QLUS2216-PQ208C [ETC]

Telecommunication IC ; 电信IC\n
QLUS2216-PQ208C
型号: QLUS2216-PQ208C
厂家: ETC    ETC
描述:

Telecommunication IC
电信IC\n

电信
文件: 总20页 (文件大小:179K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
QLUS2216-PQ208C Device Data Sheet  
Utopia Level 2 Slave Bridge  
• • • • • •  
1.0 Utopia Level 2 (L2) Bridge Features  
Implements two Utopia L2 Slaves providing a solution to bridge Utopia Master devices  
Compliant with ATM-Forum af-phy-0039.000, June 1995  
Single PHY  
Meets 50MHz performance offering up to 800Mbps cell rate transfers  
Single chip solution for improved system integration  
Support cell level transfer mode  
Cell and clock rate decoupling with on chip FIFOs  
Up to 1.5 KByte of on chip FIFO per data direction  
Integrated management interface and built-in errored cell discard  
ATM Cell size programmable via external pins from 16 to 128 bytes  
Optional Utopia parity generation/checking enable/disable via external pin  
Built in JTAG port (IEEE1149 compliant)  
Simulation model available for system level verification (Contact Quicklogic for details)  
Solution also available as flexible Soft-IP core, delivered with a full device modelization  
and verification testbenches  
QLUS2216-PQ208C Device Data Sheet  
1
QLUS2216-PQ208C Device Data Sheet  
2.0 Utopia Overview  
The Utopia (Universal Test & Operations PHY Interface for ATM) interface is defined by  
the ATM Forum to provide a standard interface between ATM devices and ATM PHY or  
SAR (Segmentation And Re-assembly) devices.  
Figure 1: Utopia Reference Model  
The Utopia Standard defines a full duplex bus interface with a Master/Slave paradigm. The  
Slave interface responds to the requests from the Master. The Master performs PHY  
arbitration and initiates data transfers to and from the Slave device.  
The ATM forum has standardized the Utopia Levels 1 (L1) to 3 (L3). Each level extends  
the maximum supported interface speed from OC3, 155Mbps (L1) over OC12, 622Mbps  
(L2) to 3.2Gbit/s (L3).  
The following Table 1 gives an overview of the main differences in these three levels.  
Table 1: Utopia Level Differences  
Utopia Level  
Interface Width  
8-bit  
Max. Interface Speed  
25 MHz  
Maximum Throughput  
200 Mbps (typ. OC3 155 Mbps)  
800 Mbps (typ. OC12 622 Mbps)  
3.2 Gbps (typ. OC48 2.5 Gbps)  
1
2
3
8-bit, 16-bit  
8-bit, 32-bit  
50 MHz  
104 MHz  
Utopia Level 1 implements an 8-bit interface running at up to 25MHz. Level 2 adds a 16  
Bit interface and increases the speed to 50MHz. Level 3 extends the interface further by  
a 32 Bit word-size and speeds up to 104MHz providing rates up to 3.2 Gbit/s over the  
interface.  
In addition to the differences in throughput, Utopia Level 2 uses a shared bus offering to  
physically share a single interface bus between one master and up to 31 slave devices  
(Multi-PHY or MPHY operation). This allows the implementation of aggregation units that  
2
www.quicklogic.com  
© 2001 QuickLogic Corporation  
QLUS2216-PQ208C Device Data Sheet  
multiplex several slave devices to a single Master device. The Level 1 and Level 3 are point-  
to-point only, whereas Level 1 has no notion of multiple slaves. Level 3 still has the notion  
of multiple slaves, but they must be implemented in a single physical device connected to  
the Utopia Interface.  
3.0 Utopia Slave/Slave Bridge Application  
As it is not possible to connect two Master devices together, the Slave/Slave Bridge  
provides the necessary interfaces to convey between two Master devices as shown in  
Figure 2.  
Figure 2: Utopia Slave Bridge  
The Bridge automatically transfers data as soon as it becomes available from one side to  
the other. Internal asynchronous FIFOs enable independent clock domains for each  
interface.  
QLUS2216-PQ208C Device Data Sheet  
3
QLUS2216-PQ208C Device Data Sheet  
4.0 Application  
Figure 3: Slave/Slave Bridge connecting two Master Devices  
Data flows from the Bridge's TX Ports to the corresponding RX Ports on the other side of  
the bridge.  
4
www.quicklogic.com  
© 2001 QuickLogic Corporation  
QLUS2216-PQ208C Device Data Sheet  
5.0 Core Pinout  
On the Utopia interfaces, the Core implements all the required Utopia signals and provides  
all the Utopia optional signals (Indicated by an 'O' in the following tables). The optional  
Utopia signals are activated during the Core configuration and inactive Utopia signals  
should be left unconnected (Outputs) or tied to a zero logic level (inputs) as specified in the  
following Tables.  
In addition to the Utopia Interface signals, error indication signals are available for error  
monitoring or statistics. An error indication always shows that a cell has been discarded by  
the bridge. Possible errors are parity or cell-length errors on the receive interface of the  
corresponding Utopia Interfaces.  
All Utopia interfaces work in the same transfer mode (cell level). A mix is not possible.  
To identify the sides of the core the notion "WEST" and "EAST" for the corresponding  
interfaces will be used.  
Figure 4: Utopia Level 3 Slave/Slave Bridge Top Entity  
5.1 Signal Descriptions  
Table 2: Global Signal  
Pin  
Mode  
Description  
reset  
In  
Active high chip reset  
QLUS2216-PQ208C Device Data Sheet  
5
QLUS2216-PQ208C Device Data Sheet  
Table 3: Device Management Interface  
Pin  
Mode  
Description  
Transmit error indication on west interface. When driven high, indicates that an  
errored cell (Wrong parity or wrong length) was received from the device  
connected to the west interface and is discarded.  
wtx_err  
Out  
Out  
Out  
Out  
Transmit error status information for west interface. When wtx_err is driven,  
indicates the error status of the discarded cell:  
• wtx_err_stat(0) : When set to '1' indicates that a cell is discarded because of  
a parity error.  
wtx_err_stat(1:0)  
• wtx_err_stat(1) : When set to '1' indicates that a cell is discarded because it  
has a wrong length (Consecutive assertion of ut_tx_soc on the Utopia  
interface within less than a complete cell time).  
Transmit error indication on east interface. When driven high, indicates that an  
errored cell (Wrong parity or wrong length) was received from the device  
connected to the east interface side.  
etx_err  
Transmit error status information for east receive interface. When etx_err is  
driven, indicates the error status of the discarded cell:  
• ex_err_stat(0) : When set to '1' indicates that a cell is discarded because of  
a parity error.  
etx_err_stat(1:0)  
• etx_err_stat(1) : When set to '1' indicates that a cell is discarded because it  
has a wrong length (Consecutive assertion of ut_tx_soc on the Utopia  
interface within less than a complete cell time).  
NOTE: wtx_.. signals are sampled with west transmit clock (wtxclk). etx_.. signals are  
sampled with west receive clock (wrxclk).  
Table 4: West Utopia Slave Transmit Interface  
Pin  
wtxclk  
Mode  
In  
Description  
50MHz transmit byte clock. The Core samples all Utopia Transmit signals on txclk  
rising edge.  
wtxdata[15:0]  
In  
Transmit data bus.  
Transmit data bus parity. Standard odd or non-standard even parity can be  
optionally checked by the connected Slave.  
When the parity check is disabled during the Core configuration, or not used in  
the design, the pin txprty should be tied to '0'.  
wtxprty  
In  
Transmit start of cell. Asserted by the Master to indicate that the current word is  
the first word of a cell.  
wtxsoc  
wtxenb  
In  
In  
Active low transmit data transfer enable.  
Cell buffer available. Asserted in octet level transfers to indicate to the Master that  
the FIFO is almost full (Active low) or, in cell level transfers, to indicate to the  
Master that the PHY port FIFO has space to accept one cell.  
wtxclav[0]  
Out  
Out  
Extra FIFO Full / Cell buffer available. In MPHY mode and when direct status  
indication is selected during the Core configuration, one txclav signal is  
implemented per PHY port. The maximum number of clav signals is limited  
to four.  
wtxclav[3:1] (O)  
Utopia transmit address. When the Core operates in MPHY mode, address bus  
used during polling and slave port selection. Bit 4 is the MSB.  
txaddr(4:0) becomes optional (And should be left open) when the Core does not  
operate in MPHY mode.  
wtxaddr[4:0]  
In  
NOTE: (O) indicates optional signals.  
6
www.quicklogic.com  
© 2001 QuickLogic Corporation  
QLUS2216-PQ208C Device Data Sheet  
Table 5: West Utopia Slave Receive Interface  
Pin  
wrxclk  
Mode  
In  
Description  
50MHz receive byte clock. The Core samples all Utopia Receive signals on rxclk  
rising edge.  
wrxdata[15:0]  
Out  
Receive data bus.  
Receive data bus parity. Standard odd or non standard even parity can be  
optionally generated by the Utopia Slave Core.  
When the parity generation is disabled during the Core configuration, the pin  
rxprty can be let unconnected.  
wrxprty (O)  
Out  
Receive start of cell. Asserted to indicate that the current word is the first word of  
a cell.  
wrxsoc  
wrxenb  
Out  
In  
Active low transmit data transfer enable.  
Cell buffer available. Asserted in octet level transfers to indicate to the Master that  
the FIFO is almost empty (Active low) or, in cell level transfers, to indicate to the  
Master that the PHY port FIFO has space one cell available in the FIFO.  
wrxclav[0]  
Out  
Out  
Extra FIFO Full / Cell buffer available. In MPHY mode and when direct status  
indication is selected, one rxclav signal is implemented per PHY port. The  
maximum number of clav signals is limited to four.  
wrxclav[3:1] (O)  
Utopia receive address. When the Core operates in MPHY mode, address bus  
used during polling and slave port selection. Bit 4 is the MSB.  
txaddr(4:0) becomes optional (And should be left open) when the Core does not  
operate in MPHY mode.  
wrxaddr(4:0)  
In  
Table 6: East Utopia Slave Transmit Interface  
Pin  
etxclk  
Mode  
In  
Description  
50MHz transmit byte clock. The Core samples all Utopia Transmit signals on txclk  
rising edge.  
etxdata[15:0]  
In  
Transmit data bus.  
Transmit data bus parity. Standard odd or non-standard even parity can be  
optionally checked by the connected Slave.  
When the parity check is disabled during the Core configuration, or not used in  
the design, the pin txprty should be left open.  
etxprty  
In  
Transmit start of cell. Asserted by the Master to indicate that the current word is  
the first word of a cell.  
etxsoc  
etxenb  
In  
In  
Active low transmit data transfer enable.  
Cell buffer available. Asserted in octet level transfers to indicate to the Master that  
the FIFO is almost full (Active low) or, in cell level transfers, to indicate to the  
Master that the PHY port FIFO has space to accept one cell.  
etxclav[0]  
Out  
Out  
Extra FIFO Full / Cell buffer available. In MPHY mode and when direct status  
indication is selected during the Core configuration, one txclav signal is  
implemented per PHY port. The maximum number of clav signals is limited  
to four.  
etxclav[3:1] (O)  
Utopia transmit address. When the Core operates in MPHY mode, address bus  
used during polling and slave port selection. Bit 4 is the MSB.  
txaddr(4:0) becomes optional (And should be left open) when the Core does not  
operate in MPHY mode.  
etxaddr[4:0]  
In  
NOTE: (O) indicates optional signals.  
QLUS2216-PQ208C Device Data Sheet  
7
QLUS2216-PQ208C Device Data Sheet  
Table 7: East Utopia Slave Receive Interface  
Pin  
erxclk  
Mode  
Description  
50MHz receive byte clock. The Core samples all Utopia Receive signals on rxclk  
rising edge.  
In  
erxdata[15:0]  
Out  
Receive data bus.  
Receive data bus parity. Standard odd or non standard even parity can be  
optionally generated by the Utopia Slave Core.  
When the parity generation is disabled during the Core configuration, the pin  
rxprty can be let unconnected.  
erxprty (O)  
Out  
Receive start of cell. Asserted to indicate that the current word is the first word of  
a cell.  
erxsoc  
erxenb  
Out  
In  
Active low transmit data transfer enable.  
Cell buffer available. Asserted in octet level transfers to indicate to the Master that  
the FIFO is almost empty (Active low) or, in cell level transfers, to indicate to the  
Master that the PHY port FIFO has space one cell available in the FIFO.  
erxclav[0]  
Out  
Out  
Extra FIFO Full / Cell buffer available. In MPHY mode and when direct status  
indication is selected, one rxclav signal is implemented per PHY port. The  
maximum number of clav signals is limited to four.  
rxclav[3:1] (O)  
Utopia receive address. When the Core operates in MPHY mode, address bus  
used during polling and slave port selection. Bit 4 is the MSB.  
taddr(4:0) becomes optional (And should be left open) when the Core does not  
operate in MPHY mode.  
erxaddr(4:0)  
In  
Table 8: Device Configuration Pins  
Pin  
Mode  
Description  
Enable parity checking on the Utopia interface.  
prty_en  
In  
If disabled (tied to 0), the wrx_err_stat(0) signal can be ignored and left open and  
the rx parity input should be tied to 0. Also the tx parity pins can be left open.  
Define cellsize: sets the size in bytes of a cell. Binary value to be set usually by  
board wiring.  
cellsize[7:0]  
In  
The configuration pins are not intended for change during operation. They are usually  
board wired to configure the device for operation.  
8
www.quicklogic.com  
© 2001 QuickLogic Corporation  
QLUS2216-PQ208C Device Data Sheet  
6.0 Global Signal Distribution  
The externally provided Utopia Transmit and Receive clocks are connected to global  
resources to provide low skew and fast chip level distribution. In both data directions, the  
two corresponding Utopia Interfaces are decoupled by asynchronous FIFOs.  
Therefore each interface runs completely independently each at its own tx and rx clocks  
which typically are 50 MHz.  
The Error indications of the two receive interfaces are always sampled within the west clock  
domains. The errors of the east tx (receiving) interface is available on the etx_err signal,  
which is handled using the west clock domain (wrxclk). The west tx (receiving) error is  
directly derived from the west tx block (wtxclk).  
Figure 5: Slave/Slave Bridge Clock Distribution  
QLUS2216-PQ208C Device Data Sheet  
9
QLUS2216-PQ208C Device Data Sheet  
7.0 Functional Description – Utopia Interface  
The Utopia Bridge operates in single PHY mode. Therefore no address bus and only a  
single status pin (clav[0]) per direction is used on the interfaces.  
7.1 Utopia Interface Single PHY Transmit Interface  
The Transmit interface is controlled by the Master.  
The transmit interface has data flowing in the same direction as the ATM enable  
ut_tx_enb. The ATM transmit block generates all output signals on the rising edge of the  
ut_txclk.  
Transmit data is transferred from the Master to Slave via the following procedure. The  
Slave indicates it can accept data using the ut_txclavsignal, then the Master drives data  
onto ut_txdatand asserts ut_txenb. The Slave controls the flow of data via the  
ut_txclavsignal.  
7.1.1 Cell Level Transfer – Single Cell  
The Slave asserts ut_txclav1 when it is capable of accepting the transfer of a whole  
cell. The Master asserts ut_txenb(Low) to indicates that it drives valid data to the Slave  
2. Together with the first octet of a cell, the Master device asserts ut_txsocfor one clock  
cycle 3.  
To ensure that the Master does not cause transmit overrun, the Slave deasserts  
ut_txclavat least 4 cycles before the end of a cell if it cannot accept the immediate  
transfer of the subsequent cell 4.  
The Master can pause the cell transfer by de-asserting ut_txenb5. To complete the  
transfer to the Slave, the Master de-asserts ut_tx_enb6.  
Figure 6: Single Cell Transfer – Cell Level Transfer  
10  
www.quicklogic.com  
© 2001 QuickLogic Corporation  
QLUS2216-PQ208C Device Data Sheet  
7.1.2 Cell Level Transfer – Back to Back Cells  
When, during a cell transfer, the Slave is able to receive a subsequent cell, the Master can  
keep ut_txenbasserted between two cells 1 and asserts ut_txsoc, to start a new cell  
transfer, immediately after the last octet of the previous cell 2.  
Figure 7: Back to Back Cell Transfer – Cell Level Transfer  
7.2 Utopia Interface Single PHY Receive Interface  
The Receive interface is controlled by the Master. The receive interface has data flowing  
in the opposite direction to the Master enable ut_rxenb.  
Receive data is transferred from the Slave to Master via the following procedure. The Slave  
indicates it has valid data, then the Master asserts ut_rxenbto read this data from the  
Slave. The Slave indicates valid data (thereby controlling the data flow) via the ut_rxclav  
signal.  
7.2.1 Cell Level Transfer - Single Cell  
The Slave asserts ut_rx_clavwhen it is ready to send a complete cell to the Master  
device 1. The Master interface asserts ut_rxenbto start the cell transfer. The Slave  
samples ut_rxenband starts driving data 2. The Slave asserts ut_rxsoctogether with  
the cell first word to indicate the start of a cell 3.  
The Master can pause a transfer by de-asserting ut_rxenb4. The Slave samples high  
ut_rxenband stops driving data 5. To resume the transfer, the Master re-asserts  
ut_rxenb 6. The Slave samples low ut_rxenband starts driving valid data 7.  
The Master drives ut_txenbhigh one before the expected end of the current cell if the  
Slave has no more cell to transfer 8. The Slave de-asserts ut_rxclav to indicate that no  
new cell is available 9.  
QLUS2216-PQ208C Device Data Sheet  
11  
QLUS2216-PQ208C Device Data Sheet  
Figure 8: Single Cell Transfer - Cell Level Transfer  
7.2.2 Cell Level Transfer - Back to Back Cells  
If the Master keeps ut_rxenbasserted at the end of a cell transfer 1 and if the Slave has  
a new cell to send, the Slave keeps ut_rxclavasserted 2 and immediately drives the new  
cell asserting ut_rxsocto indicate the start of a new cell 3.  
Figure 9: Back to Back Cells Transfer - Cell Level Transfer  
NOTE: If the Master keeps ut_rxenb asserted at the end of a packet and if the Slave does  
not have a new cell available, the Slave de-asserts ut_rxclav and the data of the bus  
ut_rxdat are invalid.  
12  
www.quicklogic.com  
© 2001 QuickLogic Corporation  
QLUS2216-PQ208C Device Data Sheet  
8.0 Core Management and Error Handling  
On Egress, the Core is designed to handle and report Utopia errors such as Parity error or  
wrong cell length. Errored cells are discarded with an error status indication provided to the  
user PHY application.  
When an errored cell is received on the Utopia interface, the Core discards the complete  
cell and provides a cell discard indication to the User PHY application (Signal eg_err(n)  
asserted) 1 together with a cell discard status (Signal eg_err_stat(1:0)) 2.  
NOTE: eg_err is routed to the corresponding wtx_err and etx_err respectively  
(see Figure 4).  
Figure 10: Cell Discard Indication  
Table 9: Error Status Word Bit Coding  
Error Status Bit  
Name  
Description  
Valid when wtx/etx_err is asserted. If set to one indicates that a  
cell is discarded with a parity error decoded by the Core.  
0
PARITY_ERR  
Valid when wtx/etx_err is asserted. If set to one indicates that a  
cell is discarded with a cell length error detected on the Utopia  
interface.  
1
LENGTH_ERR  
The signals are sampled on the corresponding clocks from the west interface:  
etx_... sampled with wrxclk (west receive clock)  
wtx_... sampled with wtxclk (west transmit clock)  
QLUS2216-PQ208C Device Data Sheet  
13  
QLUS2216-PQ208C Device Data Sheet  
9.0 Complexity and Performance Summary  
9.1 Timing Parameters Definition  
Figure 11: Tco Timing Parameter Definition  
Figure 12: Tsu Timing Parameter Definition  
14  
www.quicklogic.com  
© 2001 QuickLogic Corporation  
QLUS2216-PQ208C Device Data Sheet  
Table 10: 8-Bit Utopia Interface Timing Characteristics  
Parameter  
typ  
10.0  
2.5  
Max  
10.0  
2.0  
50  
Unit  
ns  
tco  
tsu  
ns  
wrxclk  
MHz  
MHz  
MHz  
MHz  
ns  
wtxclk  
50  
erxclk  
50  
etxclk  
50  
minimum reset time  
50  
NOTE: Timing model "worst" case is used.  
QLUS2216-PQ208C Device Data Sheet  
15  
QLUS2216-PQ208C Device Data Sheet  
10.0 Device Pinout  
10.1 Signals Overview  
Table 11: Signals Overview Table  
Signals  
Description  
wrxclk, wrxclav,  
wrxenb*,wrxdat, wrxsoc  
West Utopia Receive Interface  
West Utopia Transmit Interface  
wtxclk, wtxclav, wtxenb*,  
wtxdata, wtxsoc  
wtx_err, wtx_err_stat  
West Interface error indication (sampled with wtxclk)  
.
erxclk, erxclav, erxenb*,  
erxdata, erxsoc  
East Utopia Receive Interface  
etxclk, etxclav, etxenb*,  
etxdata, etxsoc  
East Utopia Transmit Interface  
etx_err, etx_err_stat  
East Interface error indication (sampled with wrxclk)  
prty_en, cellsize  
reset  
Configuration Pins to be board wired.Cellsize [0] Should be tied to GND.  
Active high device reset  
GND  
VCC  
Ground  
Device Power 2.5 V  
clk(x)  
unused clock inputs should be tied to GND  
IOCTRL(x)  
VCCIO(x)  
INREF(x)  
PLLRST(x)  
PLLOUT(x)  
VCCPLL(x)  
GNDPLL(x)  
TCK, TRSTB  
TMS, TDI  
TDO  
IO Power 3.3 V  
connect to GND  
connect to GND or VCC  
connect to GND or VCC  
JTAG signals. connect to GND  
JTAG signals. connect to VCC  
JTAG signal. leave open  
iov  
nc  
not connected. should be left open  
*: active low signal  
NOTE: Unused Pins (data busses) in the following tables are to be handled like "nc".  
16  
www.quicklogic.com  
© 2001 QuickLogic Corporation  
QLUS2216-PQ208C Device Data Sheet  
10.2 208 Pin PQFP (PQ208) Device Diagram  
Figure 13: PQ208 top view  
QLUS2216-PQ208C Device Data Sheet  
17  
QLUS2216-PQ208C Device Data Sheet  
10.3 208 Pin PQFP (PQ208) Pinout Table  
Table 12: 208 Pin PQFP (PQ208) Pinout Table  
PIN  
1
Function  
pllrst(3)  
vccpll(3)  
gnd  
PIN  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
Function  
gnd  
PIN  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
Function  
pllrst(1)  
vccpll(1)  
etxclav[0]  
gnd  
PIN  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
Function  
gnd  
2
vccpll(2)  
pllrst(2)  
vcc  
vccpll(0)  
pllrst(0)  
gnd  
3
4
gnd  
5
wtxclav[0]  
wtxprty  
wtxenb  
vccio(a)  
wtxsoc  
wtxdat[0]  
ioctrl(a)  
vcc  
wrxprty  
gnd  
etxprty  
etxenb  
vccio(e)  
etxsoc  
erxdat[0]  
vccio(g)  
erxdat[1]  
erxdat[2]  
vcc  
6
7
wrxenb  
vccio(c)  
wrxsoc  
8
9
vcc  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
wrxdat[0]  
wrxdat[1]  
wrxdat[2]  
wrxdat[3]  
wrxdat[4]  
ioctrl(c)  
inref(c)  
etxdat[0]  
etxdat[1]  
etxdat[2]  
ioctrl(e)  
inref(e)  
ioctrl(e)  
etxdat[3]  
etxdat[4]  
vccio(e)  
gnd  
erxdat[3]  
erxdat[4]  
erxdat[5]  
ioctrl(g)  
inref(g)  
ioctrl(g)  
erxdat[6]  
erxdat[7]  
iov  
inref(a)  
ioctrl(a)  
wtxdat[1]  
wtxdat[2]  
wtxdat[3]  
wtxdat[4]  
vccio(a)  
wtxdat[5]  
gnd  
ioctrl(c)  
wrxdat[5]  
wrxdat[6]  
vccio(c)  
wrxdat[7]  
wrxdat[8]  
gnd  
vcc  
etxdat[5]  
etxdat[6]  
etxdat[7]  
clk(5)  
erxdat[8]  
vccio(g)  
gnd  
wtxdat[6]  
tdi  
erxdat[9]  
erxdat[10]  
erxdat[11]  
vcc  
wtxclk  
vcc  
etxclk  
clk(1)  
wrxdat[9]  
trstb  
vcc  
vcc  
erxclk  
wrxclk  
vcc  
vcc  
tck  
clk(3)  
wrxdat[10]  
wrxdat[11]  
wrxdat[12]  
gnd  
clk(8)  
vcc  
vcc  
tms  
erxdat[12]  
erxdat[13]  
erxdat[14]  
gnd  
clk(4)  
etxdat[8]  
etxdat[9]  
etxdat[10]  
gnd  
wtxdat[7]  
wtxdat[8]  
gnd  
vccio(d)  
wrxdat[13]  
vcc  
vccio(h)  
erxdat[15]  
cellsize[7]  
ioctrl(h)  
cellsize[6]  
inref(h)  
vcc  
vccio(b)  
wtxdat[9]  
wtxdat[10]  
wtxdat[11]  
wtxdat[12]  
ioctrl(b)  
inref(b)  
ioctrl(b)  
wtxdat[13]  
wtxdat[14]  
vccio(b)  
wtxdat[15]  
vcc  
vccio(f)  
etxdat[11]  
etxdat[12]  
etxdat[13]  
etxdat[14]  
etxdat[15]  
ioctrl(f)  
inref(f)  
vcc  
wrxdat[14]  
wrxdat[15]  
vcc  
wtx_err  
wtx_err_stat[0]  
ioctrl(d)  
inref(d)  
ioctrl(h)  
cellsize[5]  
cellsize[4]  
cellsize[3]  
cellsize[2]  
cellsize[1]  
cellsize[0]  
vccio(h)  
gnd  
ioctrl(d)  
wtx_err_stat[1]  
etx_err  
ioctrl(f)  
nc  
etx_err_stat[0]  
vccio(d)  
etx_err_stat[1]  
reset  
erxclav[0]  
vccio(f)  
erxprty  
erxenb  
gnd  
nc  
wrxclav[0]  
gnd  
gnd  
prty_en  
pllout(2)  
gnd  
tdo  
pllout(0)  
gnd  
erxsoc  
pllout(3)  
gndpll(0)  
pllout(1)  
gndpll(2)  
gndpll(1)  
gndpll(3)  
18  
www.quicklogic.com  
© 2001 QuickLogic Corporation  
QLUS2216-PQ208C Device Data Sheet  
11.0 References  
ATM Forum, Utopia Level 2, af-phy-0039.000  
12.0 Contact  
QuickLogic Corp.  
Tel  
: 408 990 4000 (US)  
: + 44 1932 57 9011 (Europe)  
: + 49 89 930 86 170 (Germany)  
: + 852 8106 9091 (Asia)  
: + 81 45 470 5525 (Japan)  
E-mail : info@quicklogic.com  
Internet : www.quicklogic.com  
QLUS2216-PQ208C Device Data Sheet  
19  
QLUS2216-PQ208C Device Data Sheet  
20  
www.quicklogic.com  
© 2001 QuickLogic Corporation  

相关型号:

QLUS2216-PT280C

Telecommunication IC
ETC

QLUS2280-PT280C

Telecommunication IC
ETC

QLUS3216-PQ208C

Telecommunication IC
ETC

QLUS3216-PT280C

Telecommunication IC
ETC

QLUS3308-PQ208C

Telecommunication IC
ETC

QLUS3308-PT280C

Telecommunication IC
ETC

QLUS3309-PQ208C

Telecommunication IC
ETC

QLUS3309-PT280C

Telecommunication IC
ETC

QLUS3316-PQ208C

Telecommunication IC
ETC

QLUS3316-PT280C

Telecommunication IC
ETC

QLUS3317-PQ208C

Telecommunication IC
ETC

QLUS3317-PT280C

Telecommunication IC
ETC