HI5740 [ETC]

3V, Dual 10-Bit, 20/ 40/60 MSPS A/D Converter with Internal Voltage Reference (2 pages) FN4821 ; 3V ,双通道,10位, 20 / 40/60 MSPS A / D转换器,内置参考电压( 2页) FN4821
HI5740
型号: HI5740
厂家: ETC    ETC
描述:

3V, Dual 10-Bit, 20/ 40/60 MSPS A/D Converter with Internal Voltage Reference (2 pages) FN4821
3V ,双通道,10位, 20 / 40/60 MSPS A / D转换器,内置参考电压( 2页) FN4821

转换器
文件: 总11页 (文件大小:80K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ISL5740  
TM  
Data Sheet  
June 2000  
File Number 4821.2  
PRELIMINARY  
3V Dual 10-Bit, 20/40/60MSPS A/D  
Features  
Converter with Internal Voltage Reference  
• Sampling Rate . . . . . . . . . . . . . . . . . . . . . .20/40/60MSPS  
The ISL5740 is a monolithic, dual 10-bit analog-to-digital  
converter fabricated in an advanced CMOS process. It is  
designed for high speed applications where integration,  
bandwidth and accuracy are essential. The ISL5740  
features a 9-stage pipeline architecture. The fully pipelined  
architecture and an innovative input stage enable the  
ISL5740 to accept a variety of input configurations, single-  
ended or fully differential. Only one external clock is  
necessary to drive both converters and an internal band-gap  
voltage reference is provided. This allows the system  
designer to realize an increased level of system integration  
resulting in decreased cost and power dissipation.  
• 9.1 Bits at f = 10MHz  
IN  
• Low Power at 60MSPS. . . . . . . . . . . . . . . . . . . . . .280mW  
• Power Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . 6mW  
• Wide Full Power Input Bandwidth. . . . . . . . . . . . . 400MHz  
• SFDR at f = 10MHz. . . . . . . . . . . . . . . . . . . . . . . . .70dB  
IN  
• Excellent Channel-to-Channel Isolation . . . . . . . . . . .75dB  
• On-Chip Sample and Hold Amplifiers  
• Internal Bandgap Voltage Reference . . . . . . . . . . . . 1.25V  
• Single Supply Voltage Operation . . . . . . . . . .+2.7V - 3.6V  
• TTL/CMOS(3V) Digital Inputs CMOS Digital Outputs  
The ISL5740 has excellent dynamic performance while  
consuming less than 280mW power at 60MSPS. The A/D  
only requires a single +3.0V power supply. Data output  
latches are provided which present valid data to the output  
bus with a latency of 5 clock cycles.  
• Offset Binary or Two’s Complement Digital Data Output  
Format  
• Dual 10-Bit A/D Converters on a Monolithic Chip  
• Pin Compatible Upgrade to AD9288  
The ISL5740 is offered in 20MSPS, 40MSPS and 60MSPS  
sampling rates.  
Pinout  
• Wireless Local Loop  
Ordering Information  
• PSK and QAM I&Q Demodulators  
• Medical Imaging and Instrumentation  
• Wireless Communications Systems  
• Battery Powered Instruments  
TEMP.  
SAMPLIN  
G RATE  
PACKAGE PKG. NO. (MSPS)  
PART  
NUMBER  
RANGE  
o
( C)  
ISL5740/2IN  
ISL5740/3IN  
ISL5740/4IN  
ISL5740/6IN  
ISL5740 EVAL  
-40 to 85 48 Ld LQFP  
-40 to 85 48 Ld LQFP  
-40 to 85 48 Ld LQFP  
-40 to 85 48 Ld LQFP  
Q48.7x7  
Q48.7x7  
Q48.7x7  
Q48.7x7  
20  
30  
40  
60  
Pinout  
25  
Evaluation Platform  
48 47 46 45 44 43 42 41 40 39 38 37  
ID1  
ID0  
GND  
DV  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
1
GND  
I
+
2
3
IN  
I
-
IN  
DFS  
4
5
CC  
GND  
AV  
IV  
RIN  
CC  
V
ROUT  
6
7
AV  
QV  
CC  
RIN  
S1  
GND  
DV  
8
CC  
S2  
9
GND  
QD0  
QD1  
Q
-
10  
IN  
Q
+
11  
12  
IN  
GND  
13 14 15 16 17 18 19 20 21 22 23 24  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Intersil and Design is a trademark of Intersil Corporation. | Copyright © Intersil Corporation 2000  
3-1  
ISL5740  
Functional Block Diagram  
I/Q  
-
IN  
I/QCLK  
CLOCK  
I/Q  
+
IN  
S/H  
STAGE 1  
2-BIT  
FLASH  
2-BIT  
DAC  
+
-
X2  
I/QD9 (MSB)  
I/QD8  
I/QD7  
I/QD6  
DIGITAL DELAY  
AND  
STAGE 8  
I/QD5  
DIGITAL ERROR  
CORRECTION  
I/QD4  
I/QD3  
2-BIT  
FLASH  
2-BIT  
DAC  
I/QD2  
I/QD1  
+
I/QD0 (LSB)  
-
X2  
STAGE 9  
2-BIT  
FLASH  
I OR Q CHANNEL  
V
ROUT  
I/QV  
MODE  
DATA FORMAT  
S1/S2  
DFS  
REFERENCE  
RIN  
AV  
AGND  
DV  
CC  
DGND  
CC  
3-2  
ISL5740  
Typical Application Schematic  
ISL5740  
(LSB) ID0 (35)  
ID0  
ID1  
ID2  
ID3  
ID4  
ID5  
ID6  
ID7  
ID8  
ID9  
I
+
(2) I  
(3) I  
+
-
IN  
IN  
ID1 (36)  
ID2 (37)  
I
-
IN  
IN  
ID3 (38)  
ID4 (39)  
ID5 (40)  
ID6 (41)  
ID7 (42)  
ID8 (43)  
(MSB) ID9 (44)  
(LSB) QD0 (26)  
QD1 (25)  
QD0  
QD1  
QD2  
QD3  
QD4  
QD5  
QD6  
QD7  
QD8  
QD9  
Q
+
-
(11) Q  
(10) Q  
+
-
IN  
IN  
QD2 (24)  
Q
IN  
IN  
QD3 (23)  
QD4 (22)  
QD5 (21)  
QD6 (20)  
QD7 (19)  
QD8 (18)  
(5) IV  
RIN  
(MSB) QD9 (17)  
(6) QV  
RIN  
(7) V  
ROUT  
0.1µF  
ICLK (47)  
CLOCK  
QCLK (14)  
S1 (8)  
S2 (9)  
S1  
S2  
DFS (4)  
DFS  
(13,30,31,48) AV  
+3V  
CC  
DV  
CC  
(15, 28, 33, 46)  
3V  
+
+
0.1µF  
10µF  
10µF  
0.1µF  
(12,29,32) AGND  
DGND (16, 27, 34, 45)  
DGND  
10µF AND 0.1µF CAPS  
ARE PLACED AS CLOSE  
TO PART AS POSSIBLE  
AGND  
BNC  
3-3  
ISL5740  
Pin Descriptions (Continued)  
Pin Descriptions  
PIN NO.  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
NAME  
DESCRIPTION  
Q-Channel, Data Bit 2 Output  
Q-Channel, Data Bit 1 Output  
Q-Channel, Data Bit 0 Output (LSB)  
Digital Ground  
PIN NO.  
NAME  
DESCRIPTION  
Analog Ground  
QD2  
1
2
3
4
A
GND  
QD1  
I
I-Channel Positive Analog Input  
I-Channel Negative Analog Input  
IN+  
QD0  
I
IN-  
D
DFS  
Data Format Select (Low for Offset  
Binary and High for Twos Complement  
Output Format)  
GND  
DV  
Digital Supply  
CC  
A
Analog Ground  
GND  
5
6
IV  
I-Channel Voltage Reference Input  
RIN  
AV  
Analog Supply  
CC  
CC  
V
+1.25V Reference Voltage Output  
(Decouple with 0.1µF Capacitor)  
ROUT  
AV  
Analog Supply  
7
QV  
Q-Channel Voltage Reference Input  
Mode Select Pin 1 (See Table)  
Mode Select Pin 2 (See Table)  
Q-Channel Negative Analog Input  
Q-Channel Positive Analog Input  
Analog Ground  
A
Analog Ground  
RIN  
S1  
S2  
GND  
8
DV  
Digital Supply  
CC  
9
D
Digital Ground  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
Q
ID0  
ID1  
ID2  
ID3  
ID4  
ID5  
ID6  
ID7  
ID8  
ID9  
I-Channel, Data Bit 0 Output (LSB)  
I-Channel, Data Bit 1 Output  
I-Channel, Data Bit 2 Output  
I-Channel, Data Bit 3 Output  
I-Channel, Data Bit 4 Output  
I-Channel, Data Bit 5 Output  
I-Channel, Data Bit 6 Output  
I-Channel, Data Bit 7 Output  
I-Channel, Data Bit 8 Output  
I-Channel, Data Bit 9 Output (MSB)  
Digital Ground  
IN-  
Q
IN+  
A
GND  
AV  
Analog Supply  
CC  
QCLK  
Q-Channel Clock Input  
DV  
Digital Supply  
CC  
D
Digital Ground  
GND  
QD9  
QD8  
QD7  
QD6  
QD5  
QD4  
QD3  
Q-Channel, Data Bit 9 Output (MSB)  
Q-Channel, Data Bit 8 Output  
Q-Channel, Data Bit 7 Output  
Q-Channel, Data Bit 6 Output  
Q-Channel, Data Bit 5 Output  
Q-Channel, Data Bit 4 Output  
Q-Channel, Data Bit 3 Output  
D
GND  
DV  
Digital Supply  
CC  
ICLK  
I-Channel Clock Input  
Analog Supply  
AV  
CC  
3-4  
ISL5740  
o
Absolute Maximum Ratings T = 25 C  
Thermal Information  
A
o
Supply Voltage, AV  
CC  
or DV  
to AGND or DGND . . . . . . . . . . .4V  
Thermal Resistance (Typical, Note 1)  
θJA ( C/W)  
CC  
DGND to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3V  
ISL5740IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
70  
o
Digital I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DGND to DV  
Analog I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . AGND to AV  
CC  
CC  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . .150 C  
o
o
Maximum Storage Temperature Range. . . . . . . . . . -65 C to 150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . .300 C  
o
(Lead Tips Only)  
Operating Conditions  
Temperature Range  
o
o
ISL5740IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -40 C to 85 C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
Electrical Specifications AV = DV  
= +3.0V; I/QV = 1.25V; f = 60MSPS at 50% Duty Cycle;  
RIN S  
C = 10pF; T = 25 C; Differential Analog Input, Unless Otherwise Specified  
CC  
CC  
o
L
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ACCURACY  
Resolution  
10  
-
-
2
-
1
Bits  
LSB  
LSB  
Integral Linearity Error, INL  
f
f
= 10MHz  
IN  
IN  
Differential Linearity Error, DNL  
(Guaranteed No Missing Codes)  
= 10MHz  
-
±0.4  
±1.0  
Offset Error, V  
OS  
f
f
= DC  
= DC  
-36  
-3  
-
12  
1
+36  
3
LSB  
IN  
IN  
Full Scale Error, FSE  
%f  
%f  
S
S
Gain Matching  
Full Scale (Peak-to-Peak)  
±1.5  
6
DYNAMIC CHARACTERISTICS  
Minimum Conversion Rate  
Maximum Conversion Rate  
Effective Number of Bits, ENOB  
No Missing Codes  
No Missing Codes  
-
1
-
-
-
-
-
MSPS  
MSPS  
Bits  
60  
f
f
= 10MHz  
= 10MHz  
9.1  
56.8  
-
IN  
IN  
Signal to Noise and Distortion Ratio, SINAD  
-
dB  
RMS Signal  
= -------------------------------------------------------------  
RMS Noise + Distortion  
Signal to Noise Ratio, SNR  
f
= 10MHz  
57  
-
-
dB  
IN  
RMS Signal  
= -------------------------------  
RMS Noise  
Total Harmonic Distortion, THD  
2nd Harmonic Distortion  
f
f
f
f
f
= 10MHz  
= 10MHz  
= 10MHz  
= 10MHz  
-70  
-
-
-
-
-
-
-
-
-
-
-
-
dBc  
dBc  
IN  
IN  
IN  
IN  
-
-
3rd Harmonic Distortion  
-
dBc  
Spurious Free Dynamic Range, SFDR  
Intermodulation Distortion, IMD  
I/Q Channel Crosstalk  
70  
-
-
dBc  
= 1MHz, f = 1.02MHz  
-
dBc  
1
2
-
-75  
10  
10  
1
dBc  
I/Q Channel Offset Match  
I/Q Channel Full Scale Error Match  
Transient Response  
-
LSB  
LSB  
Cycle  
Cycle  
-
(Note 2)  
-
Over-Voltage Recovery  
0.2V Overdrive (Note 2)  
-
1
3-5  
ISL5740  
Electrical Specifications AV = DV  
= +3.0V; I/QV  
RIN  
= 1.25V; f = 60MSPS at 50% Duty Cycle;  
CC  
CC  
S
o
C = 10pF; T = 25 C; Differential Analog Input, Unless Otherwise Specified (Continued)  
L
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ANALOG INPUT  
Maximum Peak-to-Peak Differential Analog Input  
Range (I/Q + - I/Q -)  
IN IN  
-
-
±0.5  
-
-
V
V
Maximum Peak-to-Peak Single-Ended  
Analog Input Range  
1.0  
Analog Input Resistance, R  
or R  
V
V
V
, V = V  
IN+ IN-  
, DC  
, DC  
, DC  
-
-
1
10  
-
-
-
MΩ  
pF  
IN+  
IN-  
REF  
REF  
REF  
Analog Input Capacitance, C  
or C  
, V = V  
IN+ IN-  
IN+  
IN-  
Analog Input Bias Current, I + or I -  
, V = V  
IN+ IN-  
-10  
10  
µA  
B
B
(Notes 2, 3)  
Differential Analog Input Bias Current  
= (I + - I -)  
(Notes 2, 3)  
-0.5  
-
0.5  
-
µA  
I
BDIFF  
B
B
Full Power Input Bandwidth, FPBW  
(Note 2)  
-
400  
-
MHz  
V
Analog Input Common Mode Voltage Range  
Differential Mode (Note 2)  
0.25  
AV -0.25  
CC  
(V + + V -) / 2  
IN IN  
INTERNAL VOLTAGE REFERENCE  
Reference Output Voltage, V  
(Loaded)  
-
-
-
1.25  
1
-
-
-
V
ROUT  
Reference Output Current, I  
mA  
ROUT  
o
Reference Temperature Coefficient  
200  
ppm/ C  
REFERENCE VOLTAGE INPUT  
Reference Voltage Input, V  
RIN  
-
-
-
1.25  
-
-
-
V
Total Reference Resistance, R  
With V  
With V  
= 1.25V  
= 1.25V  
-
-
MΩ  
mA  
RIN  
RIN  
RIN  
Reference Current, I  
RIN  
SAMPLING CLOCK INPUT  
Input Logic High Voltage, V  
CLK  
CLK  
2.0  
-
-
-
-
-
-
-
0.8  
1
V
IH  
Input Logic Low Voltage, V  
V
IL  
Input Logic High Current, I  
CLK, V = 5V  
IH  
-1  
-1  
-
µA  
µA  
pF  
IH  
Input Logic Low Current, I  
CLK, V = 0V  
IL  
1
IL  
Input Capacitance, C  
CLK  
-
IN  
DIGITAL OUTPUTS  
Output Logic High Voltage, V  
OH  
I
I
= 100µA  
= 100µA  
2.45  
2.98  
0.001  
7
-
0.5  
-
V
V
OH  
OL  
Output Logic Low Voltage, V  
OL  
-
-
Output Capacitance, C  
pF  
OUT  
TIMING CHARACTERISTICS  
Aperture Delay, t  
-
-
100  
5
-
-
-
-
-
-
-
-
ns  
ps  
AP  
Aperture Delay Match  
Aperture Jitter, t  
-
-
ps  
RMS  
AJ  
Data Output Hold, t  
-
3
ns  
ns  
H
Data Output Delay, t  
-
-
4.5  
7
OD  
Data Latency, t  
For a Valid Sample (Note 2)  
Data Invalid Time (Note 2)  
(Note 2)  
Cycles  
Cycles  
ns  
LAT  
Power-Up Initialization  
-
-
Sample Clock Pulse Width (Low)  
7.5  
8.3  
3-6  
ISL5740  
Electrical Specifications AV = DV  
= +3.0V; I/QV  
RIN  
= 1.25V; f = 60MSPS at 50% Duty Cycle;  
CC  
CC  
S
o
C = 10pF; T = 25 C; Differential Analog Input, Unless Otherwise Specified (Continued)  
L
A
PARAMETER  
Sample Clock Pulse Width (High)  
Sample Clock Duty Cycle Variation  
TEST CONDITIONS  
MIN  
7.5  
-
TYP  
8.3  
±5  
MAX  
UNITS  
ns  
(Note 2)  
-
-
%
POWER SUPPLY CHARACTERISTICS  
Analog Supply Voltage, AV  
(Note 2)  
(Note 2)  
2.7  
3.0  
3.6  
3.6  
93.3  
68.3  
25  
V
CC  
Digital Supply Voltage, DV  
and DV  
CC2  
2.7  
3.0  
V
CC1  
Supply Current Total, I  
CCT  
-
-
-
-
-
-
-
mA  
mA  
mA  
mW  
LSB  
LSB  
Analog Supply Current IA  
CC  
-
-
Digital Supply Current ID  
CC  
Power Dissipation Total P  
-
280  
-
T
Offset Error Sensitivity, V  
OS  
AV  
AV  
or DV  
or DV  
= 3V ±5%  
= 3V ±5%  
±0.5  
±0.5  
CC  
CC  
Gain Error Sensitivity, FSE  
-
CC  
CC  
NOTES:  
2. Parameter guaranteed by design or characterization and not production tested.  
3. With the clock low and DC input.  
3-7  
ISL5740  
Timing Waveforms  
ANALOG  
INPUT  
CLOCK  
INPUT  
S
H
S
H
S
H
N + 1  
S
S
H
S
H
S
H
S
H
N + 8  
N - 1  
N - 1  
N
N
N + 1  
N + 2  
N + 5  
N + 5  
N + 6  
N + 6  
N + 7  
N + 7  
N + 8  
INPUT  
S/H  
1ST  
STAGE  
B ,  
B ,  
B ,  
B ,  
B ,  
B ,  
B ,  
1 N + 7  
1
N - 1  
1
N
1
N + 1  
1
N + 4  
1
N + 5  
1
N + 6  
2ND  
STAGE  
B ,  
B ,  
B ,  
2 N + 6  
B ,  
B ,  
B ,  
2 N  
2
N + 4  
2
N + 5  
2
N - 2  
2
N - 1  
9TH  
STAGE  
B ,  
B ,  
B ,  
B ,  
B ,  
B ,  
9 N + 3  
9
N - 5  
9
N - 4  
9
N
9
N + 1  
9
N + 2  
DATA  
OUTPUT  
D
D
D
D
D
D
N + 2  
N - 6  
N - 5  
N - 1  
N
N + 1  
t
LAT  
NOTES:  
4. S : N-th sampling period.  
N
5. H : N-th holding period.  
N
6. B  
, : M-th stage digital output corresponding to N-th sampled input.  
N
M
7. D : Final data output corresponding to N-th sampled input.  
N
FIGURE 1. ISL5740 INTERNAL CIRCUIT TIMING  
ANALOG  
INPUT  
t
AP  
t
AJ  
CLOCK  
INPUT  
1.5V  
1.5V  
t
OD  
t
H
2.4V  
0.5V  
DATA  
OUTPUT  
DATA N-1  
DATA N  
FIGURE 2. ISL5740 INPUT TO OUTPUT TIMING  
3-8  
ISL5740  
TABLE 1. A/D CODE TABLE  
OFFSET BINARY OUTPUT CODE  
DIFFERENTIAL INPUT  
VOLTAGE  
(I/Q + - I/Q -)  
MSB  
LSB  
CODE CENTER  
DESCRIPTION  
I/QD9 I/QD8 I/QD7 I/QD6 I/QD5 I/QD4 I/QD3 I/QD2 I/QD1 I/QD0  
IN IN  
1
+Full Scale (+f ) - / LSB  
0.499756V  
0.498779V  
732.422µV  
-244.141µV  
-0.498291V  
-0.499268V  
1
1
1
0
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
0
1
1
0
S
4
1
+f - 1 / LSB  
S
4
3
+ / LSB  
4
1
- / LSB  
4
3
-f + 1 / LSB  
S
4
3
-Full Scale (-f ) + / LSB  
S
4
NOTE:  
8. The voltages listed above represent the ideal center of each output code shown with V  
= +1.25V.  
REFIN  
Detailed Description  
Theory of Operation  
Φ
Φ
C
1
1
H
The ISL5740 is a dual 10-bit fully differential sampling pipeline  
Φ
1
C
C
S
I/Q  
I/Q  
IN+  
A/D converter with digital error correction logic. Figure 15  
depicts the circuit for the front end differential-in-differential-  
out sample-and-hold (S/H) amplifiers. The switches are  
controlled by an internal sampling clock which is a non-  
overlapping two phase signal, Φ and Φ , derived from the  
V
OUT+  
+
-
Φ
2
V
+
-
OUT-  
IN-  
S
Φ
1
Φ
C
Φ
1
2
1
H
1
master sampling clock. During the sampling phase, Φ , the  
1
input signal is applied to the sampling capacitors, C . At the  
S
same time the holding capacitors, C , are discharged to  
H
FIGURE 3. ANALOG INPUT SAMPLE-AND-HOLD  
analog ground. At the falling edge of Φ the input signal is  
1
sampled on the bottom plates of the sampling capacitors. In  
As illustrated in the Functional Block Diagram and the timing  
diagram in Figure 1, eight identical pipeline subconverter  
stages, each containing a two-bit flash converter and a two-  
bit multiplying digital-to-analog converter, follow the S/H  
circuit with the ninth stage being a two bit flash converter.  
Each converter stage in the pipeline will be sampling in one  
phase and amplifying in the other clock phase. Each  
individual subconverter clock signal is offset by 180 degrees  
from the previous stage clock signal resulting in alternate  
stages in the pipeline performing the same operation.  
the next clock phase, Φ , the two bottom plates of the  
2
sampling capacitors are connected together and the holding  
capacitors are switched to the op amp output nodes. The  
charge then redistributes between C and C completing one  
S
H
sample-and-hold cycle. The front end sample-and-hold output  
is a fully-differential, sampled-data representation of the  
analog input. The circuit not only performs the sample-and-  
hold function but will also convert a single-ended input to a  
fully-differential output for the converter core. During the  
sampling phase, the I/Q pins see only the on-resistance of a  
switch and C . The relatively small values of these  
S
components result in a typical full power input bandwidth of  
400MHz for the converter.  
IN  
The output of each of the eight identical two-bit subconverter  
stages is a two-bit digital word containing a supplementary bit  
to be used by the digital error correction logic. The output of  
each subconverter stage is input to a digital delay line which is  
controlled by the internal sampling clock. The function of the  
digital delay line is to time align the digital outputs of the eight  
identical two-bit subconverter stages with the corresponding  
output of the ninth stage flash converter before applying the  
eighteen bit result to the digital error correction logic. The  
digital error correction logic uses the supplementary bits to  
correct any error that may exist before generating the final ten  
bit digital data output of the converter.  
Because of the pipeline nature of this converter, the digital  
data representing an analog input sample is output to the  
digital data bus following the 6th cycle of the clock after the  
3-9  
ISL5740  
analog sample is taken (see the timing diagram in Figure 1).  
This time delay is specified as the data latency. After the  
data latency time, the digital data representing each  
succeeding analog sample is output during the following  
clock cycle. The digital output data is provided in offset  
binary format (see Table 1, A/D Code Table).  
significantly with the value of the analog input common  
mode voltage.  
For the AC coupled differential input (Figure 16) and with V  
RIN  
connected to V  
, full scale is achieved when the V and  
ROUT  
IN  
-V input signals are 0.5V , with -V being 180 degrees  
IN P-P IN  
out of phase with V . The converter will be at positive full  
IN  
scale when the I/Q + input is at I/Q  
IN VRIN  
+ 0.25V and the  
Internal Reference Voltage Output, V  
ROUT  
The ISL5740 is equipped with an internal 1.25V bandgap  
reference voltage generator, therefore, no external reference  
I/Q - input is at I/Q  
- 0.25V (I/Q + - I/Q - = +0.5V).  
IN VRIN IN IN  
Conversely, the converter will be at negative full scale when  
the I/Q + input is equal to I/Q - 0.25V and I/Q - is at  
IN VRIN IN  
voltage is required. V  
should be connected to V  
ROUT  
RIN  
I/Q  
VRIN  
+ 0.25V (I/Q + - I/Q - = -0.5V).  
IN IN  
when using the internal reference voltage. An external, user-  
supplied, 0.1µF capacitor may be connected from the V  
output pin to filter any stray board noise.  
ROUT  
The analog input can be DC coupled (Figure 17) as long as  
the inputs are within the analog input common mode voltage  
range (0.25V VDC 2.75V).  
Reference Voltage Inputs, I/Q V  
REFIN  
The ISL5740 is designed to accept a 1.25V reference  
voltage source at the V input pins for the I and Q  
The resistors, R, in Figure 17 are not absolutely necessary  
but may be used as load setting resistors. A capacitor, C,  
RIN  
channels. Typical operation of the converter requires V  
to  
connected from I/Q + to I/Q - will help filter any high  
RIN  
connected  
IN IN  
be set at 1.25V. The ISL5740 is tested with V  
frequency noise on the inputs, also improving performance.  
Values around 20pF are sufficient and can be used on AC  
coupled inputs as well. Note, however, that the value of  
capacitor C chosen must take into account the highest  
frequency component of the analog input signal.  
RIN  
to V  
yielding a fully differential analog input voltage  
range of ±0.5V.  
ROUT  
The user does have the option of supplying an external 1.25V  
reference voltage. As a result of the high input impedance  
presented at the V  
input pin, Mtypically, the external  
RIN  
V
reference voltage being used is only required to source small  
amount of reference input current.  
IN  
I/Q  
+
IN  
V
V
DC  
R
R
In order to minimize overall converter noise it is  
recommended that adequate high frequency decoupling be  
ISL5740  
I/QV  
C
RIN  
provided at the reference voltage input pin, V  
.
RIN  
-V  
IN  
Analog Input, Differential Connection  
I/Q  
-
IN  
DC  
The analog input of the ISL5740 is a differential input that  
can be configured in various ways depending on the signal  
source and the required level of performance. A fully  
differential connection (Figure 16 and Figure 17) will deliver  
the best performance from the converter.  
FIGURE 5. DC COUPLED DIFFERENTIAL INPUT  
Analog Input, Single-Ended Connection  
The configuration shown in Figure 18 may be used with a  
single ended AC coupled input.  
V
I/Q +  
IN  
IN  
R
R
ISL5740  
I/QV  
RIN  
I/Q  
I/Q  
+
V
IN  
IN  
R
-V  
I/Q -  
IN  
IN  
V
ISL5740  
DC  
-
IN  
FIGURE 4. AC COUPLED DIFFERENTIAL INPUT  
Since the ISL5740 is powered by a single +3V analog  
supply, the analog input is limited to be between ground and  
+3V. For the differential input connection this implies the  
analog input common mode voltage can range from 0.25V to  
2.75V. The performance of the ADC does not change  
FIGURE 6. AC COUPLED SINGLE ENDED INPUT  
Again, with V  
RIN  
connected to V  
, if V is a 1V  
IN P-P  
ROUT  
sinewave, then I/Q + is a 1.0V  
sinewave riding on a  
IN  
P-P  
positive voltage equal to V . The converter will be at  
DC  
positive full scale when I/Q + is at V  
IN  
+ 0.5V (I/Q + -  
IN  
DC  
3-10  
ISL5740  
I/Q - = +0.5V) and will be at negative full scale when I/Q  
IN  
+
The delay mode can be used to set the Q channel 180  
IN  
is equal to V  
- 0.5V (I/Q + - I/Q - = -0.5V). Sufficient  
degrees out phase of the I channel if the same clock is  
driving both channels. If separate, inverted clocks are used  
for the I and Q channels, this feature can be used to align the  
data.  
DC  
IN IN  
headroom must be provided such that the input voltage  
never goes above +3V or below AGND. In this case, V  
DC  
could range between 0.5V and 2.5V without a significant  
change in ADC performance. The simplest way to produce  
OPERATIONAL MODES  
VDC is to use the I/Q  
the ISL5740.  
bias source, I/QV , output of  
DC  
VRIN  
S1  
0
S2  
0
MODE  
Standby I and Q Channels.  
The single ended analog input can be DC coupled  
(Figure 19) as long as the input is within the analog input  
common mode voltage range.  
0
1
I channel operates normally with Q Channel in  
standby mode.  
1
1
0
1
I and Q Channels operating with I/Q output data in  
phase.  
V
IN  
I/Q  
+
IN  
V
DC  
I and Q Channels operating with Q data 180 degrees  
out of phase.  
R
ISL5740  
C
Sampling Clock Requirements  
The ISL5740 sampling clock input provides a standard high-  
speed interface to external TTL/CMOS logic families.  
V
I/Q  
-
IN  
DC  
In order to ensure rated performance of the ISL5740, the  
duty cycle of the clock should be held at 50% ±5%. It must  
also have low jitter and operate at standard TTL/CMOS  
levels.  
FIGURE 7. DC COUPLED SINGLE ENDED INPUT  
Performance of the ISL5740 will only be guaranteed at  
conversion rates above 1MSPS (Typ). This ensures proper  
performance of the internal dynamic circuits. Similarly, when  
power is first applied to the converter, a maximum of 20  
cycles at a sample rate above 1MSPS must be performed  
before valid data is available.  
The resistor, R, in Figure 19 is not absolutely necessary but  
may be used as a load setting resistor. A capacitor, C,  
connected from I/Q + to I/Q - will help filter any high  
IN IN  
frequency noise on the inputs, also improving performance.  
Values around 20pF are sufficient and can be used on AC  
coupled inputs as well. Note, however, that the value of  
capacitor C chosen must take into account the highest  
frequency component of the analog input signal.  
Supply and Ground Considerations  
The ISL5740 has separate analog and digital supply and  
ground pins to keep digital noise out of the analog signal  
path. The part should be mounted on a board that provides  
separate low impedance connections for the analog and  
digital supplies and grounds. For best performance, the  
supplies to the ISL5740 should be driven by clean, linear  
regulated supplies. The board should also have good high  
frequency decoupling capacitors mounted as close as  
possible to the converter. If the part is powered off a single  
supply then the analog supply can be isolated by a ferrite  
bead from the digital supply.  
A single ended source may give better overall system  
performance if it is first converted to differential before  
driving the ISL5740.  
Operational Mode  
The ISL5740 contains several operational modes including a  
normal two channel operation, placing one or both channels  
in standby and delaying the Q channel data 1/2 clock cycle.  
The operational mode is selected via the S1 and S2 pins and  
is asynchronous to either clock. When either channel is  
placed in standby, the output data is stalled and not high  
impedance. When recovering from standby, valid data is  
available after 20 clock cycles.  
Refer to the application note “Using Intersil High Speed A/D  
Converters” (AN9214) for additional considerations when  
using high speed converters.  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site www.intersil.com  
3-11  

相关型号:

HI5741

14-Bit, 100MSPS, High Speed D/A Converter
INTERSIL

HI5741-EVS

14-Bit, 100MSPS, High Speed D/A Converter
INTERSIL

HI5741BIB

14-Bit, 100MSPS, High Speed D/A Converter
INTERSIL

HI5741BIB-T

14-Bit, 100MSPS, High Speed D/A Converter
INTERSIL

HI5741BIBZ

14-Bit, 100MSPS, High Speed D/A Converter
INTERSIL

HI5741BIBZ-T

14-Bit, 100MSPS, High Speed D/A Converter
INTERSIL

HI5741BIP

14-Bit, 100 MSPS, High Speed D/A Converter
INTERSIL

HI5741_06

14-Bit, 100MSPS, High Speed D/A Converter
INTERSIL

HI5746

10-Bit, 40 MSPS A/D Converter
INTERSIL

HI5746EVAL1

10-Bit, 40 MSPS A/D Converter
INTERSIL

HI5746KCA

10-Bit, 40 MSPS A/D Converter
INTERSIL

HI5746KCAZ

10-Bit, 40MSPS A/D Converter
INTERSIL