HI5746KCA [INTERSIL]

10-Bit, 40 MSPS A/D Converter; 10位, 40 MSPS A / D转换器
HI5746KCA
型号: HI5746KCA
厂家: Intersil    Intersil
描述:

10-Bit, 40 MSPS A/D Converter
10位, 40 MSPS A / D转换器

转换器 光电二极管
文件: 总17页 (文件大小:147K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HI5746  
Data Sheet  
February 1999  
File Number 4129.4  
10-Bit, 40 MSPS A/D Converter  
Features  
• Sampling Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 40 MSPS  
The HI5746 is a monolithic, 10-bit, analog-to-digital  
converter fabricated in a CMOS process. It is designed for  
high speed applications where wide bandwidth and low  
power consumption are essential. Its 40 MSPS speed is  
made possible by a fully differential pipelined architecture  
with an internal sample and hold.  
• 8.8 Bits at f = 10MHz  
IN  
• Low Power at 40 MSPS . . . . . . . . . . . . . . . . . . . . 225mW  
• Wide Full Power Input Bandwidth . . . . . . . . . . . . 250MHz  
• On-Chip Sample and Hold  
The HI5746 has excellent dynamic performance while  
consuming only 225mW power at 40 MSPS. Data output  
latches are provided which present valid data to the output  
bus with a latency of 7 clock cycles. It is pin-for-pin  
functionally compatible with the HI5702 and the HI5703.  
• Fully Differential or Single-Ended Analog Input  
• Single Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . +5V  
• TTL/CMOS Compatible Digital Inputs  
• CMOS Compatible Digital Outputs. . . . . . . . . . . . 3.0/5.0V  
• Offset Binary or Two’s Complement Output Format  
For internal voltage reference, please refer to the HI5767  
data sheet.  
Applications  
Ordering Information  
• Professional Video Digitizing  
• Medical Imaging  
PART  
NUMBER  
TEMP.  
PKG.  
NO.  
o
RANGE ( C)  
0 to 70  
0 to 70  
25  
PACKAGE  
28 Ld SOIC (W)  
28 Ld SSOP  
• Digital Communication Systems  
• High Speed Data Acquisition  
HI5746KCB  
HI5746KCA  
HI5746EVAL1  
M28.3  
M28.15  
Evaluation Board  
Pinout  
HI5746  
(SOIC, SSOP)  
TOP VIEW  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
DV  
D0  
D1  
D2  
D3  
D4  
DV  
CC1  
DGND1  
3
DV  
CC1  
4
DGND1  
5
AV  
CC  
6
AGND  
CC2  
7
V
+
-
CLK  
DGND2  
D5  
REF  
8
V
REF  
9
V
+
IN  
10  
11  
12  
13  
14  
V
-
D6  
IN  
V
D7  
DC  
AGND  
D8  
AV  
CC  
D9  
OE  
DFS  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999  
70  
HI5746  
Functional Block Diagram  
CLK  
CLOCK  
V
BIAS  
DC  
V
-
IN  
V
+
IN  
S/H  
STAGE 1  
DFS  
OE  
2-BIT  
FLASH  
2-BIT  
DAC  
+
-
DV  
CC2  
X2  
D9 (MSB)  
D8  
D7  
D6  
DIGITAL DELAY  
AND  
STAGE 8  
D5  
DIGITAL ERROR  
CORRECTION  
D4  
D3  
2-BIT  
FLASH  
2-BIT  
DAC  
D2  
D1  
+
D0 (LSB)  
-
X2  
DGND2  
STAGE 9  
2-BIT  
FLASH  
AV  
AGND DV  
CC1  
DGND1  
V
+
V
- (OPTIONAL)  
REF  
CC  
REF  
71  
HI5746  
Typical Application Schematic  
HI5746  
+ (7)  
2.5V  
V
V
REF  
REF  
- (8)  
2.0V  
(OPTIONAL)  
(LSB) (28) D0  
(27) D1  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
(26) D2  
(25) D3  
(24) D4  
(20) D5  
(19) D6  
(18) D7  
(17) D8  
AGND (12)  
AGND (6)  
DGND  
AGND  
BNC  
DGND1 (2)  
DGND1 (4)  
DGND2 (21)  
(MSB) (16) D9  
10µF AND 0.1µF CAPS  
ARE PLACED AS CLOSE  
TO PART AS POSSIBLE  
V
+
-
(1) DV  
CC1  
V
V
V
+ (9)  
(11)  
IN  
IN  
(3) DV  
CC1  
DC  
IN  
V
- (10) (23) DV  
IN  
CC2  
+5V  
+
0.1µF  
10µF  
CLOCK  
CLK (22)  
DFS (15)  
OE (14)  
(13) AV  
CC  
(5) AV  
+5V  
CC  
+
0.1µF  
10µF  
Pin Descriptions  
PIN NO.  
NAME  
DV  
DESCRIPTION  
PIN NO.  
NAME  
DESCRIPTION  
1
2
3
4
5
6
7
Digital Supply (+5.0V).  
Digital Ground.  
15  
16  
17  
18  
19  
20  
21  
22  
23  
DFS  
D9  
Data Format Select Input.  
Data Bit 9 Output (MSB).  
Data Bit 8 Output.  
Data Bit 7 Output.  
Data Bit 6 Output.  
Data Bit 5 Output.  
Digital Ground.  
CC1  
DGND1  
DV  
Digital Supply (+5.0V).  
Digital Ground.  
D8  
CC1  
DGND1  
D7  
AV  
CC  
Analog Supply (+5.0V).  
Analog Ground.  
D6  
AGND  
D5  
V
+
+2.5V Positive Reference Voltage  
Input.  
DGND2  
CLK  
REF  
Sample Clock Input.  
8
V
-
+2.0V Negative Reference Voltage  
Input (Optional).  
REF  
DV  
Digital Output Supply  
(+3.0V or +5.0V).  
CC2  
9
V
+
Positive Analog Input.  
Negative Analog Input.  
DC Bias Voltage Output.  
Analog Ground.  
IN  
24  
25  
26  
27  
28  
D4  
Data Bit 4 Output.  
Data Bit 3 Output.  
Data Bit 2 Output.  
Data Bit 1 Output.  
Data Bit 0 Output (LSB).  
10  
11  
12  
13  
14  
V
-
IN  
D3  
D2  
D1  
D0  
V
DC  
AGND  
AV  
CC  
Analog Supply (+5.0V).  
Digital Output Enable Control Input.  
OE  
72  
HI5746  
o
Absolute Maximum Ratings T = 25 C  
Thermal Information  
A
o
Supply Voltage, AV  
CC  
or DV  
to AGND or DGND . . . . . . . . . . .6V  
Thermal Resistance (Typical, Note 1)  
θJA ( C/W)  
CC  
DGND to AGND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3V  
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
SSOP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
70  
100  
Digital I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DGND to DV  
Analog I/O Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . AGND to AV  
CC  
o
CC  
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . .150 C  
Maximum Storage Temperature Range. . . . . . . . . . -65 C to 150 C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . .300 C  
o
o
Operating Conditions  
o
Temperature Range  
o
(SOIC, SSOP - Lead Tips Only)  
o
HI5746KCB (Typ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 C to 70 C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. θ is measured with the component mounted on an evaluation PC board in free air.  
JA  
Electrical Specifications AV = DV  
= 5.0V; DV  
CC2  
= 3.0V, V  
+ = 2.5V; V  
- = 2.0V; f = 40 MSPS at 50% Duty Cycle;  
REF S  
CC  
CC1  
REF  
o
o
C = 10pF; T = 25 C; Differential Analog Input; Typical Values are Test Results at 25 C,  
L
A
Unless Otherwise Specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ACCURACY  
Resolution  
10  
-
-
-
Bits  
LSB  
LSB  
Integral Linearity Error, INL  
f
f
= DC  
= DC  
±1.0  
±0.5  
±2.0  
±1.0  
IN  
IN  
Differential Linearity Error, DNL  
(Guaranteed No Missing Codes)  
-
Offset Error, V  
OS  
f
f
= DC  
= DC  
-40  
-
12  
4
40  
-
LSB  
LSB  
IN  
IN  
Full Scale Error, FSE  
DYNAMIC CHARACTERISTICS  
Minimum Conversion Rate  
No Missing Codes  
No Missing Codes  
-
0.5  
-
1
-
MSPS  
MSPS  
Bits  
Maximum Conversion Rate  
40  
Effective Number of Bits, ENOB  
Signal to Noise and Distortion Ratio, SINAD  
f
f
= 10MHz  
= 10MHz  
8.55  
53.2  
8.8  
54.9  
-
IN  
IN  
-
dB  
RMS Signal  
= -------------------------------------------------------------  
RMS Noise + Distortion  
Signal to Noise Ratio, SNR  
f
= 10MHz  
53.2  
55.4  
-
dB  
IN  
RMS Signal  
= -------------------------------  
RMS Noise  
Total Harmonic Distortion, THD  
2nd Harmonic Distortion  
3rd Harmonic Distortion  
f
f
f
f
f
f
f
= 10MHz  
= 10MHz  
= 10MHz  
= 10MHz  
-
-
-
-
-
-
-
-
-
-64.6  
-67.8  
-68.3  
67.8  
64  
-
-
-
-
-
-
-
-
-
dBc  
dBc  
IN  
IN  
IN  
IN  
dBc  
Spurious Free Dynamic Range, SFDR  
Intermodulation Distortion, IMD  
Differential Gain Error  
dBc  
= 1MHz, f = 1.02MHz  
2
dBc  
1
= 17.72 MSPS, 6 Step, Mod Ramp  
= 17.72 MSPS, 6 Step, Mod Ramp  
0.8  
%
S
S
Differential Phase Error  
0.1  
Degree  
Cycle  
Cycle  
Transient Response  
(Note 2)  
1
Over-Voltage Recovery  
0.2V Overdrive (Note 2)  
1
73  
HI5746  
Electrical Specifications AV = DV  
= 5.0V; DV  
CC2  
= 3.0V, V  
+ = 2.5V; V  
- = 2.0V; f = 40 MSPS at 50% Duty Cycle;  
REF S  
CC  
CC1  
REF  
o
o
C = 10pF; T = 25 C; Differential Analog Input; Typical Values are Test Results at 25 C,  
L
A
Unless Otherwise Specified (Continued)  
PARAMETER TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
ANALOG INPUT  
Maximum Peak-to-Peak Differential Analog Input  
-
-
±0.5  
-
-
V
V
Range (V + - V -)  
IN IN  
Maximum Peak-to-Peak Single-Ended  
Analog Input Range  
1.0  
Analog Input Resistance, R  
(Note 3)  
-
-
1
10  
-
-
MΩ  
pF  
IN  
Analog Input Capacitance, C  
IN  
-
+10  
-
Analog Input Bias Current, I + or I -  
(Note 3)  
(Note 3)  
-10  
-
µA  
µA  
B
B
Differential Analog Input Bias Current  
= (I + - I -)  
±0.5  
I
BDIFF  
B
B
Full Power Input Bandwidth, FPBW  
-
250  
-
-
MHz  
V
Analog Input Common Mode Voltage Range  
Differential Mode (Note 2)  
0.25  
4.75  
(V + + V -)/2  
IN IN  
REFERENCE INPUT  
Total Reference Resistance, R  
V
+ to AGND  
REF  
-
-
-
-
-
-
2.5K  
1.07  
21  
-
-
-
-
-
-
mA  
µA  
V
L
Positive Reference Current, I  
+
REF  
Negative Reference Current, I  
REF  
-
Positive Reference Voltage Input, V  
+
(Note 2)  
(Note 2)  
(Note 2)  
2.5  
REF  
Negative Reference Voltage Input, V  
-
2.0  
V
REF  
Reference Common Mode Voltage  
2.25  
V
(V  
+ + V -)/2  
REF  
REF  
DC BIAS VOLTAGE  
DC Bias Voltage Output, V  
Maximum Output Current  
DIGITAL INPUTS  
-
-
3.2  
-
-
V
DC  
0.4  
mA  
Input Logic High Voltage, V  
IH  
CLK, DFS, OE  
CLK, DFS, OE  
2.0  
-
-
-
-
V
Input Logic Low Voltage, V  
0.8  
V
IL  
Input Logic High Current, I  
CLK, DFS, OE, V = 5V  
IH  
-10.0  
-10.0  
-
-
+10.0  
+10.0  
-
µA  
µA  
pF  
IH  
Input Logic Low Current, I  
CLK, DFS, OE, V = 0V  
IL  
-
IL  
Input Capacitance, C  
7
IN  
DIGITAL OUTPUTS  
Output Logic High Voltage, V  
I
I
= 100µA; DV  
= 5V  
= 5V  
4.0  
-
-
-
V
V
OH  
OH  
OL  
CC2  
Output Logic Low Voltage, V  
= 100µA; DV  
= 0/5V; DV  
-
-
0.5  
±10  
-
OL  
CC2  
Output Three-State Leakage Current, I  
V
= 5V  
±1  
-
µA  
V
OZ  
O
CC2  
Output Logic High Voltage, V  
I
I
= 100µA; DV  
= 3V  
= 3V  
2.4  
-
OH  
OH  
OL  
CC2  
CC2  
Output Logic Low Voltage, V  
= 100µA; DV  
-
0.5  
V
OL  
74  
HI5746  
Electrical Specifications AV = DV  
= 5.0V; DV  
CC2  
= 3.0V, V  
+ = 2.5V; V  
- = 2.0V; f = 40 MSPS at 50% Duty Cycle;  
REF S  
CC  
CC1  
REF  
o
o
C = 10pF; T = 25 C; Differential Analog Input; Typical Values are Test Results at 25 C,  
L
A
Unless Otherwise Specified (Continued)  
PARAMETER TEST CONDITIONS  
Output Three-State Leakage Current, I = 0/5V; DV = 3V  
MIN  
TYP  
±1  
MAX  
±10  
-
UNITS  
µA  
V
-
-
OZ  
O
CC2  
Output Capacitance, C  
10  
pF  
OUT  
TIMING CHARACTERISTICS  
Aperture Delay, t  
AP  
-
-
-
-
-
-
-
-
5
5
7
8
5
5
-
-
-
ns  
Aperture Jitter, t  
AJ  
ps  
RMS  
Data Output Hold, t  
-
ns  
ns  
H
Data Output Delay, t  
-
OD  
Data Output Enable Time, t  
-
ns  
EN  
Data Output Enable Time t  
-
ns  
DIS  
Data Latency, t  
For a Valid Sample (Note 2)  
Data Invalid Time (Note 2)  
7
20  
Cycles  
Cycles  
LAT  
Power-Up Initialization  
POWER SUPPLY CHARACTERISTICS  
-
Analog Supply Voltage, AV  
4.75  
5.0  
5.0  
3.0  
5.0  
46  
5.25  
V
V
CC  
Digital Supply Voltage DV  
4.75  
5.25  
CC1  
Digital Output Supply Voltage, DV  
At 3.0V  
At 5.0V  
2.7  
3.3  
V
CC2  
4.75  
5.25  
V
Total Supply Current, I  
CC  
f
f
f
f
f
= 10MHz and DFS = “0”  
= 10MHz and DFS = “0”  
= 10MHz and DFS = “0”  
= 10MHz and DFS = “0”  
= 10MHz and DFS = “0”  
-
-
-
-
-
-
-
-
mA  
mA  
mA  
mA  
mW  
LSB  
LSB  
IN  
IN  
IN  
IN  
IN  
Analog Supply Current, AI  
30  
-
CC  
Digital Supply Current, DI  
13  
-
CC1  
Output Supply Current, DI  
Power Dissipation  
3
-
CC2  
225  
±0.4  
±0.8  
275  
Offset Error Sensitivity, ∆V  
OS  
AV  
AV  
or DV  
or DV  
= 5V ±5%  
= 5V ±5%  
-
-
CC  
CC  
CC  
Gain Error Sensitivity, ∆FSE  
CC  
NOTES:  
2. Parameter guaranteed by design or characterization and not production tested.  
3. With the clock low and DC input.  
75  
HI5746  
Timing Waveforms  
ANALOG  
INPUT  
CLOCK  
INPUT  
S
H
S
H
S
H
S
S
H
S
H
S
H
S
H
N + 8  
N - 1  
N - 1  
N
N
N + 1  
N + 1  
N + 2  
N + 5  
N + 5  
N + 6  
N + 6  
N + 7  
N + 7  
N + 8  
INPUT  
S/H  
1ST  
STAGE  
B
B
B
B
B
B
B
1, N + 7  
1, N - 1  
1, N  
1, N + 1  
1, N + 4  
1, N + 5  
1, N + 6  
2ND  
STAGE  
B
B
B
2, N + 6  
B
B
B
2, N  
2, N + 4  
2, N + 5  
2, N - 2  
2, N - 1  
9TH  
STAGE  
B
B
B
B
B
B
9, N + 3  
9, N - 5  
9, N - 4  
9, N  
9, N + 1  
9, N + 2  
DATA  
OUTPUT  
D
D
D
D
D
D
N + 1  
N - 7  
N - 6  
N - 2  
N - 1  
N
t
LAT  
NOTES:  
4. S : N-th sampling period.  
N
5. H : N-th holding period.  
N
6. B  
: M-th stage digital output corresponding to N-th sampled input.  
M, N  
7. D : Final data output corresponding to N-th sampled input.  
N
FIGURE 1. HI5746 INTERNAL CIRCUIT TIMING  
ANALOG  
INPUT  
t
AP  
t
AJ  
CLOCK  
INPUT  
1.5V  
1.5V  
t
OD  
t
H
2.4V  
0.5V  
DATA  
OUTPUT  
DATA N  
DATA N - 1  
FIGURE 2. INPUT-TO OUTPUT TIMING  
76  
HI5746  
Typical Performance Curves  
9
57  
52  
47  
42  
37  
SNR  
SINAD  
8
7
o
o
= 40 MSPS, T = 25 C  
f = 40 MSPS, T = 25 C  
S A  
f
S
A
6
1
10  
INPUT FREQUENCY (MHz)  
100  
1
10  
INPUT FREQUENCY (MHz)  
100  
FIGURE 3. EFFECTIVE NUMBER OF BITS (ENOB) vs INPUT  
FREQUENCY  
FIGURE 4. SINAD AND SNR vs INPUT FREQUENCY  
85  
o
= 40 MSPS, T = 25 C  
f
S
A
9
8
7
6
5
4
80  
75  
70  
65  
60  
55  
50  
45  
o
f
= 40 MSPS, f = 10MHz, T = 25 C  
S
IN  
A
-2HD  
SFDR  
-3HD  
-THD  
1
10  
INPUT FREQUENCY (MHz)  
100  
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
INPUT LEVEL (dBFS)  
NOTE: SFDR depicted here does not include any harmonic distortion.  
FIGURE 5. -2HD, -3HD, -THD AND SFDR vs INPUT  
FREQUENCY  
FIGURE 6. EFFECTIVE NUMBER OF BITS (ENOB) vs  
ANALOG INPUT LEVEL  
9
10  
o
o
f
= 40 MSPS, f = 10MHz, T = 25 C  
S
IN  
A
f
= 40 MSPS, f = 10MHz, T = 25 C  
S
IN  
V
A
9.5  
9
+ - V  
- = 0.5V  
REF  
REF  
8.8  
8.6  
8.5  
8
7.5  
7
8.4  
8.2  
6.5  
6
2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75  
30  
35  
40  
45  
50  
55  
60  
65  
70  
V
+ (V)  
REF  
DUTY CYCLE (%, T /T  
)
CLK  
H
FIGURE 7. EFFECTIVE NUMBER OF BITS (ENOB) vs  
SAMPLE CLOCK DUTY CYCLE  
FIGURE 8. EFFECTIVE NUMBER OF BITS (ENOB) vs V +  
REF  
77  
HI5746  
Typical Performance Curves (Continued)  
80  
75  
70  
55  
-2HD  
SNR  
54  
SFDR  
SINAD  
53  
-3HD  
-THD  
65  
52  
60  
55  
f
= 40 MSPS, f = 10MHz  
IN  
f
= 40 MSPS, f = 10MHz  
S
S IN  
o
o
V
+ - V  
- = 0.5V, T = 25 C  
V
+ - V  
- = 0.5V, T = 25 C  
REF A  
REF  
REF  
A
REF  
51  
2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75  
+ (V)  
2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75  
+ (V)  
V
REF  
V
REF  
NOTE: SFDR depicted here does not include any harmonic distortion.  
FIGURE 10. -2HD, -3HD, -THD AND SFDR vs V  
+
FIGURE 9. SINAD AND SNR vs V  
+
REF  
REF  
8.8  
8.6  
8.4  
53  
52  
51  
f
T
= 40 MSPS, f = 10MHz  
IN  
= 25 C  
f
T
= 40 MSPS, f = 10MHz  
IN  
= 25 C  
S
S
o
o
A
A
SNR  
SINAD  
8.2  
8
50  
49  
2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75  
+ (V)  
2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75  
+ (V)  
V
V
REF  
REF  
FIGURE 11. EFFECTIVE NUMBER OF BITS (ENOB) vs V  
+
FIGURE 12. SINAD AND SNR vs V  
+ (V - NOT DRIVEN)  
REF  
REF  
REF  
(V  
- NOT DRIVEN)  
-2HD  
REF  
80  
75  
70  
9.0  
f
= 40 MSPS, f = 10MHz  
IN  
f
= 1MHz  
S
IN  
o
T
= 25 C  
A
8.8  
8.6  
8.4  
f
= 10MHz  
IN  
-3HD  
-THD  
65  
8.2  
8.0  
60  
55  
SFDR  
o
f
= 40 MSPS, T = 25 C  
A
S
DIFFERENTIAL ANALOG INPUT  
2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75  
+ (V)  
0.25 0.75 1.25  
1.75 2.25 2.75 3.25 3.75 4.25 4.75  
(V)  
V
V
CM  
REF  
FIGURE 13. -2HD, -3HD, -THD AND SFDR vs V  
REF  
+
FIGURE 14. EFFECTIVE NUMBER OF BITS (ENOB) vs  
ANALOG INPUT COMMON MODE VOLTAGE  
(V  
- NOT DRIVEN)  
REF  
78  
HI5746  
Typical Performance Curves (Continued)  
45.0  
50  
40  
o
1MHz f 15MHz, T = 25 C  
IN  
A
f
= 40 MSPS, V + = V -  
IN IN  
S
44.5  
44.0  
43.5  
43.0  
42.5  
42.0  
41.5  
I
(TOTAL)  
CC  
CC  
AI  
30  
20  
DI  
CC1  
10  
0
41.0  
40.5  
DI  
CC2  
10  
20  
30  
40  
-40  
-20  
0
20  
40  
o
60  
80  
f
(MSPS)  
TEMPERATURE ( C)  
S
FIGURE 15. TOTAL SUPPLY CURRENT vs TEMPERATURE  
FIGURE 16. SUPPLY CURRENT vs SAMPLE CLOCK  
FREQUENCY  
1200  
9.5  
9.0  
8.5  
1000  
800  
600  
400  
I
+
REF  
t
OD  
8.0  
7.5  
7.0  
200  
0
6.5  
6.0  
I
-
REF  
-40  
-20  
0
20  
40  
60  
80  
-40  
-20  
0
20  
40  
60  
80  
o
o
TEMPERATURE ( C)  
TEMPERATURE ( C)  
FIGURE 17. REFERENCE CURRENT vs TEMPERATURE  
FIGURE 18. DATA OUTPUT DELAY vs TEMPERATURE  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.25  
0.70  
0.3  
f
= 17.72 MSPS  
S
DP  
DG  
0.65  
0.60  
0.55  
0.50  
0.45  
0.40  
0.25  
0.2  
0.15  
0.1  
0.05  
0
DG  
0.2  
0.15  
0.1  
0.05  
0
DP  
DG  
DP  
f
= 17.72 MSPS  
S
o
AV /DV  
CC CC1  
= 5V ±5%, T = 25 C  
A
2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 5.25  
DV 2 (V)  
-40  
-20  
0
20  
40  
o
60  
80  
TEMPERATURE ( C)  
CC  
FIGURE 19. DIFFERENTIAL GAIN/PHASE vs TEMPERATURE  
FIGURE 20. DIFFERENTIAL GAIN/PHASE vs SUPPLY VOLTAGE  
79  
HI5746  
Typical Performance Curves (Continued)  
3.30  
9.0  
8.8  
8.6  
8.4  
8.2  
3.20  
3.10  
3.00  
-40  
-20  
0
20  
40  
60  
80  
o
TEMPERATURE ( C)  
-40  
-20  
0
20  
40  
60  
80  
o
TEMPERATURE ( C)  
FIGURE 21. DC BIAS VOLTAGE (V ) vs TEMPERATURE  
DC  
FIGURE 22. EFFECTIVE NUMBER OF BITS F(ENOB) vs  
TEMPERATURE  
0
0
f
f
= 1MHz  
= 40 MSPS  
f
f
= 10MHz  
= 40 MSPS  
IN  
S
IN  
S
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
512  
1023  
0
512  
1023  
FREQUENCY BIN  
FREQUENCY BIN  
FIGURE 23. 2048 POINT FFT PLOT  
FIGURE 24. 2048 POINT FFT SPECTRAL PLOT  
Detailed Description  
one sample-and-hold cycle. The front end sample-and-hold  
output is a fully-differential, sampled-data representation of the  
analog input. The circuit not only performs the sample-and-hold  
function but will also convert a single-ended input to a fully-  
differential output for the converter core. During the sampling  
Theory of Operation  
The HI5746 is a 10-bit fully differential sampling pipeline A/D  
converter with digital error correction logic. Figure 25 depicts  
the circuit for the front end differential-in-differential-out sample-  
and-hold (S/H). The switches are controlled by an internal  
phase, the V pins see only the on-resistance of a switch and  
IN  
sampling clock which is a non-overlapping two phase signal, φ  
1
C . The relatively small values of these components result in a  
S
typical full power input bandwidth of 250MHz for the converter.  
and φ , derived from the master sampling clock. During the  
2
sampling phase, φ , the input signal is applied to the sampling  
1
capacitors, C . At the same time the holding capacitors, C ,  
S
H
are discharged to analog ground. At the falling edge of φ the  
1
input signal is sampled on the bottom plates of the sampling  
capacitors. In the next clock phase, φ , the two bottom plates of  
2
the sampling capacitors are connected together and the  
holding capacitors are switched to the op amp output nodes.  
The charge then redistributes between C and C completing  
S
H
80  
HI5746  
structure of the V  
+ and V - input pins consists of a  
REF  
REF  
resistive voltage divider with one resistor of the divider  
(nominally 500) connected between V + and V  
- and  
φ
φ
REF REF  
C
1
1
H
the other resistor of the divider (nominally 2000) connected  
between V - and analog ground. This allows the user the  
φ
REF  
option of supplying only the +2.5V V  
1
C
C
S
V
V
IN+  
+ voltage reference  
V
REF  
- being generated internally by the  
OUT+  
+
-
φ
with the +2.0V V  
2
REF  
V
+
-
OUT-  
voltage division action of the input structure.  
IN-  
S
φ
1
The HI5746 is tested with V - equal to +2.0V and V  
+
REF REF  
equal to +2.5V yielding a fully differential analog input voltage  
range of ±0.5V. V + and V - can differ from the above  
φ
C
φ
1
H
1
REF REF  
voltages (see the Typical Performance Curves, Figure 8  
through Figure 13).  
FIGURE 25. ANALOG INPUT SAMPLE-AND-HOLD  
In order to minimize overall converter noise it is recommended  
that adequate high frequency decoupling be provided at both  
As illustrated in the functional block diagram and the timing  
diagram in Figure 1, eight identical pipeline subconverter  
stages, each containing a two-bit flash converter and a  
two-bit multiplying digital-to-analog converter, follow the S/H  
circuit with the ninth stage being a two bit flash converter.  
Each converter stage in the pipeline will be sampling in one  
phase and amplifying in the other clock phase. Each  
individual subconverter clock signal is offset by 180 degrees  
from the previous stage clock signal resulting in alternate  
stages in the pipeline performing the same operation.  
of the reference voltage input pins, V  
+ and V -.  
REF  
REF  
Analog Input, Differential Connection  
The analog input to the HI5746 is a differential input that can  
be configured in various ways depending on the signal  
source and the required level of performance. A fully  
differential connection (Figure 26 and Figure 27) will give the  
best performance for the converter.  
The output of each of the eight identical two-bit subconverter  
stages is a two-bit digital word containing a supplementary bit  
to be used by the digital error correction logic. The output of  
each subconverter stage is input to a digital delay line which is  
controlled by the internal sampling clock. The function of the  
digital delay line is to time align the digital outputs of the eight  
identical two-bit subconverter stages with the corresponding  
output of the ninth stage flash converter before applying the  
eighteen bit result to the digital error correction logic. The  
digital error correction logic uses the supplementary bits to  
correct any error that may exist before generating the final ten  
bit digital data output of the converter.  
V
V
+
V
IN  
IN  
R
R
HI5746  
DC  
-V  
IN  
V
-
IN  
FIGURE 26. AC COUPLED DIFFERENTIAL INPUT  
Since the HI5746 is powered by a single +5V analog supply,  
the analog input is limited to be between ground and +5V.  
For the differential input connection this implies the analog  
input common mode voltage can range from 0.25V to 4.75V.  
The performance of the ADC does not change significantly  
with the value of the analog input common mode voltage.  
Because of the pipeline nature of this converter, the digital  
data representing an analog input sample is output to the  
digital data bus on the 7th cycle of the clock after the analog  
sample is taken. This time delay is specified as the data  
latency. After the data latency time, the digital data  
representing each succeeding analog sample is output  
during the following clock cycle. The digital output data is  
synchronized to the external sampling clock by a double  
buffered latching technique. The output of the digital error  
correction circuit is available in two’s complement or offset  
binary format depending on the state of the Data Format  
Select (DFS) control input (see Table 1, A/D Code Table).  
A DC voltage source, V , equal to 3.2V (typical), is made  
DC  
available to the user to help simplify circuit design when using  
an AC coupled differential input. This low output impedance  
voltage source is not designed to be a reference but makes an  
excellent DC bias source and stays well within the analog  
input common mode voltage range over temperature (see the  
Typical Performance Curves, Figure 21).  
Reference Voltage Inputs, V  
- and V  
+
REF  
For the AC coupled differential input (Figure 26) assume  
REF  
The HI5746 is designed to accept two external reference  
the difference between V  
+, typically 2.5V, and V  
-,  
REF  
REF  
typically 2.0V, is 0.5V. Full scale is achieved when the V  
voltage sources at the V  
the converter requires V  
input pins. Typical operation of  
IN  
REF  
and -V input signals are 0.5V  
, with -V being  
+ to be set at +2.5V and V  
- to  
IN  
P-P IN  
REF REF  
180 degrees out of phase with V . The converter will be  
IN  
be set at 2.0V. However, it should be noted that the input  
81  
HI5746  
at positive full scale when the V + input is at  
IN  
The single ended analog input can be DC coupled  
(Figure 27) as long as the input is within the analog input  
common mode voltage range.  
V
+ 0.25V and the V - input is at V  
- 0.25V (V + -  
DC  
IN  
DC IN  
V
- = +0.5V). Conversely, the converter will be at  
IN  
negative fullscale when the V + input is equal to V  
-
IN  
DC  
0.25V and V - is at V  
IN  
+ 0.25V (V + - V - = -0.5V).  
IN IN  
DC  
V
IN  
The analog input can be DC coupled (Figure 27) as long as  
the inputs are within the analog input common mode voltage  
range (0.25V VDC 4.75V).  
V
+
VDC  
IN  
R
HI5746  
C
V
IN  
V
+
IN  
VDC  
VDC  
V
-
IN  
R
R
HI5746  
C
V
V
DC  
FIGURE 29. DC COUPLED SINGLE ENDED INPUT  
-V  
IN  
VDC  
-
IN  
The resistor, R, in Figure 29 is not absolutely necessary but  
may be used as a load setting resistor. A capacitor, C,  
FIGURE 27. DC COUPLED DIFFERENTIAL INPUT  
connected from V + to V - will help filter any high  
IN IN  
frequency noise on the inputs, also improving performance.  
Values around 20pF are sufficient and can be used on AC  
coupled inputs as well. Note, however, that the value of  
capacitor C chosen must take into account the highest  
frequency component of the analog input signal.  
The resistors, R, in Figure 27 are not absolutely necessary  
but may be used as load setting resistors. A capacitor, C,  
connected from V + to V - will help filter any high  
IN IN  
frequency noise on the inputs, also improving performance.  
Values around 20pF are sufficient and can be used on AC  
coupled inputs as well. Note, however, that the value of  
capacitor C chosen must take into account the highest  
frequency component of the analog input signal.  
A single ended source may give better overall system  
performance if it is first converted to differential before  
driving the HI5746.  
Digital Output Control and Clock Requirements  
The HI5746 provides a standard high-speed interface to  
external TTL logic families.  
Analog Input, Single-Ended Connection  
The configuration shown in Figure 28 may be used with a  
single ended AC coupled input.  
In order to ensure rated performance of the HI5746, the duty  
cycle of the clock should be held at 50% ±5%. It must also  
have low jitter and operate at standard TTL levels.  
V
+
V
IN  
IN  
R
Performance of the HI5746 will only be guaranteed at  
conversion rates above 1 MSPS. This ensures proper  
performance of the internal dynamic circuits. Similarly, when  
power is first applied to the converter, a maximum of 20  
cycles at a sample rate above 1 MSPS will have to be  
performed before valid data is available.  
HI5746  
-
VDC  
V
IN  
FIGURE 28. AC COUPLED SINGLE ENDED INPUT  
A Data Format Select (DFS) pin is provided which will  
determine the format of the digital data outputs. When at  
logic low, the data will be output in offset binary format.  
When at logic high, the data will be output in two’s  
complement format. Refer to Table 1 for further information.  
Again, assume the difference between V  
REF  
+, typically  
2.5V, and V  
-, typically 2V, is 0.5V. If V is a 1V  
REF  
IN  
P-P  
sinewave, then V + is a 1V  
IN P-P  
sinewave riding on a positive  
voltage equal to VDC. The converter will be at positive full  
scale when V + is at VDC + 0.5V (V + - V - = +0.5V)  
IN IN IN  
and will be at negative full scale when V + is equal to  
IN  
VDC - 0.5V (V + - V - = -0.5V). Sufficient headroom must  
IN IN  
be provided such that the input voltage never goes above  
+5V or below AGND. In this case, VDC could range between  
0.5V and 4.5V without a significant change in ADC  
performance. The simplest way to produce VDC is to use the  
DC bias source, V , output of the HI5746.  
DC  
82  
HI5746  
TABLE 1. A/D CODE TABLE  
OFFSET BINARY OUTPUT CODE  
(DFS LOW)  
TWO’S COMPLEMENT OUTPUT CODE  
(DFS HIGH)  
M
S
B
L
S
B
M
S
B
L
S
B
DIFFERENTIAL  
INPUT VOLTAGE  
CODE CENTER  
DESCRIPTION  
(V + - V -)  
IN IN  
D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
+Full Scale (+FS) -  
1
0.499756V  
1
1
1
1
1
1
1
1
1
1
0
1
1
1
1
1
1
1
1
1
/
LSB  
4
1
+FS - 1 / LSB  
4
0.498779V  
732.422µV  
-244.141µV  
-0.498291V  
-0.499268V  
1
1
0
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
0
0
1
1
0
0
0
1
1
1
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
1
0
1
0
0
0
0
1
1
0
3
+ / LSB  
4
1
- / LSB  
4
3
-FS + 1 / LSB  
4
-Full Scale (-FS) +  
3
/
LSB  
4
NOTES:  
8. The voltages listed above represent the ideal center of each output code shown as a function of the reference differential voltage,  
(V + - V -) = 0.5V.  
REF REF  
9. V  
+ = 2.5V and V  
- = 2V.  
REF  
REF  
The output enable pin, OE, when pulled high will three-state  
the digital outputs to a high impedance state. Set the OE  
input to logic low for normal operation.  
Static Performance Definitions  
Offset Error (V  
)
OS  
1
The midscale code transition should occur at a level / LSB  
4
above half-scale. Offset is defined as the deviation of the  
actual code transition from this point.  
OE INPUT  
DIGITAL DATA OUTPUTS  
Active  
0
1
Full-Scale Error (FSE)  
High Impedance  
The last code transition should occur for an analog input that  
3
is / LSB below positive Full scale (+FS) with the offset  
4
Supply and Ground Considerations  
error removed. Fullscale error is defined as the deviation of  
the actual code transition from this point.  
The HI5746 has separate analog and digital supply and  
ground pins to keep digital noise out of the analog signal  
path. The digital data outputs also have a separate supply  
Differential Linearity Error (DNL)  
DNL is the worst case deviation of a code width from the  
ideal value of 1 LSB.  
pin, DV  
, which can be powered from a 3V or 5V supply.  
CC2  
This allows the outputs to interface with 3V logic if so  
desired.  
Integral Linearity Error (INL)  
INL is the worst case deviation of a code center from a best  
fit straight line calculated from the measured data.  
The part should be mounted on a board that provides  
separate low impedance connections for the analog and  
digital supplies and grounds. For best performance, the  
supplies to the HI5746 should be driven by clean, linear  
regulated supplies. The board should also have good high  
frequency decoupling capacitors mounted as close as  
possible to the converter. If the part is powered off a  
single supply then the analog supply should be isolated  
with a ferrite bead from the digital supply.  
Power Supply Sensitivity  
Each of the power supplies are moved plus and minus 5% and  
the shift in the offset and full scale error (in LSBs) is noted.  
Dynamic Performance Definitions  
Fast Fourier Transform (FFT) techniques are used to evaluate  
the dynamic performance of the HI5746. A low distortion sine  
wave is applied to the input, it is coherently sampled, and the  
output is stored in RAM. The data is then transformed into the  
frequency domain with an FFT and analyzed to evaluate the  
dynamic performance of the A/D. The sine wave input to the  
part is -0.5dB down from Fullscale for all these tests.  
Refer to the application note “Using Intersil High Speed A/D  
Converters” (AN9214) for additional considerations when  
using high speed converters.  
83  
HI5746  
SNR and SINAD are quoted in dB. The distortion numbers are  
quoted in dBc (decibels with respect to carrier) and DO NOT  
include any correction factors for normalizing to full scale.  
Full Power Input Bandwidth (FPBW)  
Full power input bandwidth is the analog input frequency at  
which the amplitude of the digitally reconstructed output has  
decreased 3dB below the amplitude of the input sine wave.  
The input sine wave has an amplitude which swings from  
-FS to +FS. The bandwidth given is measured at the  
specified sampling frequency.  
Effective Number Of Bits (ENOB)  
The effective number of bits (ENOB) is calculated from the  
SINAD data by:  
ENOB = (SINAD - 1.76 + V  
CORR  
) / 6.02,  
Video Definitions  
Differential Gain and Differential Phase are two commonly  
found video specifications for characterizing the distortion of  
a chrominance signal as it is offset through the input voltage  
range of an ADC.  
where:  
V
= 0.5 dB.  
CORR  
V
adjusts the SINAD, and hence the ENOB, for the  
CORR  
amount the analog input signal is below fullscale.  
Signal To Noise and Distortion Ratio (SINAD)  
Differential Gain (DG)  
SINAD is the ratio of the measured RMS signal to RMS sum  
of all the other spectral components below the Nyquist  
Differential Gain is the peak difference in chrominance  
amplitude (in percent) relative to the reference burst.  
frequency, f /2, excluding DC.  
S
Differential Phase (DP)  
Signal To Noise Ratio (SNR)  
Differential Phase is the peak difference in chrominance  
phase (in degrees) relative to the reference burst.  
SNR is the ratio of the measured RMS signal to RMS noise at  
a specified input and sampling frequency. The noise is the  
Timing Definitions  
RMS sum of all of the spectral components below f /2  
S
Refer to Figure 1 and Figure 2 for these definitions.  
excluding the fundamental, the first five harmonics and DC.  
Aperture Delay (t  
)
Total Harmonic Distortion (THD)  
AP  
Aperture delay is the time delay between the external  
sample command (the falling edge of the clock) and the time  
at which the signal is actually sampled. This delay is due to  
internal clock path propagation delays.  
THD is the ratio of the RMS sum of the first 5 harmonic  
components to the RMS value of the fundamental input signal.  
2nd and 3rd Harmonic Distortion  
This is the ratio of the RMS value of the applicable harmonic  
component to the RMS value of the fundamental input signal.  
Aperture Jitter (t  
Aperture jitter is the RMS variation in the aperture delay due  
)
AJ  
Spurious Free Dynamic Range (SFDR)  
to variation of internal clock path delays.  
SFDR is the ratio of the fundamental RMS amplitude to the  
RMS amplitude of the next largest spectral component in the  
spectrum below f /2.  
S
Data Hold Time (t )  
H
Data hold time is the time to where the previous data (N - 1)  
is no longer valid.  
Intermodulation Distortion (IMD)  
Data Output Delay Time (t  
Data output delay time is the time to where the new data (N)  
is valid.  
)
OD  
Nonlinearities in the signal path will tend to generate  
intermodulation products when two tones, f and f , are  
1
2
present at the inputs. The ratio of the measured signal to  
the distortion terms is calculated. The terms included in the  
calculation are (f +f ), (f -f ), (2f ), (2f ), (2f +f ), (2f -f ),  
Data Latency (t  
)
LAT  
After the analog sample is taken, the digital data representing  
an analog input sample is output to the digital data bus on  
the 7th cycle of the clock after the analog sample is taken.  
This is due to the pipeline nature of the converter where the  
analog sample has to ripple through the internal subconverter  
stages. This delay is specified as the data latency. After the  
data latency time, the digital data representing each  
succeeding analog sample is output during the following  
clock cycle. The digital data lags the analog input sample by 7  
sample clock cycles.  
1
2
1 2  
1
2
1
2
1 2  
(f +2f ), (f -2f ). The ADC is tested with each tone 6dB  
1
2
1
2
below full scale.  
Transient Response  
Transient response is measured by providing a full scale  
transition to the analog input of the ADC and measuring the  
number of cycles it takes for the output code to settle within  
10-bit accuracy.  
Over-Voltage Recovery  
Power-Up Initialization  
Over-Voltage Recovery is measured by providing a full scale  
transition to the analog input of the ADC which overdrives  
the input by 200mV, and measuring the number of cycles it  
takes for the output code to settle within 10-bit accuracy.  
This time is defined as the maximum number of clock cycles  
that are required to initialize the converter at power-up. The  
requirement arises from the need to initialize the dynamic  
circuits within the converter.  
84  
HI5746  
AMP  
A/D  
DSP/µP  
D/A  
AMP  
HFA1100  
HFA1105  
HFA1106  
HFA1135  
HFA1145  
HFA1245  
HI5703  
HI5746  
HI5767  
HSP9501  
HI5780  
HI1171  
HI3338  
HA5020  
HA2842  
HFA1115  
HFA1212  
HFA1412  
HSP48410  
HSP48908  
HSP48212  
HSP43891  
HSP43168  
HSP43216  
HFA1100: 850MHz Video Op Amp  
HFA1105: 300MHz Video Op Amp  
HFA1106: 250MHz Video Op Amp with Bandwidth Limit Control  
HFA1135: 350MHz Video Op Amp with Output Limiting  
HFA1145: 300MHz Video Op Amp with Output Disable  
HFA1245: Dual, 350MHz, Video Op Amp with Output Disable  
HSP48212: Digital Video Mixer  
HSP43891: Digital Filter, 30MHz, 9-Bit  
HSP43168: Dual FIR Filter, 10-Bit, 33MHz/45MHz  
HSP43216: Digital Half Band Filter  
HI5780:  
HI1171:  
HI3338:  
HA5020:  
10-Bit, 80 MSPS, Video D/A Converter  
8-Bit, 40 MSPS, Video D/A Converter  
8-Bit, 50 MSPS, Video D/A Converter  
100MHz Video Op Amp  
HI5703:  
10-Bit, 40 MSPS, Low Power A/D Converter  
HI5746:  
10-Bit, 40 MSPS, Very Low Power A/D Converter  
HI5767:  
10-Bit, 40 MSPS A/D Converter with Voltage Reference HA2842:  
High Output Current, Video Op Amp  
HSP9501: Programmable Data Buffer  
HSP48410: Histogrammer/Accumulating Buffer, 10-Bit Pixel  
Resolution  
HFA1115: 225MHz Programmable Gain Video Buffer with  
Output Limiting  
HFA1212: 350MHz Dual Programmable Gain Video Buffer  
HFA1412: 350MHz Quad Programmable Gain Video Buffer  
HSP48908: 2-D Convolver, 3 x 3 Kernal Convolution, 8-Bit  
In addition, CMOS Logic Families in HC/HCT, AC/ACT, FCT and CD4000 are available.  
FIGURE 30. 10-BIT VIDEO IMAGING COMPONENTS  
AMP  
A/D  
DSP/µP  
D/A  
AMP  
HFA1100  
HFA1110  
HFA3101  
HFA3102  
HFA3600  
HI5703  
HI5746  
HI5767  
HSP43168  
HSP43216  
HSP43220  
HSP43891  
HSP50016  
HSP50110  
HSP50210  
HI5721  
HI5780  
HI20201  
HI20203  
HFA1112  
HFA1113  
HFA1100: 850MHz Op Amp  
HFA1110: 750MHz Unity Gain Video Buffer  
HFA3101: Gilbert Cell Transistor Array  
HFA3102: Dual Long-Tailed Pair Transistor Array  
HFA3600: Low Noise Amplifier/Mixer  
HI5703: 10-Bit, 40 MSPS, Low Power A/D Converter  
HI5746: 10-Bit, 40 MSPS, Very Low Power A/D Converter  
HI5767: 10-Bit, 40 MSPS A/D Converter with Voltage Reference  
HSP43168: Dual FIR Filter, 10-Bit, 33MHz/45MHz  
HSP43216: Digital Half Band Filter  
HSP43220: Decimating Digital Filter  
HSP43891: Digital Filter, 30MHz, 9-Bit  
HSP50016: Digital Down Converter  
HSP50110: Digital Quadrature Tuner  
HSP50210: Digital Costas Loop  
HI5721: 10-Bit, 100 MSPS, Communications D/A Converter  
HI5780: 10-Bit, 80 MSPS, D/A Converter  
HI20201: 10-Bit, 160 MSPS, High Speed D/A Converter  
HI20203: 8-Bit, 160 MSPS, High Speed D/A Converter  
HFA1112: 850MHz Programmable Gain Video Buffer  
HFA1113: 850MHz Programmable Gain Video Buffer with Output Limiting  
In addition, CMOS Logic Families in HC/HCT, AC/ACT, FCT and CD4000 are available.  
FIGURE 31. 10-BIT COMMUNICATIONS COMPONENTS  
85  
HI5746  
All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.  
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time with-  
out notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see web site http://www.intersil.com  
Sales Office Headquarters  
NORTH AMERICA  
EUROPE  
ASIA  
Intersil Corporation  
Intersil SA  
Mercure Center  
100, Rue de la Fusee  
1130 Brussels, Belgium  
TEL: (32) 2.724.2111  
FAX: (32) 2.724.22.05  
Intersil (Taiwan) Ltd.  
7F-6, No. 101 Fu Hsing North Road  
Taipei, Taiwan  
Republic of China  
TEL: (886) 2 2716 9310  
FAX: (886) 2 2715 3029  
P. O. Box 883, Mail Stop 53-204  
Melbourne, FL 32902  
TEL: (321) 724-7000  
FAX: (321) 724-7240  
86  

相关型号:

HI5746KCAZ

10-Bit, 40MSPS A/D Converter
INTERSIL

HI5746KCB

10-Bit, 40 MSPS A/D Converter
INTERSIL

HI5746KCB-T

Analog-to-Digital Converter, 10-Bit
ETC

HI5746KCBZ

10-Bit, 40MSPS A/D Converter
INTERSIL

HI5746KCBZ-T

10-Bit, 40MSPS A/D Converter
INTERSIL

HI5746_04

10-Bit, 40MSPS A/D Converter
INTERSIL

HI5760

10-Bit, 125/60MSPS, High Speed D/A Converter
INTERSIL

HI5760/6IA

10-Bit, 125/60MSPS, High Speed D/A Converter
INTERSIL

HI5760/6IB

10-Bit, 125/60MSPS, High Speed D/A Converter
INTERSIL

HI5760/6IBZ

10-Bit, 125/60MSPS, High Speed D/A Converter
INTERSIL

HI5760/6IBZ

10-Bit, 125/60MSPS, High Speed D/A Converter; SOIC28, TSSOP28; Temp Range: -40° to 85°C
RENESAS

HI5760/6IBZ-T

PARALLEL, WORD INPUT LOADING, 0.035us SETTLING TIME, 10-BIT DAC, PDSO28, LEAD FREE, PLASTIC, MS-013-AE, SOIC-28
RENESAS