QLUM3309-PT280C [ETC]

Telecommunication IC ; 电信IC\n
QLUM3309-PT280C
型号: QLUM3309-PT280C
厂家: ETC    ETC
描述:

Telecommunication IC
电信IC\n

电信
文件: 总20页 (文件大小:212K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
QLUM3309-PT280C Device Datasheet  
Utopia Level 3 Master Bridges  
• • • • • •  
1.0 Utopia Level 3 (L3) Bridge Core Features  
Implements two Utopia L3 Masters providing a solution to bridge Utopia Slave devices  
Compliant with ATM-Forum af-phy-0136.000 (Utopia L3)  
Meets 104MHz performance offering more than 622 Mbps cell rate transfers  
Single chip solution for improved system integration  
Support cell level transfer mode  
Cell and clock rate decoupling with on chip FIFOs  
Up to 1.5 KByte of on chip FIFO per data direction  
Integrated management interface and built-in errored cell discard  
ATM Cell size programmable via external pins from 16 to 128 bytes  
Optional Utopia parity generation/checking enable/disable via external pin  
Built in JTAG port (IEEE1149 compliant)  
Simulation model available for system level verification (Contact Quicklogic for details)  
Solution also available as flexible Soft-IP core, delivered with a full device modelization  
and verification testbenches  
QLUM3309-PT280C Device Data Sheet  
1
QLUM3309-PT280C Device Datasheet  
2.0 Utopia Overview  
The Utopia (Universal Test & Operations PHY Interface for ATM) interface is defined by  
the ATM Forum to provide a standard interface between ATM devices and ATM PHY or  
SAR (segmentation and Re-assembly) devices.  
Figure 1: Utopia Reference Model  
The Utopia Standard defines a full duplex bus interface with a Master/Slave paradigm. The  
Slave interface responds to the requests from the Master. The Master performs PHY  
arbitration and initiates data transfers to and from the Slave device.  
The ATM forum has standardized the Utopia Levels 1 (L1) to 3 (L3). Each level extends  
the maximum supported interface speed from OC3, 155Mbps (L1) over OC12, 622Mbps  
(L2) to 3.2Gbit/s (L3).  
The following Table 1 gives an overview of the main differences in these three levels.  
Table 1: Utopia Level Differences  
Utopia Level  
Interface Width  
8-bit  
Max. Interface Speed  
25 MHz  
Maximum Throughput  
200 Mbps (typ. OC3 155 Mbps)  
800 Mbps (typ. OC12 622 Mbps)  
3.2 Gbps (typ. OC48 2.5 Gbps)  
1
2
3
8-bit, 16-bit  
8-bit, 32-bit  
50 MHz  
104 MHz  
Utopia Level 1 implements an 8-bit interface running at up to 25MHz. Level 2 adds a 16  
Bit interface and increases the speed to 50MHz. Level 3 extends the interface further by  
a 32 Bit word-size and speeds up to 104MHz providing rates up to 3.2 Gbit/s over the  
interface.  
2
www.quicklogic.com  
© 2001 QuickLogic Corporation  
QLUM3309-PT280C Device Datasheet  
In addition to the differences in throughput, Utopia Level 2 uses a shared bus offering to  
physically share a single interface bus between one master and up to 31 slave devices  
(Multi-PHY or MPHY operation). This allows the implementation of aggregation units that  
multiplex several slave devices to a single Master device. The Level 2 and Level 3 are point-  
to-point only, whereas Level 1 has no notion of multiple slaves. Level 3 still has the notion  
of multiple slaves, but they must be implemented in a single physical device connected to  
the Utopia Interface.  
3.0 Utopia Master/Master Bridge Application  
As it is not possible to connect two Slave devices together, the Master/Master Bridge  
provides the necessary interfaces to convey between two Slave devices as shown in  
Figure 2.  
Figure 2: Utopia Master Bridge  
The Bridge automatically transfers data as soon as it becomes available from one side to  
the other. Internal asynchronous FIFOs enable independent clock domains for each  
interface.  
QLUM3309-PT280C Device Data Sheet  
3
QLUM3309-PT280C Device Datasheet  
4.0 Application  
Figure 3: Master/Master Bridge connecting two Slave Devices  
Data flows from the Bridge's RX Ports to the corresponding TX Ports on the other side of  
the bridge.  
4
www.quicklogic.com  
© 2001 QuickLogic Corporation  
QLUM3309-PT280C Device Datasheet  
5.0 Core Pinout  
Bridge Core implements all the required Utopia signals and provides all the Utopia optional  
signals (Indicated by an 'O' in the following tables).  
In addition to the Utopia Interface signals, error indication signals are available for error  
monitoring or statistics. An error indication always shows that a cell has been discarded by  
the bridge. Possible errors are parity or cell-length errors on the receive interface of the  
corresponding Utopia Interfaces.  
All Utopia interfaces work in the same transfer mode (cell level).  
To identify the sides of the bridge, the notion "WEST" and "EAST" for the corresponding  
interfaces will be used.  
Figure 4: Utopia Level 3 Master/Master Bridge Top Entity  
5.1 Signal Descriptions  
Table 2: Global Signal  
Pin  
Mode  
Description  
reset  
In  
Active high chip reset  
QLUM3309-PT280C Device Data Sheet  
5
QLUM3309-PT280C Device Datasheet  
Table 3: Device Management Interface  
Pin  
Mode  
Description  
Receive error indication on west receive interface. When driven high, indicates  
that an errored cell (Wrong parity or wrong length) was received from the device  
connected to the west interface and is discarded.  
wrx_err  
Out  
Out  
Out  
Out  
Receive error status information for west receive interface. When wrx_err is  
driven, indicates the error status of the discarded cell:  
• wrx_err_stat(0) : When set to ‘1’ indicates that a cell is discarded because of  
a parity error.  
wrx_err_stat(1:0)  
• wrx_err_stat(1) : When set to ‘1’ indicates that a cell is discarded because it  
has a wrong length (Consecutive assertion of ut_tx_soc on the Utopia  
interface within less than a complete cell time).  
Receive error indication on east receive interface(s). When driven high, indicates  
that an errored cell (Wrong parity or wrong length) was received from the device  
connected to the east interface side.  
erx_err  
Receive error status information for east receive interface. When erx_err is  
driven, indicates the error status of the discarded cell:  
• erx_err_stat(0) : When set to ‘1’ indicates that a cell is discarded because of  
a parity error.  
erx_err_stat(1:0)  
• erx_err_stat(1) : When set to ‘1’ indicates that a cell is discarded because it  
has a wrong length (Consecutive assertion of ut_tx_soc on the Utopia  
interface within less than a complete cell time).  
NOTE: wrx_.. signals are sampled with west receive clock (wrxclk). erx_.. signals are sampled  
with west transmit clock (wtxclk).  
Table 4: West Utopia Master Transmit Interface  
Pin  
wtxclk  
Mode  
In  
Description  
104MHz transmit byte clock. The Core samples all Utopia Transmit signals on  
txclk rising edge.  
wtxdata[7:0]  
Out  
Transmit data bus.  
Transmit data bus parity. Standard odd or non-standard even parity can be  
optionally checked by the connected Slave.  
When the parity check is disabled during the Core configuration, or not used in  
the design, the pin txprty should be left open.  
wtxprty  
Out  
Transmit start of cell. Asserted by the Master to indicate that the current word is  
the first word of a cell.  
wtxsoc  
wtxenb  
Out  
Out  
Active low transmit data transfer enable.  
Cell buffer available. Asserted in octet level transfers to indicate to the Master that  
the FIFO is almost full (Active low) or, in cell level transfers, to indicate to the  
Master that the PHY port FIFO has space to accept one cell.  
wtxclav[0]  
In  
In  
Extra FIFO Full / Cell buffer available. In MPHY mode and when direct status  
indication is selected during the Core configuration, one txclav signal is  
implemented per PHY port. The maximum number of clav signals is limited to  
four.  
wtxclav[3:1] (0)  
Utopia transmit address. When the Core operates in MPHY mode, address bus  
used during polling and slave port selection. Bit 4 is the MSB.  
txaddr(4:0) becomes optional (And should be left open) when the Core does not  
operate in MPHY mode.  
wtxaddr[4:0]  
Out  
NOTE: (O) indicates optional signals.  
6
www.quicklogic.com  
© 2001 QuickLogic Corporation  
QLUM3309-PT280C Device Datasheet  
Table 5: West Utopia Master Receive Interface  
Pin  
wrxclk  
Mode  
In  
Description  
104MHz receive byte clock. The Core samples all Utopia Receive signals on rxclk  
rising edge.  
wrxdata[7:0]  
In  
Receive data bus.  
Receive data bus parity. Standard odd or non standard even parity can be  
optionally generated by the Utopia Slave Core.  
When the parity generation is disabled during the Core configuration, the pin  
rxprty can be let unconnected.  
wrxprty(0)  
In  
Receive start of cell. Asserted to indicate that the current word is the first word of  
a cell.  
wrxsoc  
wrxenb  
In  
Out  
Active low transmit data transfer enable.  
Cell buffer available. Asserted in octet level transfers to indicate to the Master that  
the FIFO is almost empty (Active low) or, in cell level transfers, to indicate to the  
Master that the PHY port FIFO has space one cell available in the FIFO.  
wrxclav[0]  
In  
In  
Extra FIFO Full / Cell buffer available. In MPHY mode and when direct status  
indication is selected, one rxclav signal is implemented per PHY port. The  
maximum number of clav signals is limited to four.  
wrxclav[3:1] (0)  
Utopia receive address. When the Core operates in MPHY mode, address bus  
used during polling and slave port selection. Bit 4 is the MSB.  
txaddr(4:0) becomes optional (And should be left open) when the Core does not  
operate in MPHY mode.  
wrxaddn(4:0)  
Out  
Table 6: East Utopia Master Transmit Interface  
Pin  
etxclk  
Mode  
In  
Description  
104MHz transmit byte clock. The Core samples all Utopia Transmit signals on  
txclk rising edge.  
etxdata[7:0]  
Out  
Transmit data bus.  
Transmit data bus parity. Standard odd or non-standard even parity can be  
optionally checked by the connected Slave.  
When the parity check is disabled during the Core configuration, or not used in  
the design, the pin txprty should be left open.  
etxprty  
Our  
Transmit start of cell. Asserted by the Master to indicate that the current word is  
the first word of a cell.  
etxsoc  
etxenb  
Out  
Out  
Active low transmit data transfer enable.  
Cell buffer available. Asserted in octet level transfers to indicate to the Master that  
the FIFO is almost full (Active low) or, in cell level transfers, to indicate to the  
Master that the PHY port FIFO has space to accept one cell.  
etxclav[0]  
In  
In  
Extra FIFO Full / Cell buffer available. In MPHY mode and when direct status  
indication is selected during the Core configuration, one txclav signal is  
implemented per PHY port. The maximum number of clav signals is limited to  
four.  
etxclav[3:1] (0)  
Utopia transmit address. When the Core operates in MPHY mode, address bus  
used during polling and slave port selection. Bit 4 is the MSB.  
txaddr(4:0) becomes optional (And should be left open) when the Core does not  
operate in MPHY mode.  
etxaddr[4:0]  
Out  
QLUM3309-PT280C Device Data Sheet  
7
QLUM3309-PT280C Device Datasheet  
Table 7: East Utopia Master Receive Interface  
Pin  
erxclk  
Mode  
Description  
104MHz receive byte clock. The Core samples all Utopia Receive signals on rxclk  
rising edge.  
In  
In  
erxdata[7:0]  
Receive data bus.  
Receive data bus parity. Standard odd or non standard even parity can be  
optionally generated by the Utopia Slave Core.  
When the parity generation is disabled during the Core configuration, the pin  
rxprty can be let unconnected.  
erxprty (0)  
In  
Receive start of cell. Asserted to indicate that the current word is the first word of  
a cell.  
erxsoc  
erxenb  
In  
Out  
Active low transmit data transfer enable.  
Cell buffer available. Asserted in octet level transfers to indicate to the Master that  
the FIFO is almost empty (Active low) or, in cell level transfers, to indicate to the  
Master that the PHY port FIFO has space one cell available in the FIFO.  
erxclav[0]  
In  
In  
Extra FIFO Full / Cell buffer available. In MPHY mode and when direct status  
indication is selected, one rxclav signal is implemented per PHY port. The  
maximum number of clav signals is limited to four.  
rxclav[3:1] (0)  
Utopia receive address. When the Core operates in MPHY mode, address bus  
used during polling and slave port selection. Bit 4 is the MSB.  
taddr(4:0) becomes optional (And should be left open) when the Core does not  
operate in MPHY mode.  
erxaddr(4:0)  
Out  
Table 8: Device Configuration Pins  
Pin  
Mode  
Description  
Enable parity checking on the Utopia interface.  
prty_en  
In  
If disabled (tied to 0), the wrx_err_stat(0) signal can be ignored and left open and  
the rx parity input should be tied to 0. Also the tx parity pins can be left open.  
Define cellsize: sets the size in bytes of a cell. Binary value to be set usually by  
board wiring.  
cellsize[7:0]  
In  
The configuration pins are not intended for change during operation. They are usually  
board wired to configure the device for operation.  
8
www.quicklogic.com  
© 2001 QuickLogic Corporation  
QLUM3309-PT280C Device Datasheet  
6.0 Global Signal Descriptions  
The externally provided Utopia Transmit and Receive clocks are connected to global  
resources to provide low skew and fast chip level distribution. In both data directions, the  
two corresponding Utopia Interfaces are decoupled by asynchronous FIFOs.  
Therefore each interface runs completely independently each at its own tx and rx clocks  
which typically are 104 MHz.  
The Error indications of the two receive interfaces are always sampled within the west clock  
domains. The errors of the east rx interface is available on the erx_err signal, which is  
handled using the west clock domain (wtxclk). The west rx error is directly derived from the  
west rx block (wrxclk).  
Figure 5: Master/Master Bridge Clock Distribution  
QLUM3309-PT280C Device Data Sheet  
9
QLUM3309-PT280C Device Datasheet  
7.0 Functional Description - Utopia Interface  
The Utopia Bridge operates in single PHY mode. Therefore no address bus and only a  
single status pin (clav[0]) per direction is used on the interfaces.  
7.1 Utopia Interface Single PHY Transmit Interface  
The Transmit interface is controlled by the ATM layer.  
The transmit interface has data flowing in the same direction as the ATM enable  
ut_txenb. The ATM transmit block generates all output signals on the rising edge of the  
ut_txclk.  
Transmit data is transferred from the ATM layer to PHY layer via the following procedure.  
The Core indicates it can accept data using the ut_txclav signal, then the ATM layer  
drives data onto ut_txdatand asserts ut_txenb.  
When a cell transfer is initiated, the Master or the Slave cannot pause the transfer by  
any means.  
7.1.1 Single Cell Transfer  
The Slave asserts ut_txclav 1 when it is capable of accepting the transfer of a whole  
cell. The Core asserts ut_txenb(Low) to indicates that it drives valid data to the Slave 2.  
Together with the first word of a cell, the Core device asserts ut_txsocfor one clock  
cycle 3.  
To ensure that the ATM Layer (Core) does not cause transmit overrun, the Slave de-asserts  
ut_txclav when ut_txsocis de-asserted by the Core 4.  
To complete the cell transfer, the Core de-asserts the Utopia enable signal ut_txenb5.  
Figure 6: Single Cell Transfer - Cell Level Transfer  
10  
www.quicklogic.com  
© 2001 QuickLogic Corporation  
QLUM3309-PT280C Device Datasheet  
7.1.2 Back to Back Cells Transfer  
When, during a cell transfer, the Slave is able to receive a subsequent cell, the Master can  
keep ut_txenbasserted between two cells 1 and asserts ut_txsoc, to start a new cell  
transfer, immediately after the last word of the previous cell 2.  
Figure 7: Back to Back Cell Transfer  
7.2 Utopia Interface Single PHY Receive Interface  
The Receive interface is controlled by the Master interface. The receive interface has data  
flowing in the opposite direction to the Master's enable ut_rxenb.  
Receive data is transferred from the Slave to the Master via the following procedure. The  
Slave indicates it has valid data, then the Master asserts ut_rxenbto read this data from  
the Slave. The Master indicates valid data (thereby controlling the data flow) via the  
ut_rxclavsignal.  
When a cell transfer is initiated, the transfer cannot be paused by the Master or the Slave.  
7.2.1 Cell Level Transfer - Single Cell  
The Slave asserts ut_rxclavwhen it is ready to send a complete cell to the Master 1.  
The Master interface asserts ut_rxenbto start the cell transfer 2. The Slave samples  
ut_rxenband start driving data on the following clock edge 3. The Slave asserts  
ut_rxsoctogether with the cell first word to indicate the start of a cell 4.  
QLUM3309-PT280C Device Data Sheet  
11  
QLUM3309-PT280C Device Datasheet  
The Master drives ut_txenbhigh two clock cycles before the expected end of the current  
cell if the Slave has no more cell to transfer 5. The Slave de-asserts ut_rxclavto indicate  
that no new cell is available 6 together with the start of cell indication.  
Figure 8: Single Cell Transfer  
7.2.2 Cell Level Transfer - Back to Back Cells  
If the Master keeps ut_rxenbasserted at the end of a cell transfer 1 and if the Slave has  
a new cell to send, the Slave keeps ut_rxclav drives the new cell asserting ut_rxsoc  
to indicate the start of a new cell 2.  
Figure 9: Back to Back Cells Transfer  
12  
www.quicklogic.com  
© 2001 QuickLogic Corporation  
QLUM3309-PT280C Device Datasheet  
8.0 Core Management and Error Handling  
On Ingress, the Utopia Master Blocks are designed to handle and report Utopia errors such  
as Parity error or wrong cell length. Errored cells are discarded with an error status  
provided on pins for use by external management facilities.  
The error handling only applies to the corresponding receive parts of the Core (i.e. Ingress  
Ports).  
When an errored cell is received on the Utopia interface, the Core discards the complete  
cell and provides a cell discard indication (Signal eg_err asserted) 1 together with a cell  
discard status (Signal eg_err_stat(1:0)) 2.  
NOTE: eg_err is routed to the corresponding wrx_err and erx_err respectively  
(see Figure 4).  
Figure 10: Cell Discard Indication  
Table 9: Error Status Word Bit Coding  
Error Status Bit Name  
Description  
PARITY_ Valid when wrx/erx_err is asserted. If set to one indicates that a cell is discarded  
ERR with a parity error decoded by the Core.  
0
1
LENGTH_ Valid when wrx/erx_err is asserted. If set to one indicates that a cell is discarded  
ER with a cell length error detected on the Utopia interface.  
The signals are sampled on the corresponding clocks from the west interface:  
erx_... sampled with wtxclk (west transmit clock)  
wrx_... sampled with wrxclk (west receive clock)  
QLUM3309-PT280C Device Data Sheet  
13  
QLUM3309-PT280C Device Datasheet  
9.0 Complexity and Performance Summary  
9.1 Timing Parameters Definition  
Figure 11: Tco Timing Parameter Definition  
Figure 12: Tsu Timing Parameter Definition  
14  
www.quicklogic.com  
© 2001 QuickLogic Corporation  
QLUM3309-PT280C Device Datasheet  
Table 10: 8-Bit Utopia Interface Timing Characteristics  
Parameter  
typ  
7.0  
2.5  
Max (worst)  
Unit  
ns  
tco  
tsu  
6.0  
1.8  
ns  
wrxclk  
104  
104  
104  
104  
MHz  
MHz  
MHz  
MHz  
ns  
wtxclk  
erxclk  
etxclk  
minimum reset time  
50  
NOTE: timing model "worst" case is used.  
QLUM3309-PT280C Device Data Sheet  
15  
QLUM3309-PT280C Device Datasheet  
10.0 Device Pinout  
10.1 Signals Overview  
Table 11: Signals Overview Table  
Signals  
Description  
wrxclk, wrxclav, wrxenb*,  
wrxdat, wrxsoc  
West Utopia Receive Interface.  
wtxclk, wtxclav, wtxenb*,  
wtxdata, wtxsoc  
West Utopia Transmit Interface.  
wrx_err, wrx_err_stat  
West Interface error indication (sampled with wrxclk).  
erxclk, erxclav, erxenb*,  
erxdata, erxsoc  
East Utopia Receive Interface.  
etxclk, etxclav, etxenb*,  
etxdata, etxsoc  
East Utopia Transmit Interface.  
erx_err, erx_err_stat  
East Interface error indication (sampled with wtxclk).  
Configuration Pins to be board wired.  
prty_en, cellsize  
reset  
Cellsize [0] should be tied to GND.  
Active high device reset  
GND  
Ground  
VCC  
Device Power 2.5 V  
clk(x)  
unused clock inputs should be tied to GND  
IOCTRL(x)  
VCCIO(x)  
INREF(x)  
PLLRST(x)  
PLLOUT(x)  
VCCPLL(x)  
GNDPLL(x)  
TCK, TRSTB  
TMS, TDI  
TDO  
IO Power 3.3 V  
connect to GND  
connect to GND or VCC  
connect to GND or VCC  
JTAG signals. connect to GND  
JTAG signals. connect to VCC  
JTAG signal. leave open  
iov  
nc  
not connected. should be left open  
*: active low signal  
NOTE: Unused Pins (data busses) in the following tables are to be handled like "nc".  
16  
www.quicklogic.com  
© 2001 QuickLogic Corporation  
QLUM3309-PT280C Device Datasheet  
10.2 PT280 FPBGA Device Diagram  
EAST receive error indication  
QLUM3309  
-PT280C  
Figure 13: PT280 bottom view (0.8mm FPBGA)  
QLUM3309-PT280C Device Data Sheet  
17  
QLUM3309-PT280C Device Datasheet  
10.3 PT280 FPBGA Pinout Table  
Table 12: PT280 FPBGA Pinout Table  
PIN  
A1  
Function  
pllout(3)  
gndpll(0)  
erx_err  
erx_err_stat[0]  
erx_err_stat[1]  
ioctrl(f)  
wtxclav[0]  
wtxprty  
wtxenb  
wtxclk  
wtxsoc  
wtxdat[0]  
wtxdat[1]  
ioctrl(e)  
wtxdat[2]  
wtxdat[3]  
wtxdat[4]  
pllrst(1)  
gnd  
PIN  
D1  
Function  
nc  
PIN  
G19  
H1  
Function  
nc  
PIN  
N16  
N17  
N18  
N19  
P1  
Function  
nc  
PIN  
U6  
Function  
inref(a)  
nc  
A2  
D2  
nc  
nc  
nc  
U7  
A3  
D3  
nc  
H2  
nc  
ioctrl(c)  
ioctrl(c)  
nc  
U8  
nc  
A4  
D4  
nc  
H3  
nc  
U9  
vccio(a)  
erxclk  
vccio(b)  
nc  
A5  
D5  
nc  
H4  
nc  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
V1  
A6  
D6  
nc (cellsize[0])  
prty_en  
reset  
H5  
vcc  
vcc  
vcc  
nc  
P2  
nc  
A7  
D7  
H15  
H16  
H17  
H18  
H19  
J1  
P3  
ioctrl(h)  
inref(h)  
vcc  
A8  
D8  
P4  
nc  
A9  
D9  
clk(8)  
P5  
ioctrl(b)  
vccio(b)  
etxdat[5]  
tdo  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
B1  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
E1  
wrxclav[0]  
wrxprty  
wrxenb  
inref(e)  
wrxsoc  
wrxdat[0]  
wrxdat[1]  
wrxdat[2]  
wrxdat[3]  
wrxdat[4]  
cellsize[3]  
cellsize[2]  
vccio(g)  
cellsize[1]  
gnd  
nc  
P15  
P16  
P17  
P18  
P19  
R1  
gnd  
nc  
nc  
nc  
nc  
J2  
nc  
wrx_err  
wrx_err_stat[0]  
erxdat[7]  
nc  
pllrst(2)  
etxprty  
pllout(2)  
gndpll(3)  
gnd  
J3  
vccio(g)  
nc  
J4  
J5  
gnd  
vcc  
nc  
R2  
V2  
J15  
J16  
J17  
J18  
J19  
K1  
R3  
vccio(h)  
nc  
V3  
R4  
V4  
erxprty  
erxenb  
ioctrl(a)  
nc  
vccio(d)  
nc  
R5  
gnd  
V5  
pllrst(0)  
gnd  
R6  
gnd  
V6  
B2  
E2  
nc  
R7  
vcc  
V7  
B3  
wtxdat[5]  
wtxdat[6]  
wtxdat[7]  
inref(f)  
nc  
E3  
vcc  
tck  
R8  
vcc  
V8  
nc  
B4  
E4  
K2  
R9  
gnd  
V9  
nc  
B5  
E5  
K3  
nc  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
T1  
gnd  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
W1  
clk(1)  
clk(4)  
nc  
B6  
E6  
vcc  
K4  
nc  
vcc  
B7  
E7  
vcc  
K5  
gnd  
gnd  
nc  
vcc  
B8  
nc  
E8  
vcc  
K15  
K16  
K17  
K18  
K19  
L1  
vcc  
nc  
B9  
tms  
E9  
vcc  
vcc  
inref(b)  
nc  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
C1  
clk(6)  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
F1  
gnd  
nc  
gnd  
nc  
gnd  
nc  
etxdat[3]  
vccio(c)  
etxenb  
wrx_err_stat[1]  
erxdat[2]  
erxdat[3]  
erxdat[4]  
erxdat[5]  
erxdat[6]  
ioctrl(a)  
nc  
etxdat[6]  
etxdat[1]  
gndpll(2)  
gnd  
nc  
vcc  
trstb  
nc  
ioctrl(e)  
nc  
vcc  
gnd  
L2  
nc  
nc  
gnd  
L3  
vccio(h)  
nc  
gnd  
nc  
wrxdat[5]  
vccio(d)  
inref(d)  
ioctrl(d)  
inref(g)  
ioctrl(g)  
cellsize[5]  
cellsize[4]  
gnd  
L4  
T2  
W2  
pllrst(3)  
nc  
vccpll(1)  
gndpll(1)  
pllout(0)  
nc  
L5  
vcc  
gnd  
nc  
T3  
W3  
L15  
L16  
L17  
L18  
L19  
M1  
M2  
M3  
M4  
M5  
M15  
M16  
M17  
M18  
M19  
N1  
T4  
W4  
nc  
T5  
W5  
nc  
vccio(c)  
nc  
T6  
W6  
erxclav[0]  
nc  
C2  
vccpll(0)  
nc  
F2  
T7  
W7  
C3  
F3  
nc  
T8  
nc  
W8  
nc  
C4  
nc  
F4  
nc  
T9  
nc  
W9  
tdi  
C5  
vccio(f)  
ioctrl(f)  
nc  
F5  
nc  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
U1  
nc  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
etxclk  
nc  
C6  
F15  
F16  
F17  
F18  
F19  
G1  
vcc  
nc  
clk(3)  
nc  
C7  
ioctrl(d)  
wrxdat[6]  
wrxdat[7]  
nc  
nc  
nc  
C8  
nc  
vcc  
vcc  
inref(c)  
nc  
nc  
nc  
C9  
vccio(f)  
wrxclk  
vccio(e)  
nc  
nc  
ioctrl(b)  
nc  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
nc  
nc  
etxdat[4]  
vccpll(2)  
etxsoc  
etxclav[0]  
erxsoc  
erxdat[0]  
vccpll(3)  
erxdat[1]  
vccio(a)  
etxdat[7]  
etxdat[2]  
etxdat[0]  
pllout(1)  
G2  
cellsize[7]  
ioctrl(g)  
cellsize[6]  
vcc  
nc  
nc  
G3  
nc  
nc  
G4  
ioctrl(h)  
nc  
vccio(e)  
nc  
G5  
N2  
G15  
G16  
G17  
G18  
vcc  
N3  
nc  
U2  
nc  
nc  
N4  
nc  
U3  
nc  
nc  
N5  
vcc  
vcc  
U4  
nc  
nc  
N15  
U5  
18  
www.quicklogic.com  
© 2001 QuickLogic Corporation  
QLUM3309-PT280C Device Datasheet  
11.0 References  
· ATM Forum, Utopia Level 3, af-phy-0136.000, 1999  
12.0 Contact  
QuickLogic Corp.  
Tel  
: 408 990 4000 (US)  
: + 44 1932 57 9011 (Europe)  
: + 49 89 930 86 170 (Germany)  
: + 852 8106 9091 (Asia)  
: + 81 45 470 5525 (Japan)  
: info@quicklogic.com  
E-mail  
Internet  
: www.quicklogic.com  
QLUM3309-PT280C Device Data Sheet  
19  
QLUM3309-PT280C Device Datasheet  
20  
www.quicklogic.com  
© 2001 QuickLogic Corporation  

相关型号:

QLUM3316-PQ208C

Telecommunication IC
ETC

QLUM3316-PQ280C

Telecommunication IC
ETC

QLUM3317-PQ208C

Telecommunication IC
ETC

QLUM3317-PQ280C

Telecommunication IC
ETC

QLUM3332-PT280C

Telecommunication IC
ETC

QLUM3333-PT280C

Telecommunication IC
ETC

QLUS2208-PQ208C

Telecommunication IC
ETC

QLUS2216-PQ208C

Telecommunication IC
ETC

QLUS2216-PT280C

Telecommunication IC
ETC

QLUS2280-PT280C

Telecommunication IC
ETC

QLUS3216-PQ208C

Telecommunication IC
ETC

QLUS3216-PT280C

Telecommunication IC
ETC