonant capacitor  
voltage on the control pin, the overload protection can be  
implemented. Using RC time constant, shutdown delay  
can be also introduced. The voltage obtained on the  
control pin is given as:  
In addition, it is helpful to reduce the duty imbalance to  
make the loop configured between CON pin and opto-  
coupler as small as possible, as shown in the red line in  
Figure 28.  
CB  
pp  
(7)  
VCON  
=
VCr  
2(CB + Csense  
)
p-p  
where VCr is the amplitude of the resonant capacitor  
voltage.  
5.4 Over-Voltage Protection: (OVP): When the LVCC  
reaches 23V, OVP is triggered. This protection is used  
when auxiliary winding of the transformer to supply VCC  
to the controller is utilized.  
5.5 Thermal Shutdown (TSD): If the temperature of the  
junction exceeds approximately 130°C, the thermal  
shutdown triggers.  
6. PCB Layout Guideline: Duty imbalance problems  
may occur due to the radiated noise from main  
transformer, the inequality of the secondary-side leakage  
inductances of main transformer, and so on. Among  
them, it is one of the dominant reasons that the control  
components in the vicinity of RT pin are enclosed by the  
primary current flow pattern on PCB layout. The direction  
of the magnetic field on the components caused by the  
primary current flow is changed when the high-and-low  
side MOSFET turns on by turns. The magnetic fields with  
opposite direction from each other induce a current  
through, into, or out of the RT pin, which makes the turn-  
on duration of each MOSFET different. It is strongly  
recommended to separate the control components in the  
vicinity of RT pin from the primary current flow pattern on  
Figure 28. Example for Duty Balancing  
© 2009 Fairchild Semiconductor Corporation  
FAN7621 • Rev. 1.0.1  
www.fairchildsemi.com  
12  
Typical Application Circuit (Half-Bridge LLC Resonant Converter)  
Output Voltage  
(Rated Current)  
Application  
Device  
Input Voltage Range  
Rated Output Power  
390VDC  
(340~400VDC  
LCD TV  
FAN7621  
192W  
24V-8A  
)
Features  
ƒ
ƒ
ƒ
High efficiency ( >94% at 400VDC input)  
Reduced EMI noise through zero-voltage-switching (ZVS)  
Enhanced system reliability with various protection functions  
C110  
open  
C201  
C202  
D202  
2000 µF / 2000 µF/  
35V  
D101  
R103 400k  
U5  
FYPF2010 DN  
C102  
22 nF  
EER3542  
35V  
1N4937  
VCC=16~20VDC  
JP5  
0
R109  
1M  
R108  
10k  
R112  
10k  
VO  
C105  
U4  
R110  
1M  
0.33 µF  
LVCC  
ZD 101  
6.8V  
F101  
R111  
45k  
HVCC  
3.15A/250V  
D102  
Q1  
1N4148  
R201  
10k  
RT  
FCPF11N60F  
C204  
12 nF  
C106  
R104  
5.1k  
R105  
7.5k  
R107  
7.7k  
C111  
150 nF  
HO  
680 pF  
R204  
62k  
U2  
R113  
3.3  
R202  
1k  
R205  
2k  
D201  
FYPF2010 DN  
R115  
10k  
C107  
10µF  
CON  
JP1,  
JP2,  
0
0
C101  
220 µF/ 450V  
CTR  
D102  
1N4148  
C104  
open  
JP3,  
JP4,  
0
0
V
=340~400V  
DC  
IN  
U2  
LO  
C203  
47nF  
R203  
33k  
R114  
3.3  
Q2  
C108  
12 nF  
R116  
10k  
CS  
FCPF11N60F  
C301  
C103  
100 pF  
R102  
1k  
R205  
7k  
SG  
PG  
R101  
0.2  
Figure 29. Typical Application Circuit  
© 2009 Fairchild Semiconductor Corporation  
FAN7621 • Rev. 1.0.1  
www.fairchildsemi.com  
13  
Typical Application Circuit (Continued)  
Usually, LLC resonant converters require large leakage inductance value. To obtain a large leakage inductance,  
sectional winding method is used.  
ƒ
ƒ
Core: EER3542 (Ae=107 mm2)  
Bobbin: EER3542 (Horizontal)  
Figure 30. Transformer Construction  
Pin (S F)  
Wire  
Turns  
Winding Method  
Section Winding  
Section Winding  
Section Winding  
Np  
Ns1  
Ns2  
8 1  
12 9  
16 13  
0.12φ×30 (Litz Wire)  
0.1φ×100 (Litz Wire)  
0.1φ×100 (Litz Wire)  
36  
4
4
Pin  
Specification  
630μH ± 5%  
135μH ± 5%.  
Remark  
Primary-Side Inductance (Lp)  
Primary-Side Effective Leakage (Lr)  
18  
100kHz, 1V  
18  
Short one of the secondary windings  
For more detailed information regarding the transformer, visit http://www.santronics-usa.com/documents.html or  
contact sales@santronics-usa.com or +1-408-734-1878 (Sunnyvale, California USA).  
© 2009 Fairchild Semiconductor Corporation  
FAN7621 • Rev. 1.0.1  
www.fairchildsemi.com  
14  
Physical Dimensions  
A
19.68  
18.66  
9
8
16  
6.60  
6.09  
1
(0.40)  
TOP VIEW  
0.38 MIN  
5.33 MAX  
8.13  
7.62  
3.42  
3.17  
3.81  
2.92  
15  
0
0.35  
0.20  
2.54  
0.58  
0.35  
A
1.78  
1.14  
8.69  
17.78  
SIDE VIEW  
NOTES: UNLESS OTHERWISE SPECIFIED  
A
THIS PACKAGE CONFORMS TO  
JEDEC MS-001 VARIATION BB  
B) ALL DIMENSIONS ARE IN MILLIMETERS.  
C) DIMENSIONS ARE EXCLUSIVE OF BURRS,  
MOLD FLASH, AND TIE BAR PROTRUSIONS  
D) CONFORMS TO ASME Y14.5M-1994  
E) DRAWING FILE NAME: N16EREV1  
Figure 31. 16-Lead Dual Inline Package (DIP)  
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner  
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or  
obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions,  
specifically the warranty therein, which covers Fairchild products.  
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:  
http://www.fairchildsemi.com/packaging/.  
© 2009 Fairchild Semiconductor Corporation  
FAN7621 • Rev. 1.0.1  
www.fairchildsemi.com  
15  
Physical Dimensions  
Figure 32. 16-Lead Small Outline Package (SOP)  
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner  
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or  
obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions,  
specifically the warranty therein, which covers Fairchild products.  
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:  
http://www.fairchildsemi.com/packaging/.  
© 2009 Fairchild Semiconductor Corporation  
FAN7621 • Rev. 1.0.1  
www.fairchildsemi.com  
16  
© 2009 Fairchild Semiconductor Corporation  
FAN7621 • Rev. 1.0.1  
www.fairchildsemi.com  
17  

相关型号:

FAN7621SSJ

PFM Controller for Half-Bridge Resonant Converters
FAIRCHILD

FAN7621SSJX

PFM Controller for Half-Bridge Resonant Converters
FAIRCHILD

FAN7621_10

PFM Controller for Half-Bridge Resonant Converters
FAIRCHILD

FAN7631

半桥谐振变换器用高级脉频调制(PFM)控制器
FAIRCHILD

FAN7631SJ

Advanced Pulse Frequency Modulation (PFM) Controller for Half-Bridge Resonant Converters
FAIRCHILD

FAN7631SJX

Advanced Pulse Frequency Modulation (PFM) Controller for Half-Bridge Resonant Converters
FAIRCHILD

FAN7680

PC Power Supply Outputs Monitoring IC
FAIRCHILD

FAN7680M

PC Power Supply Outputs Monitoring IC
FAIRCHILD

FAN7680N

PC Power Supply Outputs Monitoring IC
FAIRCHILD

FAN7685

PC Power Supply Output Monitoring IC
FAIRCHILD

FAN7685M

PC Power Supply Output Monitoring IC
FAIRCHILD

FAN7685MX

PC Power Supply Output Monitoring IC
FAIRCHILD