FAN5903BUCX [FAIRCHILD]

Switching Regulator;
FAN5903BUCX
型号: FAN5903BUCX
厂家: FAIRCHILD SEMICONDUCTOR    FAIRCHILD SEMICONDUCTOR
描述:

Switching Regulator

开关
文件: 总19页 (文件大小:2159K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
June 2013  
FAN5903  
Buck Converter with Bypass Mode for 3G / 3.5G / 4G PAs  
Features  
Description  
.
.
.
2.7 V to 5.5 V Input Voltage Range  
VOUT Range from 0.4 V to 3.5 V (or VIN)  
Small Form Factor Inductor  
FAN5903 is a high-efficiency, low-noise, synchronous,  
step-down, DC-DC converter designed for powering  
3G / 3.5G / 4G RF Power Amplifiers (PAs) in handsets  
and other mobile applications.  
o
o
2012 470 nH or 540 nH for Minimal PCB Area  
2520 1.0 µH for Higher Efficiency  
The output voltage may be dynamically varied from  
0.40 V to 3.50 V, proportional to an analog input VCON  
,
ranging from 0.16 V to 1.40 V provided by an external  
DAC. This allows the PA to be supplied with the voltage  
that enables maximum power-added efficiency.  
.
.
.
.
Bypass Dropout at 500 mA, 60 mV Typical  
100% Duty Cycle for Low Dropout Operation  
Input Under-Voltage Lockout / Thermal Shutdown  
An integrated bypass FET automatically switches on  
when battery voltage drops close to the desired output  
voltage (VOUT = VBAT - 200 mV). The DC-DC switches  
back to Synchronous Mode when the voltage dropout  
exceeds 375 mV. The integrated bypass FET is also  
enabled when VCON is nominally greater than to 1.5 V.  
1.34 mm x 1.29 mm, 9-Bump, 0.4 mm-Pitch,  
Wafer-Level Chip-Scale Package (WLCSP)  
.
3 MHz / 6 MHz Selectable Switching Frequency to  
Facilitate System Optimization  
.
.
.
High-Efficiency PFM Operation at Low Power  
Sleep Mode for Very Low IQ Operation  
The FAN5903 offers fast transition times, enabling  
changes to the output voltage in less than 10 µs for  
power transitions. Moreover, a Current-Mode control  
loop with fast transient response ensures excellent line  
and load regulation.  
Up to 96% Efficient Synchronous Operation at  
High-Power Conditions  
.
10 µs Output Voltage Step Response for Early  
Power Loop Settling  
Light-load efficiency is optimized by operating in PFM  
Mode for load currents typically less than 100 mA.  
The switching frequency may be set to 3 MHz or  
6 MHz, enabling further optimization of system  
performance. The FAN5903 typically uses a single,  
small-form-factor inductor of 470 nH or 540 nH.  
Efficiency may be further optimized using a 1.0 µH  
inductor when running at 3 MHz.  
Applications  
.
.
Dynamic Supply Bias for 3G/3.5G and 4G PAs  
Power Supply for WCDMA/LTE PAs  
Resources  
When output regulation is not required, the FAN5903  
may be placed in Sleep Mode by setting VCON nominally  
to 50 mV. This ensures a very low IQ (<70 µA) while  
For more information or a full copy of this datasheet,  
please contact a Fairchild representative.  
enabling  
a fast return to output regulation. The  
FAN5903 enables significant current reduction and  
increased talk time and is available in a 1.34 mm x  
1.29 mm, 9-bump, 0.40 mm-pitch, WLCSP package.  
Ordering Information  
Operating  
Part Number  
Package  
Packing Method  
Temperature Range  
1.34 mm x 1.29 mm, 9-bump, 0.4 mm Pitch,  
Wafer-Level Chip-Scale Package (WLCSP)  
FAN5903UCX  
-40 to +85°C  
Tape and Reel  
© 2008 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN5903 • Rev. 1.0.9  
Application Diagrams  
VOUT  
470nH  
L1  
PVIN  
SW  
FB  
CIN  
10 µF  
COUT  
4.7 µF  
EN  
FAN5903  
FSEL  
PGND  
AGND  
3/6 MHz DC-DC  
From  
External  
DAC  
VCON  
Figure 1. Application Circuit  
CPA  
CPA  
CPA  
CPA  
FAN5903  
Bypass  
Controller  
PA  
PA  
PA  
PVIN  
VIN  
2.7V 4.5V  
UMTS BAND 1, ,13  
UMTS BAND 1, ,13  
UMTS BAND 1, ,13  
CIN  
FB  
0.4Vto 3.4V  
Up to  
800mArms  
Switcher  
Optional  
Optional  
GPIO  
GPIO  
GPIO  
L1  
VOUT  
BPEN  
FSEL  
EN  
PFM/PWM  
Controller  
SW  
COUT  
PGND  
DAC/GPIO  
VCON  
Reference  
AGND  
CHIPSET  
Bandgap  
PA  
PA  
UMTS BAND 1, ,13  
UMTS BAND 1, ,13  
CPA  
Figure 2. Typical Application with a 5-Band WCDMA / HSPA PA System  
© 2008 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN5903 • Rev. 1.0.9  
2
Pin Configuration  
VCON  
AGND  
PGND  
PGND  
AGND  
VCON  
A1  
A2  
A3  
A3  
A2  
A1  
4
.
4
.
EN  
FSEL  
SW  
SW  
FSEL  
EN  
0
0
m
m
9
m
m
9
B1  
B2  
B3  
B3  
B2  
B1  
2
.
2
.
1
1
BPEN  
FB  
PVIN  
PVIN  
FB  
BPEN  
C1  
C2  
C3  
C3  
C2  
C1  
0.4  
0.4  
1.34 mm  
1.34 mm  
Figure 3. Top-Through View, Bumps Face Down  
Figure 4. Top-Through View, Bumps Face Up  
Pin Definitions  
Pin # Name  
Description  
A1  
A2  
VCON Analog control pin. Shield signal routing against noise.  
AGND Analog ground, reference ground for the IC. Follow PCB routing notes for connecting this pin.  
Power ground of the internal MOSFET switches. Follow routing notes for connections between  
PGND and AGND.  
A3  
B1  
B2  
PGND  
EN  
FSEL  
SW  
Enables switching when HIGH, Shutdown Mode when LOW. This pin should not be left floating.  
Switching frequency select. When FSEL is LOW, the DC-DC operates at 6 MHz. When FSEL is  
HIGH, the DC-DC operates at 3 MHz. This pin should not be left floating.  
B3  
C1  
C2  
Switching node of the internal MOSFET switches. Connect to output inductor.  
BPEN Force bypass transistor when HIGH; auto-bypass when LOW. This pin should not be left floating.  
FB Output voltage-sense pin. Connect to VOUT to establish feedback path for regulation point.  
PVIN Supply voltage input to the internal MOSFET switches; connect to input power source.  
C3  
© 2008 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN5903 • Rev. 1.0.9  
3
Absolute Maximum Ratings  
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be  
operable above the recommended operating conditions and stressing the parts to these levels is not recommended.  
In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability.  
The absolute maximum ratings are stress ratings only.  
Symbol  
Parameter  
Min.  
-0.3  
-0.3  
-40  
Max.  
6.0  
Unit  
PVIN  
VIN  
V
Voltage On Any Other Pin  
Junction Temperature  
Storage Temperature  
PVIN + 0.3  
+125  
TJ  
TSTG  
TL  
°C  
°C  
°C  
-65  
+150  
Lead Soldering Temperature (10 Seconds)  
+260  
Human Body Model, JESD22-A114  
Charged Device Model, JESD22-C101  
2.0  
1.5  
Electrostatic Discharge  
Protection  
ESD  
kV  
Recommended Operating Conditions  
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended  
operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not  
recommend exceeding them or designing to Absolute Maximum Ratings.  
Symbol  
VIN  
Parameter  
Min.  
2.7  
Typ.  
Max.  
5.5  
Unit  
V
Supply Voltage Range  
Output Voltage Range  
VOUT  
0.35  
<VIN  
2.4  
V
IOUT_BYP Output Current (Bypass Mode)  
IOUT_DCDC Output Current (DCDC Mode)  
A
1.0  
A
470  
540  
1.00  
10  
fSW = 6 MHz  
fSW = 3 MHz  
nH  
L1  
Inductor  
µH  
µF  
µF  
°C  
°C  
CIN  
COUT  
TA  
Input Capacitor(1)  
Output Capacitor  
2.2  
-40  
-40  
4.7  
Operating Ambient Temperature Range  
Operating Junction Temperature Range  
+85  
TJ  
+125  
Note:  
1. A large enough input capacitor value is required for limiting the input voltage drop during bursts, bypass  
transitions, or during large output voltage transitions. Ensure the input capacitor value is greater than the output  
capacitor’s. See the inrush current specifications below.  
Dissipation Ratings  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Junction-to-Ambient Thermal Resistance(2  
110  
°C/W  
)
ΘJA  
Note:  
2. Junction-to-ambient thermal resistance is a function of application and board layout. This data is measured with  
four-layer 2s2p boards in accordance to JESD51- JEDEC standard. Special attention must be paid not to exceed  
junction temperature TJ(max) at a given ambient temperate TA.  
© 2008 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN5903 • Rev. 1.0.9  
4
 
 
Electrical Characteristics  
VIN = VOUT + 0.6 V, IOUT = 200 mA, EN = VIN, TA = -40°C to +85°C, unless otherwise noted. Typical values are at  
TA = +25°C, VIN = 3.7 V.  
Symbol  
Parameter  
Condition  
Min.  
Typ. Max. Unit  
Power Supplies  
VIN  
ISD  
IQ  
Input Voltage Range  
IOUT 800 mA  
2.7  
5.5  
3
V
µA  
µA  
V
Shutdown Supply Current  
Quiescent Current  
EN = 0 V  
1
Sleep Enabled  
VIN Rising  
70  
2.30  
1.2  
2.45  
175  
2.60  
VUVLO  
Under Voltage Lockout Threshold  
Hysteresis  
mV  
V
VIH  
Input HIGH Threshold  
Input LOW Threshold  
EN = VIN or GND  
Logic Threshold Voltage: EN,  
FSEL and BPEN  
VIL  
IEN  
0.5  
V
EN Input Bias Current  
0.01  
1.00  
µA  
Oscillator  
fSW  
Average Oscillator Frequency  
Average Oscillator Frequency  
FSEL = 0  
FSEL = 1  
5.4  
2.7  
6.0  
3.0  
6.6  
3.3  
MHz  
MHz  
fSW  
DC-DC Mode  
PMOS On Resistance(3)  
NMOS On Resistance(3)  
P-Channel Current Limit  
N-Channel Current Limit  
Minimum Output Voltage  
VIN = VGS = 3.7 V  
VIN = VGS = 3.7 V  
230  
150  
1.5  
mΩ  
mΩ  
A
RDSON  
ILIMp  
ILIMn  
1.2  
0.8  
1.8  
1.4  
1.1  
A
VOUT_MIN  
VCON = 0.16 V  
VCON = 1.40 V  
0.35  
3.45  
0.40  
3.50  
0.45  
3.55  
V
VOUT_MAX Maximum Output Voltage  
V
Gain in Control Range 0.16V to  
1.40V  
Gain  
2.5  
VOUT_ACC VOUT Accuracy  
Ideal = 2.5 x VCON  
VIN = VGS = 3.7 V  
-50  
+50  
mV  
Bypass Mode  
RFET  
Bypass FET Resistance(4)  
210  
60  
mΩ  
Bypass Mode Output Voltage Drop IOUT = 500 mA  
mV  
VOUT_BP  
Output Regulation  
VOUT_RLine  
VOUT_RL  
VOUT Line Regulation  
VOUT Load Regulation  
+5  
mV  
mV  
IOUT 800 mA  
+25  
VCON Voltage that Forces Very  
Low IQ Sleep Mode  
VCON_SL_ENVCON Sleep Mode Enter  
VCON_SL_EXVCON Sleep Mode Exit  
50  
mV  
mV  
V
VCON Voltage that Exits Sleep  
Mode  
135  
1.4  
VCON Voltage that Forces  
Bypass, VIN = 2.70 V 4.75 V  
VCON_BP_ENVCON Forced Bypass Mode Enter  
1.6  
VCON Voltage that Exits  
Forced; Bypass,  
VIN = 2.70 V 4.75 V  
VCON_BP_EXVCON Forced Bypass Mode Exit  
V
Voltage Threshold to Enter Bypass  
Mode  
VBP_ThH  
VBP_ThL  
TOTP  
VIN VOUT  
VIN VOUT  
160  
320  
200  
375  
240  
440  
mV  
mV  
Voltage Threshold to Exit Bypass  
Mode  
Rising Temperature  
Hysteresis  
+150  
+20  
Over-Temperature Protection  
°C  
© 2008 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN5903 • Rev. 1.0.9  
5
Electrical Characteristics  
VIN = VOUT + 0.6 V, IOUT = 200 mA, EN = VIN, TA = -40°C to +85°C, unless otherwise noted. Typical values are at  
TA = +25°C, VIN = 3.7 V.  
Symbol  
Timings  
Parameter  
Condition  
Min.  
Typ. Max. Unit  
VIN = 3.7 V, VOUT from 0 V to  
3.1 V, COUT = 4.7 µF, 10 V,  
X5R  
tSS  
Startup Time  
30  
40  
µs  
tSP_en  
Sleep Mode Enter Time  
Sleep Mode Exit Time  
VCON < 50 mV  
40  
11  
µs  
µs  
tSP_ex  
VCON ≥ 135 mV  
VOUT from 5% to 95%,  
VOUT < 2 V (1.4 V 3.4 V) ,  
RLOAD ≤ 7   
tDC-DC_TR  
VOUT Step Response Rise Time(3)  
10  
12  
µs  
µs  
VOUT from 95% to 5%,  
VOUT < 2 V (3.4 V 1.4 V),  
RLOAD ≤ 7   
tDC-DC_TF  
VOUT Step Response Fall Time(3)  
Maximum Allowed Time for  
Consecutive Current Limits(5)  
tDC-DC_CL  
40  
µs  
µs  
Consecutive Current Limit  
Recovery Time(3)  
tDCDC_CLR  
180  
Notes:  
3. Guaranteed by design; not tested in production.  
4. Bypass FET resistance does not include the PFET RDSON and inductor DCR in parallel with the bypass FET in  
Bypass Mode.  
5. Protects part under short circuit conditions. After 40 µs, operation halts and restarts after 180 µs. Under heavy  
capacitive loads, VCON slew rate may be reduced to avoid consecutive current limits. Under typical conditions for  
a 3 V change at the output, a capacitive only load of up to 40 µF is supported, assuming a step at the VCON input.  
© 2008 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN5903 • Rev. 1.0.9  
6
 
 
Typical Characteristics  
Unless otherwise noted, VIN = EN = 3.7 V, L1 = 1.0 µH, CLOAD = 4.7 µF, and TA = +25°C.  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
VIN = 2.7V  
VIN = 3.7V  
VIN = 4.2V  
VIN = 5.5V  
VIN = 2.7V  
VIN = 3.7V  
VIN = 4.2V  
VIN = 5.5V  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
OutputCurrent(mA)  
OutputCurrent(mA)  
Figure 5. Efficiency vs. Output Current vs. Input  
Figure 6. Efficiency vs. Output Current vs. Input  
Voltage, fSW = 6 MHz, RPA = 7   
Voltage, fSW = 6 MHz, RPA = 10   
100%  
90%  
80%  
70%  
100%  
90%  
80%  
70%  
VIN = 2.7V  
VIN = 2.7V  
VIN = 3.7V  
VIN = 4.2V  
VIN = 5.5V  
60%  
60%  
VIN = 3.7V  
VIN = 4.2V  
50%  
50%  
40%  
VIN = 5.5V  
40%  
0
1
2
3
4
0
1
2
3
4
OutputVoltage (V)  
OutputVoltage (V)  
Figure 7. Efficiency vs. Output Voltage vs. Input  
Figure 8. Efficiency vs. Output Voltage vs. Input  
Voltage, fSW = 6 MHz, RPA = 7   
Voltage, fSW = 6 MHz, RPA = 10   
100%  
90%  
80%  
70%  
100%  
90%  
80%  
70%  
VIN = 2.7V  
VIN = 2.7V  
VIN = 3.7V  
VIN = 4.2V  
VIN = 5.5V  
60%  
60%  
50%  
40%  
VIN = 3.7V  
VIN = 4.2V  
50%  
VIN = 5.5V  
40%  
0
100  
200  
300  
400  
0
100  
200  
300  
400  
500  
OutputCurrent(mA)  
OutputCurrent(mA)  
Figure 9. Efficiency vs. Output Current vs. Input  
Figure 10. Efficiency vs. Output Current vs. Input  
Voltage, fSW = 3 MHz, RPA = 7   
Voltage, fSW = 3 MHz, RPA = 10   
© 2008 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN5903 • Rev. 1.0.9  
7
Typical Characteristics  
Unless otherwise noted, VIN = EN = 3.7 V, L1 = 1.0 µH, CLOAD = 4.7 µF, and TA = +25°C.  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
100%  
90%  
80%  
70%  
60%  
50%  
40%  
VIN = 2.7V  
VIN = 3.7V  
VIN = 4.2V  
VIN = 5.5V  
VIN = 2.7V  
VIN = 3.7V  
VIN = 4.2V  
VIN = 5.5V  
0
1
2
3
4
0
1
2
3
4
OutputVoltage (V)  
OutputVoltage (V)  
Figure 11. Efficiency vs. Output Voltage vs. Input  
Figure 12. Efficiency vs. Output Voltage vs. Input  
Voltage, fSW = 3 MHz, RPA = 7   
Voltage, fSW = 3 MHz, RPA = 10   
100  
90  
3.30  
2.80  
2.30  
1.80  
80  
70  
-40°C  
1.30  
-40°C  
+25°C  
+25°C  
60  
0.80  
+85°C  
+85°C  
50  
0.30  
2.5  
3.5  
4.5  
5.5  
2.5  
3.5  
4.5  
5.5  
InputVoltage (V)  
InputVoltage (V)  
Figure 13. Shutdown Current vs. Input Voltage  
vs. Temperature  
Figure 14. Sleep Mode Current vs. Input Voltage  
vs. Temperature  
Figure 15. Rise Times for 300 mV, 500 mV, and  
Figure 16. Rise Times for 300 mV, 500 mV, and  
2 V VOUT (VIN = 3.7 V)  
2 V VOUT (VIN = 3.7 V)  
© 2008 Fairchild Semiconductor Corporation  
FAN5903 • Rev. 1.0.9  
www.fairchildsemi.com  
8
Typical Characteristics  
Unless otherwise noted, VIN = EN = 3.7 V, L1 = 1.0 µH, CLOAD = 4.7 µF, and TA = +25°C.  
Figure 17. Line Transient VIN = 3.7 V to 4.2 V,  
Figure 18. Line Transient VIN = 3.7 V to 4.2 V,  
VOUT = 2.5 V, 10 Load, 50 µs/div.  
VOUT = 1.0 V, 10 Load, 50 µs/div.  
Figure 19. Load Transient, 0 mA to 400 mA,  
VOUT = 1.0 V  
Figure 20. Load Transient, 200 mA to 800 mA,  
VOUT = 1.0 V  
Figure 21. Load Transient, 0 mA to 400 mA,  
VOUT = 2.5 V  
Figure 22. Load Transient, 200 mA to 800 mA,  
VOUT = 2.5 V  
© 2008 Fairchild Semiconductor Corporation  
FAN5903 • Rev. 1.0.9  
www.fairchildsemi.com  
9
Typical Characteristics  
Unless otherwise noted, VIN = EN = 3.7 V, L1 = 1.0 µH, CLOAD = 4.7 µF, and TA = +25°C.  
Figure 23. Switching Waveforms, PFM Mode,  
ILOAD = 10 mA (Light Load)  
Figure 24. Switching Waveforms, PWM Mode,  
fSW = 6 MHz, ILOAD = 300 mA (Heavy Load)  
Figure 25. VOUT Rising Transition 0.5 V to 2.5 V,  
VIN = 3.7 V  
Figure 26. VOUT Falling Transition 2.5 V to 0.5 V,  
VIN = 3.7 V  
Figure 27. VOUT Transient Response VOUT = 3 V  
Figure 28. VOUT Transient and Bypass Response VOUT  
> 3 V, VCON Stepped Above 1.5 V  
© 2008 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN5903 • Rev. 1.0.9  
10  
Typical Characteristics  
Unless otherwise noted, VIN = EN = 3.7 V, L1 = 1.0 µH, CLOAD = 4.7 µF, and TA = +25°C.  
ILIM  
Figure 29. Soft-Start Transient Response from  
0 mA to 100 mA  
Figure 30. Cold-Start Transient Response from  
0 mA to 100 mA  
Figure 31. Soft-Start Transient Response from  
0 mA to 800 mA  
Figure 32. Cold-Start Transient Response from  
0 mA to 800 mA  
Figure 33. Shutdown Transient Response  
© 2008 Fairchild Semiconductor Corporation  
FAN5903 • Rev. 1.0.9  
www.fairchildsemi.com  
11  
Block Diagram  
FB  
Bypass  
Controller  
PVIN  
Positive  
Current Limit  
CIN  
PWM  
VCON  
FSEL  
Controller  
SW  
L1  
0 : Div 1  
1 : Div 2  
3 MHz OSC  
COUT  
To PWM CTL  
Negative  
PGND  
Current Limit  
EN  
BPEN  
AGND  
Figure 34. Block Diagram  
Operating Mode Description  
The FAN5903 is a high-efficiency synchronous step-  
down DC-DC converter operating with a Current-Mode  
control. It adjusts the output voltage, VOUT, depending  
on the set voltage VCON provided by an external DAC.  
monitored. A current sense flags when the P-channel  
transistor current exceeds the current limit and the  
switcher is turned off to decrease the inductor current and  
prevent magnetic saturation. Similarly, the current sense  
flags when the N-channel transistor current exceeds the  
current limit and re-directs discharging current through  
the inductor back to the battery.  
Regulated VOUT is set to 2.5 times input voltage VCON  
.
The DC-DC operates in PWM Mode or PFM Mode,  
depending on the output voltage and load current.  
Bypass Mode is supported where the output voltage is  
shorted to the input voltage via a low on-state resistance  
bypass FET.  
In Pulse Frequency Modulation (PFM) Mode, at low  
output voltages and load currents, typically less than  
100 mA; the DC-DC operates in a constant On-Time  
Mode. In the on-state, the P-channel is turned on during a  
well-defined on-time before switching to the off state,  
whereby the N-channel switch is turned on and the  
inductor current is decreased to 0 A. The switcher output  
is put into high-resistance state until the new regulation  
cycle starts.  
The FAN5903 supports a wide range of load currents.  
High-current applications, up to a DC output of 800 mA,  
mandated by 3G / 3.5G and 4G applications, for  
example, are supported. System performance may be  
optimized by enabling the DC-DC to run at either a  
3 MHz or 6 MHz switching rate.  
PFM Mode realizes high efficiency while maintaining RF  
system performance down to low load currents.  
Auto Mode  
In Pulse Width Modulation (PWM) Mode, regulation  
starts with an on-state where a P-channel transistor is  
turned on and the inductor current is ramped up until the  
off state begins. In the off state, the P-channel is switched  
off and an N-channel transistor is turned on. The inductor  
current decreases to maintain an average value equal to  
the DC load current. The inductor current is continuously  
Bypass Mode  
In Bypass Mode, the FAN5903 operates at 100% duty  
cycle with the bypass FET turned on. This enables a very  
low voltage dropout with up to 2.4 A DC load current. In  
applications with 3G / 3.5G and 4G PAs, the Bypass  
Mode typically handles 800 mA.  
© 2008 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN5903 • Rev. 1.0.9  
12  
Table 1. Mode Descriptions  
Conditions  
#
Mode  
Mode Description  
FSEL BPEN EN VCON  
1
2
Shutdown Mode  
Sleep Mode  
The whole IC is disabled.  
X
X
0
0
The DC-DC is in Sleep Mode and consumes less than  
70 µA of current.  
X
X
1
0
3
4
6 MHz Auto Mode  
3 MHz Auto Mode  
The DC-DC is in Auto Mode and switches at 6 MHz.(6,7)  
0
1
0
0
1
1
1
1
The DC-DC is in Auto Mode and switches at 3 MHz.  
The bypass FET is forced ON. The DC-DC is set to 100%  
duty cycle.  
5
Bypass Mode  
X
1
1
1
Notes:  
6. When VOUT exceeds VIN 200 mV, the bypass FET is enabled and the DC-DC goes to 100% duty cycle. When  
VOUT VIN 375 mV, the bypass FET is disabled and the DC-DC goes to Auto Mode.  
7. When the load current is smaller than PFM current threshold, the DC-DC changes to PFM Mode.  
DC Output Voltage  
Bypass Mode  
The output voltage of the DC-DC is determined by VCON,  
provided by an external DAC or voltage reference:  
The trigger to enter Bypass Mode is based on the  
voltage difference between the battery voltage (sensed  
through the PVIN pin) and the internally generated  
reference voltage, VREF, as depicted in Figure 36. The  
DC-DC enters Bypass Mode when VIN = VOUT + 200 mV.  
It then turns into 100% duty cycle and the low-RDSON  
bypass FET is turned on. As VOUT approaches VIN; the  
DC-DC operates in a constant off-time mode, the  
frequency is decreased to achieve a high duty cycle,  
and the system continues to run in a regulated mode  
until the bypass condition is satisfied.  
(1)  
VOUT 2.5VCON  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
As noted above, Bypass Mode is also entered when  
VCON exceeds 1.5 V.  
Sleep Mode  
FB  
1.0  
PVIN  
DCDC Mode  
0.5  
Bypass Mode  
-
Bypass Slew  
Controller  
0.0  
250mV  
0.00  
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
1.75  
2.00  
+
+
-
VCON  
VCON (V)  
VREF  
Figure 35. Output Voltage vs. Control Voltage  
SW  
VREF  
PWM  
Controller  
DC-DC  
Switcher  
L1  
VREF ranges from 0.4 V to3.4V  
when VIN is higher than 3.4V  
The DC-DC is able to provide a regulated VOUT only if  
VCON is between 0.16 V to 1.40 V. This allows VOUT to  
be adjusted between 0.40 V and 3.50 V. If VCON is below  
this range, VOUT is clamped to 0.40 V as minimum and  
enters bypass for VCON > 1.50 V. If VCON is less than  
50 mV, FAN5903 enters a non-regulated Sleep Mode.  
This reduces current consumption to less than 70 µA  
while allowing for a rapid return to regulation.  
Figure 36. Enabling Bypass Transistor Circuit  
The bypass FET is turned on progressively using a slew  
rate controller to limit the inrush current. The inrush  
current is expressed as a function of the specified slew  
rate as follows:  
VOUT  
t  
FAN5903 automatically switches between PFM, PWM,  
and Bypass Modes.  
(2)  
IINRUSH COUT  
COUT VBP_SLEW  
The DC-DC is able to provide a regulated VOUT only if  
The slew rate controller is not used when releasing the  
Bypass Mode.  
the battery voltage is 200 mV greater than VOUT  
.
© 2008 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN5903 Rev. 1.0.9  
13  
 
 
 
VOUT Negative Step  
Switching Frequency Selection (FSEL)  
After a VCON negative step, the DC-DC enters Current-  
Limit Mode, where VOUT is reduced with a constant slew  
rate dictated by the output capacitor and the current limit.  
In some cases, it may be desirable to change the DC-  
DC’s switching frequency from 6 MHz (FSEL = 0) to  
3 MHz (FSEL = 1). At 3 MHz operation the DC-DC’s  
efficiency is generally higher than that at 6 MHz. The  
primary tradeoff with this is increased voltage ripple at  
the lower frequency. A 1.0 µH inductor may be used in  
3 MHz operation to optimize efficiency and ripple.  
VOUT Transition to or from Bypass Mode  
The transition to or from Bypass Mode requires the  
bypass conditions be met. The FAN5903 performs  
detection of the bypass conditions 2 µs after VCON  
transition and enables the required charging  
discharging circuit to realize a transition time of 10 µs.  
/
The FAN5903 is designed to have minimal impact on  
the RF output spectrum at either switching frequency.  
VOUT Transition at Startup  
At startup, after EN rising edge is detected, the system  
requires 40 µs to enable all internal voltage references  
and amplifiers before enabling the DC-DC function.  
Dynamic Output Voltage Transitions  
The FAN5903 has  
a complex voltage transition  
controller that realizes less than 10 µs transition times  
with a large output capacitor and output voltage ranges.  
VOUT Transition After BPEN  
When BPEN goes HIGH, the controller dismisses the  
internal bypass flags and sensors and enables  
Bypass Mode. However, the transition is managed  
with the same current limit and slew rate used during  
regular transitions.  
The transition controller manages five transitions:  
.
.
.
.
.
VOUT positive step  
VOUT negative step  
VOUT transition to or from Bypass Mode  
VOUT transition at startup  
VOUT transition after BPEN  
Thermal Protection  
If the junction temperature exceeds the maximum  
specified junction temperature, the FAN5903 enters  
Power-Down Mode (except the thermal detection circuit).  
In most cases, sharp VCON transitions and letting the  
transition controller optimize the output voltage slew rate  
are recommended.  
Sleep Mode  
The FAN5903 offers a Sleep mode to minimize current,  
while also enabling a rapid return to regulation. Sleep  
Mode is entered when VCON is held below 50 mV for at  
least 40 µs. In this mode, current consumption is  
reduced to under 70 µA. Sleep Mode is exited after  
approximately 12 µs when VCON is set above 135 mV.  
VOUT Positive Step  
After a VCON positive step, the DC-DC enters a Current-  
Limit Mode, where VOUT ramps with a constant slew rate  
dictated by the output capacitor and the current limit.  
Typical Voltage Transitions  
Figure 37. Rise and Fall Times for 300 mV, 500 mV,  
Figure 38. Rise Times for 300 mV, 500 mV, and 2 V  
and 2 V VOUT (VIN = 3.7 V)  
VOUT (VIN = 3.7 V)  
© 2008 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN5903 • Rev. 1.0.9  
14  
Application Information  
Figure 39 illustrates an application of the FAN5903 in a 3G / 4G transmitter. The FAN5903 is designed for driving  
multiple PAs. Figure 40 presents a timing diagram designed to meet WCDMA specifications. The FAN5903 supports  
voltage transients less than 10 µs.  
FB  
PVIN  
CIN  
10µF  
0.4V to VBAT  
Up to 800mA DC  
540nH  
L1  
FAN5903  
SW  
FSEL  
BPEN  
EN  
COUT  
4.7µF  
PGND  
VIN  
Power  
Ground  
Plane  
From  
DAC  
VCON  
AGND  
Analog  
Ground  
Plane  
VOUT  
1000pF  
100pF  
1000pF  
100pF  
1000pF  
100pF  
PA  
PA  
PA  
RF  
Ground  
Plane  
RF  
Ground  
Plane  
RF  
Ground  
Plane  
Figure 39. Typical Application Diagram of FAN5903 Supplying Power to Three 3G or 4G PAs  
30µs  
DC-DC_EN  
VCON  
8µs  
8µs  
-
DC DC VOUT  
PA Supply  
10ms  
2.5 x VCON  
10ms  
RF Power  
Figure 40. Timing Diagram for 3G/4G Transmitters  
© 2008 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN5903 • Rev. 1.0.9  
15  
 
 
Application Information  
Inductor Selection  
Follow these guidelines:  
.
Use a low noise source or a driver with good  
PSRR to generate VCON  
The FAN5903 is able to operate at 3 MHz or 6 MHz  
switching frequency, so 470 nH (or 540 nH) or 1.0 µH  
inductors can be used, respectively. To achieve  
optimum efficiency, it is recommended that the  
FAN5903 switch at 3 MHz (FSEL = HIGH), using a  
1.0 µH inductor. For applications that require the  
smallest possible PCB area, the FAN5903 should be  
configured for 6 MHz operation (FSEL = LOW) to allow  
use of a 470 nH or 540 nH 2012 inductor.  
.
.
.
The VCON driver must be referenced to AGND.  
VCON routing must be protected against PVIN,  
SW, PGND signals, and other noisy signals. Use  
AGND shielding for better isolation.  
.
Be sure the DAC output can drive the 470 pF  
capacitor on VCON. It may be necessary to insert  
a low value resistor to ensure DAC stability  
without slowing VCON fast transition times.  
Table 2. Recommended Inductors  
No Floating Inputs  
Inductor fSW  
Description  
The FAN5903 does not have internal pull-down resistors  
on its inputs. Therefore, unused inputs should not be left  
floating and should be pulled HIGH or LOW.  
470 nH, ±20%, 1100 mA, 2012  
(metric)  
Murata: LQM21PNR47MC0  
470 nH, ±30%, 1200 mA, 2012  
(metric)  
PCB Layout & Component Placement  
6 MHz  
L1  
Panasonic: ELGTEAR47NA  
.
Make sure the FAN5903, CIN, and COUT are all tied  
to the same power ground (PGND). This minimizes  
the parasitic inductance of the switching loop paths.  
540 nH, ±20%, 1300 mA, 2012  
(metric)  
Murata: LQM21PNR54MG0  
.
.
.
.
Place PGND on the top layer and connect it to the  
AGND ground plane next to COUT using several vias.  
1.0 µH, ±20%, 2500 mA, 3030  
(metric)  
3 MHz  
Ensure that the routing loop, PVIN PGND –  
VOUT is the shortest possible.  
Coilcraft: XFL3010-102ME  
Place the inductor away from the FB connection to  
prevent unpredictable loop behavior.  
Capacitor Selection  
Use the application circuit layout in Figure 41  
whenever possible. The performance of this layout  
has been verified.  
The minimum required output capacitor COUT is 4.7 µF,  
6.3 V, X5R with an ESR of 10 mor lower and an ESL  
of 0.3 nH or lower. Larger case sizes result in increased  
loop parasitic inductance and higher noise.  
.
Review the layout guidelines for the IC package.  
This is especially important for the WLCSP  
package. Refer to “Surface Mount Assembly of  
Amkor’s Eutectic and Lead-Free CSPnl™ Wafer-  
Level Chip-Scale Package” available from the  
Amkor website.  
A 0.1 µF capacitor may be added in parallel with COUT to  
reduce the effect of the capacitor’s parasitic inductance.  
Table 3. Recommended Capacitor Values  
Capacitor  
CIN  
Description  
.
PVIN and PGND must be routed with the widest  
and shortest traces possible. It is acceptable for the  
traces connecting the inductor to be long rather  
than having long PVIN or PGND traces. The SW  
node is a source of electrical switching noise. Do  
not route it near sensitive analog signals.  
10 µF, ±20%, X5R, 10 V  
4.7 µF, ±20%, X5R, 6.3 V  
COUT  
C on VCON 470 pF, ±20%, X5R  
.
.
Two small vias are used to connect the SW node to  
the inductor L1. Use solder-filled vias if available.  
Filter VCON  
VCON is the analog control pin of the DC-DC and  
should be connected to an external Digital-to-Analog  
Converter (DAC). It is recommended to place up to  
470 pF decoupling capacitance between VCON and  
AGND to filter the DAC noise. This capacitor also helps  
protect the DAC from the DC-DC high-frequency  
switching noise coupled through the VCON pin.  
The connection from COUT to FB should be wide to  
minimize the Bypass mode voltage drop and the  
series inductance. Even if the current in Bypass  
Mode is small, keep this trace short and at least  
5mm wide.  
.
The ground plane should be not be broken into  
pieces. Ground currents must have a direct, wide  
path from input to output.  
Any noise on the VCON input is transferred to VOUT with a  
gain of two and a half (2.5). If the DAC output is noisy, a  
series resistor may be inserted between the DAC output  
and the capacitor to form an RC filter.  
© 2008 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN5903 • Rev. 1.0.9  
16  
Assembly  
.
Each capacitor should have at least two dedicated  
ground vias. Place vias within 0.1 mm of the  
capacitors.  
.
.
Use metal-filled or solder-filled vias if available.  
Poor soldering can cause low DC-DC conversion  
efficiency. If the efficiency is low, X-ray the solder  
connections to verify their integrity.  
.
.
Ensure the traces are wide enough to handle the  
maximum current value, especially in Bypass Mode.  
Ensure the vias are able to handle the current  
density. Use metal-filled vias if available.  
L1  
COUT  
CIN  
Figure 41. Recommended PCB Layout  
© 2008 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN5903 • Rev. 1.0.9  
17  
Physical Dimensions  
F
0.03 C  
A
E
2X  
0.40  
A1  
B
D
Ø0.20  
Cu Pad  
0.40  
PIN A1  
INDEX AREA  
Ø0.30  
Solder Mask  
0.03 C  
2X  
LAND PATTERN RECOMMENDATION  
(NSMD PAD TYPE)  
TOP VIEW  
0.06 C  
0.292±0.018  
0.208±0.021  
0.539  
0.461  
0.05 C  
E
C
SEATING PLANE  
D
SIDE VIEWS  
NOTES:  
A. NO JEDEC REGISTRATION APPLIES.  
B. DIMENSIONS ARE IN MILLIMETERS.  
Ø0.260±0.020  
9X  
0.40  
C. DIMENSIONS AND TOLERANCE  
PER ASMEY14.5M, 1994.  
C
B
A
D. DATUM C IS DEFINED BY THE SPHERICAL  
CROWNS OF THE BALLS.  
(Y)±0.018  
0.40  
E. PACKAGE NOMINAL HEIGHT IS 500 MICRONS  
±39 MICRONS (461-539 MICRONS).  
F
1
2 3  
(X)±0.018  
F. FOR DIMENSIONS D, E, X, AND Y SEE  
PRODUCT DATASHEET.  
BOTTOM VIEW  
G. DRAWING FILNAME: MKT-UC009AErev1  
Product  
D
E
X
Y
Unit  
FAN5903UCX  
1.292 ± 0.030  
1.342 ± 0.030  
0.271  
0.246  
mm  
Figure 42. 1.34 x 1.29 mm, 9-Bump, 0.4 mm-Pitch WLCSP  
Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner  
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or  
obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specifically the  
warranty therein, which covers Fairchild products.  
Always visit Fairchild Semiconductor’s online packaging area for the most recent package drawings:  
http://www.fairchildsemi.com/packaging/.  
© 2008 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN5903 • Rev. 1.0.9  
18  
© 2008 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FAN5903 • Rev. 1.0.9  
19  

相关型号:

FAN5903UCX

Buck Converter with Bypass Mode for 3 G / 3.5 G / 4 G PAs
FAIRCHILD

FAN5903UCX

降压转换器,带旁通模式,用于 3G/3.5G 和 4G PA
ONSEMI

FAN5904

Multi-Mode Buck Converter for GSM/EDGE, 3G/3.5G and 4G PAs
FAIRCHILD

FAN5904BUC01X

Switching Regulator
FAIRCHILD

FAN5904BUC01X

具有旁路模式的降压转换器,适用于 GSM / EDGE PAM、3G / 3.5G 和 4G PA
ONSEMI

FAN5904UC00X

Switching Regulator, Current-mode, 3A, 6000kHz Switching Freq-Max, PBGA16, 1.71 X 1.71 MM, 0.40 MM PITCH, WLCSP-16
FAIRCHILD

FAN5904UC00X

具有旁路模式的降压转换器,适用于 GSM / EDGE PAM、3G / 3.5G 和 4G PA
ONSEMI

FAN5904UC01X

Switching Regulator, Current-mode, 3A, 6000kHz Switching Freq-Max, PBGA16, 1.71 X 1.71 MM, 0.40 MM PITCH, WLCSP-16
FAIRCHILD

FAN5904UC01X

具有旁路模式的降压转换器,适用于 GSM / EDGE PAM、3G / 3.5G 和 4G PA
ONSEMI

FAN5904UCO00X

Switching Regulator
FAIRCHILD

FAN5904UCO01X

Switching Regulator
FAIRCHILD

FAN5909

Multi-Mode Buck Converter
ONSEMI