HI5741-EVS [INTERSIL]

14-Bit, 100MSPS, High Speed D/A Converter; 14位, 100MSPS ,高速D / A转换器
HI5741-EVS
型号: HI5741-EVS
厂家: Intersil    Intersil
描述:

14-Bit, 100MSPS, High Speed D/A Converter
14位, 100MSPS ,高速D / A转换器

转换器
文件: 总13页 (文件大小:353K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HI5741  
®
Data Sheet  
September 20, 2006  
FN4071.12  
14-Bit, 100MSPS, High Speed D/A  
Converter  
Features  
• Throughput Rate . . . . . . . . . . . . . . . . . . . . . . . .100MSPS  
• Low Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .650mW  
• Integral Linearity Error . . . . . . . . . . . . . . . . . . . . . . . 1 LSB  
• Low Glitch Energy . . . . . . . . . . . . . . . . . . . . . . . . . . 1pV-s  
• TTL/CMOS Compatible Inputs  
The HI5741 is a 14-bit, 100MSPS, D/A converter which is  
implemented in the Intersil BiCMOS 10V (HBC-10) process.  
Operating from +5V and -5.2V, the converter provides  
20.48mA of full scale output current and includes an input  
data register and bandgap voltage reference. Low glitch  
energy and excellent frequency domain performance are  
achieved using a segmented architecture. The digital inputs  
are TTL/CMOS compatible and translated internally to ECL.  
All internal logic is implemented in ECL to achieve high  
switching speed with low noise. The addition of laser  
trimming assures 14-bit linearity is maintained along the  
entire transfer curve.  
• Improved Hold Time. . . . . . . . . . . . . . . . . . . . . . . . 0.25ns  
• Excellent Spurious Free Dynamic Range  
• Pb-Free Plus Anneal Available (RoHS Compliant)  
Applications  
• Cellular Base Stations  
Ordering Information  
• Wireless Communications  
• Direct Digital Frequency Synthesis  
• Signal Reconstruction  
PART  
PART  
TEMP.  
PKG.  
NUMBER  
MARKING RANGE (°C) PACKAGE DWG. #  
HI5741BIB  
HI5741BIB -40 to +85 28 Ld SOIC M28.3  
HI5741BIB-T HI5741BIB 28 Ld SOIC Tape and Reel M28.3  
• Test Equipment  
HI5741BIBZ  
(Note)  
HI5741BIBZ  
-40 to +85 28 Ld SOIC M28.3  
(Pb-free)  
• High Resolution Imaging Systems  
• Arbitrary Waveform Generators  
HI5741BIBZ-T HI5741BIBZ 28 Ld SOIC Tape and Reel M28.3  
(Note)  
(Pb-free)  
Pinout  
HI5741-EVS  
+25  
Evaluation Board  
(SOIC)  
HI5741  
(28 LD SOIC)  
TOP VIEW  
NOTE: Intersil Pb-free products employ special Pb-free material  
sets; molding compounds/die attach materials and 100% matte tin  
plate termination finish, which is compatible with both SnPb and  
Pb-free soldering operations. Intersil Pb-free products are MSL  
classified at Pb-free peak reflow temperatures that meet or exceed  
the Pb-free requirements of IPC/JEDEC J Std-020B.  
D13 (MSB)  
D12  
D11  
D10  
D9  
1
2
3
4
5
6
7
8
9
28 DGND  
27 AGND  
26  
REF OUT  
25 CTRL AMP OUT  
24 CTRL AMP IN  
D8  
23 R  
SET  
22 AV  
D7  
EE  
OUT  
D6  
21 I  
20  
D5  
I
OUT  
19 ARTN  
18 DV  
D4 10  
D3 11  
EE  
17 DGND  
16 DV  
D2 12  
D1 13  
CC  
15 CLOCK  
D0 (LSB) 14  
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.  
1
1-888-INTERSIL or 1-888-468-3774 | Intersil (and design) is a registered trademark of Intersil Americas Inc.  
Copyright © Intersil Americas Inc. 2000, 2001, 2003, 2004, 2006. All Rights Reserved  
All other trademarks mentioned are the property of their respective owners.  
HI5741  
Typical Application Circuit  
+5V  
HI5741  
0.01µF  
DV  
(16)  
CC  
D13 (MSB) (1)  
D12 (2)  
D13  
D12  
D11  
D10  
D9  
0.1µF  
D11 (3)  
(24) CTRL AMP IN  
D10 (4)  
D9 (5)  
D8 (6)  
D7 (7)  
D6 (8)  
D5 (9)  
D4 (10)  
(25) CTRL AMP OUT  
-5.2V (AV  
)
EE  
D8  
(26) REF OUT  
D7  
D/A OUT  
D6  
(21) I  
OUT  
64Ω  
D5  
D4  
D3  
64Ω  
D3 (11)  
(20) I  
OUT  
D2  
D1  
D2 (12)  
D1 (13)  
(23) R  
SET  
976Ω  
D0 (LSB) (14)  
CLK (15)  
D0  
(19) ARTN  
(27) AGND  
50Ω  
DGND (17, 28)  
(22) AV  
EE  
DV (18)  
EE  
0.01µF  
0.1µF  
0.1µF  
0.01µF  
-5.2V (AV  
)
-5.2V (DV  
)
EE  
EE  
Functional Block Diagram  
(LSB) D0  
D1  
D2  
D3  
D4  
D5  
10 LSBs  
CURRENT  
CELLS  
R2R  
NETWORK  
DATA  
BUFFER/  
LEVEL  
14-BIT  
MASTER  
REGISTER  
D6  
ARTN  
SLAVE  
REGISTER  
D7  
SHIFTER  
227Ω  
227Ω  
D8  
D9  
D10  
D11  
D12  
15  
15  
15  
UPPER  
4-BIT  
DECODER  
SWITCHED  
CURRENT  
CELLS  
I
OUT  
I
OUT  
(MSB) D13  
CLK  
REF CELL  
CTRL AMP  
IN  
25Ω  
+
OVERDRIVEABLE  
VOLTAGE  
CTRL AMP  
OUT  
-
REFERENCE  
R
REF OUT  
SET  
AV  
EE  
AGND DV  
DGND DV  
CC  
EE  
FN4071.12  
September 20, 2006  
2
HI5741  
Absolute Maximum ratings T = +25°C  
Thermal Information  
A
Digital Supply Voltage V  
to DGND . . . . . . . . . . . . . . . . . . . +5.5V  
Thermal Resistance (Typical, Note 1)  
θ
(°C/W)  
70  
CC  
JA  
Negative Digital Supply Voltage DV to DGND . . . . . . . . . . -5.5V  
EE  
Negative Analog Supply Voltage AV to AGND, ARTN . . . . -5.5V  
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Maximum Junction Temperature  
HI5741BIx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +150°C  
Maximum Storage Temperature Range . . . . . . . . .-65°C to +150°C  
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . +300°C  
(SOIC - Lead Tips Only)  
EE  
Digital Input Voltages (D13-D0, CLK) to DGND. . . . . DV  
to -0.5V  
CC  
Internal Reference Output Current. . . . . . . . . . . . . . . . . . . . ±2.5mA  
Voltage from CTRL AMP IN to AV . . . . . . . . . . . . . . . . 2.5V to 0V  
Control Amplifier Output Current . . . . . . . . . . . . . . . . . . . . . ±2.5mA  
Reference Input Voltage Range. . . . . . . . . . . . . . . . . -3.7V to AV  
EE  
EE  
Analog Output Current (I  
) . . . . . . . . . . . . . . . . . . . . . . . . . 30mA  
OUT  
Operating Conditions  
Temperature Range. . . . . . . . . . . . . . . . . . . . . . . . . .-40°C to +85°C  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
1. θ is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details.  
JA  
Electrical Specifications AV , DV = -4.94V to -5.46V, V = +4.75 to +5.25V, V = Internal,  
REF  
EE  
= +25°C  
EE  
CC  
T
A
HI5741BI  
T
= -40°C TO +85°C  
A
PARAMETER  
SYSTEM PERFORMANCE  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resolution  
14  
-1.5  
-1.75  
-1.0  
-
-
±1.0  
-
-
1.5  
1.75  
1.0  
75  
10  
-
Bits  
LSB  
LSB  
LSB  
µA  
Integral Linearity Error, INL  
(Note 5)  
“Best Fit Straight Line”, T = +25°C  
A
“Best Fit Straight Line”, T = -40°C to +85°C  
A
Differential Linearity Error, DNL  
(Note 5) T = +25°C  
A
±0.5  
8
Offset Error, I  
(Note 5)  
OS  
Full Scale Gain Error, FSE  
Full Scale Gain Drift  
(Notes 3, 5)  
-
3.2  
±150  
%
With Internal Reference  
-
ppm  
FSR/°C  
Offset Drift Coefficient  
(Note 4)  
(Note 4)  
(Note 4)  
-
-
-
-20.48  
-
0.05  
µA/°C  
mA  
V
Full Scale Output Current, I  
-
FS  
Output Voltage Compliance Range  
DYNAMIC CHARACTERISTICS  
Throughput Rate  
-1.25  
0
100  
-
11  
-
-
-
-
-
-
-
-
-
-
-
-
-
MSPS  
ns  
Output Voltage Settling Time  
1
R
R
R
= 64(Note 4) - Settling to 0.024%  
= 64(Note 4) - Settling to 0.012%  
= 64(Note 4)  
-
-
-
-
-
-
-
-
-
-
-
-
L
L
L
( / th Scale Step Across Segment)  
16  
20  
ns  
Singlet Glitch Area, GE (Peak)  
Output Slew Rate  
1
pV•s  
V/µs  
ps  
R = 64Ω, DAC Operating in Latched Mode (Note 4)  
1,000  
675  
470  
87  
L
Output Rise Time  
R = 64Ω, DAC Operating in Latched Mode (Note 4)  
L
Output Fall Time  
R = 64Ω, DAC Operating in Latched Mode (Note 4)  
ps  
L
Spurious Free Dynamic Range within a Window  
(Note 4)  
f
f
f
f
f
f
= 10 MSPS, f  
= 20 MSPS, f  
= 40 MSPS, f  
= 50 MSPS, f  
= 80 MSPS, f  
= 1.23MHz, 2MHz Span  
= 5.055MHz, 2MHz Span  
= 16MHz, 10MHz Span  
= 10.1MHz, 2MHz Span  
= 5.1MHz, 2MHz Span  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
OUT  
OUT  
OUT  
OUT  
OUT  
77  
75  
80  
78  
= 100 MSPS, f  
= 10.1MHz, 2MHz Span  
79  
OUT  
FN4071.12  
September 20, 2006  
3
HI5741  
Electrical Specifications AV , DV = -4.94V to -5.46V, V = +4.75 to +5.25V, V = Internal,  
REF  
EE  
EE  
CC  
T
= +25°C (Continued)  
A
HI5741BI  
T
= -40°C TO +85°C  
A
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
86  
85  
77  
74  
73  
71  
76  
MAX  
UNITS  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
Spurious Free Dynamic Range to Nyquist  
(Note 4)  
f
f
f
f
f
f
= 10 MSPS, f  
= 10 MSPS, f  
= 25 MSPS, f  
= 50 MSPS, f  
= 75 MSPS, f  
= 1.023MHz, 5MHz Span  
= 2.02MHz, 5MHz Span  
= 2.02MHz, 12.5MHz Span  
= 5.055MHz, 25MHz Span  
= 7.52MHz, 37.5MHz Span  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
OUT  
OUT  
OUT  
OUT  
OUT  
= 100 MSPS, f  
= 10.1MHz, 50MHz Span  
OUT  
Multi-Tone Power Ratio  
(MTPR)  
8 Tones, no Clipping, 110kHz Spacing, 220kHz spacing  
between tones 4 and 5, f  
= 20 MSPS (Note 7)  
CLK  
REFERENCE/CONTROL AMPLIFIER  
Internal Reference Voltage, V  
(Note 5)  
(Note 4)  
(Note 4)  
-1.27  
-
-1.23  
50  
-1.17  
-
V
REF  
Internal Reference Voltage Drift  
µV/°C  
µA  
Internal Reference Output Current Sink/Source  
Capability  
-500  
-
+50  
Internal Reference Load Regulation  
Amplifier Input Impedance  
I
= 0 to I  
REF  
= -500µA  
-
-
-
-
-
-
100  
3
-
-
-
-
-
-
µV  
MΩ  
REF  
(Note 4)  
Amplifier Large Signal Bandwidth  
Amplifier Small Signal Bandwidth  
Reference Input Impedance (CTL IN)  
Reference Input Multiplying Bandwidth (CTL IN)  
4.0V  
1.0V  
Sine Wave Input, to Slew Rate Limited (Note 4)  
Sine Wave Input, to -3dB Loss (Note 4)  
1
MHz  
MHz  
kΩ  
P-P  
P-P  
5
(Note 4)  
12  
75  
R
= 50, 100mV Sine Wave, to -3dB Loss at I  
MHz  
L
OUT  
(Note 4)  
DIGITAL INPUTS (D9-D0, CLK, INVERT)  
Input Logic High Voltage, V  
(Note 5)  
(Note 5)  
(Note 5)  
(Note 5)  
(Note 4)  
2.0  
-
-
V
IH  
Input Logic Low Voltage, V  
-
-
-
-
-
-
0.8  
400  
700  
-
V
IL  
Input Logic Current, I  
Input Logic Current, I  
µA  
µA  
pF  
IH  
IL  
-
Digital Input Capacitance, C  
3.0  
IN  
TIMING CHARACTERISTICS  
Data Setup Time, t  
See Figure 1 (Note 4)  
See Figure 1 (Note 4)  
See Figure 1 (Note 4)  
See Figure 1 (Note 4)  
3
0.5  
-
2.0  
0.25  
4.5  
-
-
-
-
ns  
ns  
ns  
ns  
SU  
Data Hold Time, t  
HLD  
Propagation Delay Time, t  
PD  
CLK Pulse Width, t  
, t  
PW1 PW2  
1.0  
0.85  
POWER SUPPLY CHARACTERISTICS  
IV  
IV  
IV  
(Note 5)  
(Note 5)  
(Note 5)  
(Note 5)  
-
-
-
-
-
42  
75  
13  
650  
5
50  
95  
20  
-
mA  
mA  
EEA  
EED  
CCD  
mA  
Power Dissipation  
Power Supply Rejection Ratio  
NOTES:  
mW  
µA/V  
V
±5%, V ±5%  
EE  
-
CC  
2. Dissipation rating assumes device is mounted with all leads soldered to printed circuit board.  
3. Gain Error measured as the error in the ratio between the full scale output current and the current through R  
ratio should be 16.  
(typically 1.28mA). Ideally the  
SET  
4. Parameter guaranteed by design or characterization and not production tested.  
5. All devices are 100% tested at +25°C.  
6. Dynamic Range must be limited to a 1V swing within the compliance range.  
7. In testing MTPR, tone frequencies ranged from 1.95MHz to 3.05MHz. The ratio is measured as the range from peak power to peak distortion in  
the region of removed tones.  
FN4071.12  
September 20, 2006  
4
HI5741  
Timing Diagrams  
50%  
CLK  
D13-D0  
1
GLITCH AREA =  
/ (H x W)  
2
V
ERROR BAND  
HEIGHT (H)  
I
OUT  
t(ps)  
WIDTH (W)  
t
t
SETT  
PD  
FIGURE 1. FULL SCALE SETTLING TIME DIAGRAM  
FIGURE 2. PEAK GLITCH AREA (SINGLET) MEASUREMENT  
METHOD  
t
t
PW2  
PW1  
50%  
CLK  
t
t
t
SU  
SU  
SU  
t
t
t
HLD  
HLD  
HLD  
D13-D0  
t
SETT  
t
PD  
I
OUT  
t
t
SETT  
SETT  
t
t
PD  
PD  
FIGURE 3. PROPAGATION DELAY, SETUP TIME, HOLD TIME AND MINIMUM PULSE WIDTH DIAGRAM  
FN4071.12  
September 20, 2006  
5
HI5741  
Typical Performance Curves  
-1.17  
-1.18  
-1.19  
-1.20  
-1.21  
-1.22  
-1.23  
-1.24  
-1.25  
-1.26  
-1.27  
670  
660  
650  
640  
630  
620  
NOTE: CLOCK FREQUENCY DOES NOT  
610  
ALTER POWER DISSIPATION  
600  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 4. TYPICAL POWER DISSIPATION OVER  
TEMPERATURE  
FIGURE 5. TYPICAL REFERENCE VOLTAGE OVER  
TEMPERATURE  
1.5  
1.0  
0.5  
0
0.8  
0.5  
0.25  
0
-0.5  
-1.0  
-1.5  
-0.25  
-0.5  
-0.8  
0
5000  
10,000  
15,000  
0
5000  
10,000  
CODE  
15,000  
CODE  
FIGURE 6. TYPICAL INL PERFORMANCE  
FIGURE 7. TYPICAL DNL PERFORMANCE  
40  
35  
30  
25  
20  
15  
10  
5
4.2  
4.0  
3.8  
3.6  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
0
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FIGURE 8. TYPICAL OFFSET CURRENT OVER  
TEMPERATURE  
FIGURE 9. TYPICAL GAIN ERROR OVER TEMPERATURE  
FN4071.12  
September 20, 2006  
6
HI5741  
Typical Performance Curves (Continued)  
90  
85  
80  
75  
70  
65  
60  
90  
85  
80  
75  
70  
65  
1
= ( / ) f  
1
f
f
= ( / ) f  
CLK  
OUT  
10 CLK  
OUT  
5
60  
10  
20  
30  
40  
50 60 70 80 90100  
10  
20  
30  
40  
50 60 70 80 90100  
f
(MSPS)  
CLK  
f
(MSPS)  
CLK  
FIGURE 10. SFDR vs CLOCK FREQUENCY  
FIGURE 11. SFDR vs CLOCK FREQUENCY  
82  
80  
76  
74  
72  
70  
68  
66  
64  
62  
82  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
f
= 75 MSPS  
CLK  
f
= 50 MSPS  
CLK  
1
5
10  
15  
1
5
10  
f
(MSPS)  
OUT  
f
(MHz)  
OUT  
FIGURE 12. SFDR vs f  
FIGURE 13. SFDR vs f  
OUT  
OUT  
80  
78  
76  
74  
72  
70  
68  
66  
64  
62  
-72  
-74  
-76  
-78  
-80  
-82  
-84  
-86  
f
= 2.03MHz  
OUT  
3RD HARMONIC  
2ND HARMONIC  
f
= 100 MSPS  
CLK  
1
5
10  
15  
20  
10  
20  
30  
40  
50 60 70 80 90100  
f
(MHz)  
f
(MSPS)  
OUT  
CLK  
FIGURE 14. SFDR vs f  
FIGURE 15. HARMONIC DISTORTION vs CLOCK FREQUENCY  
OUT  
FN4071.12  
September 20, 2006  
7
HI5741  
Typical Performance Curves (Continued)  
10dB/  
10dB/  
f
= 20 MSPS  
CLK  
f
f
= 100 MSPS  
= 26.6MHz  
MTPR = 75.17dBc  
CLK  
OUT  
SFDR = 77.5dBc  
S
S
C
C
CENTER 26.637MHz  
START 1.900MHz  
SPAN 2.000MHz  
STOP 3.100MHz  
FIGURE 17. SFDR WITHIN A WINDOW  
FIGURE 16. TYPICAL MTPR PERFORMANCE  
12-BIT WINDOW  
: 240µV  
@: -30.96mV  
: 300µV  
@: -124.1mV  
SETTLING TIME  
~10ns  
1
1
GLITCH = (0.5) • (300µV) • (3.3ns)  
= 0.495pV/s  
CH1 1.00mV~  
M 5.0ns CH1  
-16.9mV  
CH1 1.00mV  
M 5.0ns CH1  
-109mV  
FIGURE 18. TYPICAL SETTLING TIME PERFORMANCE  
FIGURE 19. TYPICAL GLITCH ENERGY  
Pin Descriptions  
PIN NO.  
1-14  
15  
PIN NAME  
PIN DESCRIPTION  
D13 (MSB) thru D0 (LSB) Digital Data Bit 13, the Most Significant Bit through Digital Data Bit 0, the Least Significant Bit.  
CLK  
DV  
Data Clock Pin 100kHz to 100 MSPS.  
Digital Logic Supply +5V.  
Digital Ground.  
16  
CC  
DGND  
17, 28  
18  
DV  
-5.2V Logic Supply.  
EE  
23  
R
External Resistor to set the full scale output current. I = 16 x (V  
FS  
/R ). Typically 976.  
REFOUT SET  
SET  
27  
AGND  
ARTN  
Analog Ground Supply current return pin.  
Analog Signal Return for the R/2R ladder.  
Current Output Pin.  
19  
21  
I
I
OUT  
OUT  
20  
Complementary Current Output pin.  
-5.2V Analog Supply.  
22  
AV  
EE  
24  
CTRL AMP IN  
CTRL AMP OUT  
REF OUT  
Input to the current source base rail. Typically connected to CTRL AMP OUT and a 0.1µF capacitor to AV  
Allows external control of the current sources.  
.
EE  
25  
26  
Control amplifier out. Provides precision control of the current sources when connected to CTRL AMP IN  
such that I = 16 x (V /R ).  
FS REFOUT SET  
-1.23V (typical) bandgap reference voltage output. Can sink up to 500µA or be overdriven by an external  
reference capable of delivering up to 2mA.  
FN4071.12  
September 20, 2006  
8
HI5741  
Detailed Description  
HI5741  
DAC  
Z
= 50Ω  
O
The HI5741 is a 14-bit, current out D/A converter. The DAC  
can convert at 100 MSPS and runs on +5V and -5.2V  
supplies. The architecture is an R/2R and segmented  
switching current cell arrangement to reduce glitch. Laser  
trimming is employed to tune linearity to true 14-bit levels.  
The HI5741 achieves its low power and high speed  
performance from an advanced BiCMOS process. The  
HI5741 consumes 650mW (typical) and has an improved  
hold time of only 0.25ns (typical). The HI5741 is an excellent  
converter for use in communications applications and high  
performance video systems.  
CLK  
R
= 50Ω  
T
FIGURE 20. HI5741 CLOCK LINE TERMINATION  
Rise and Fall times and propagation delay of the line will be  
affected by the shunt terminator. The terminator should be  
connected to DGND.  
Noise Reduction  
To reduce power supply noise, separate analog and digital  
power supplies should be used with 0.1µF and 0.01µF  
ceramic capacitors placed as close to the body of the  
Digital Inputs  
HI5741 as possible on the analog (AV ) and digital (DV  
supplies. The analog and digital ground returns should be  
connected together back at the device to ensure proper  
)
The HI5741 is a TTL/CMOS compatible D/A. Data is latched  
by a Master register. Once latched, data inputs D0 (LSB)  
through D13 (MSB) are internally translated from TTL to ECL.  
The internal latch and switching current source controls are  
implemented in ECL technology to maintain high switching  
speeds and low noise characteristics.  
EE  
EE  
operation on power up. The V  
power pin should also be  
CC  
decoupled with a 0.1µF capacitor.  
Reduction of digital noise (caused by high slew rates on the bit  
inputs to the HI5741) can be accomplished through the use of  
series termination resistors. The use of serial resistors, which  
combine with the input capacitance of the HI5741 to induce a  
low pass filter characteristic, keeps the noise generated by high  
slew rate digital signals from corrupting the high accuracy  
analog data. Refer to Application Note AN9619 “Optimizing  
setup conditions for high accuracy measurements of the  
HI5741” for further details on selecting the proper value of  
series termination to meet application specific needs.  
Decoder/Driver  
The architecture employs a split R/2R ladder and segmented  
current source arrangement. Bits D0 (LSB) through D9 directly  
drive a typical R/2R network to create the binary weighted  
current sources. Bits D10 through D13 (MSB) pass through a  
“thermometer” decoder that converts the incoming data into 15  
individual segmented current source enables. This split  
architecture helps to improve glitch, thus resulting in a  
more constant glitch characteristic across the entire output  
transfer function.  
Reference  
The internal reference of the HI5741 is a -1.23V (typical)  
bandgap voltage reference with 50µV/°C of temperature drift  
(typical). The internal reference is connected to the Control  
Amplifier which in turn drives the segmented current cells.  
Reference Out (REF OUT) is internally connected to the  
Control Amplifier. The Control Amplifier Output (CTRL OUT)  
should be used to drive the Control Amplifier Input (CTRL IN)  
Clocks and Termination  
The internal 14-bit register is updated on the rising edge of the  
clock. Since the HI5741 clock rate can run to 100 MSPS, to  
minimize reflections and clock noise into the part, proper  
termination should be used. In PCB layout clock runs should  
be kept short and have a minimum of loads. To guarantee  
consistent results from board to board, controlled impedance  
and a 0.1µF capacitor to analog V . This improves settling  
EE  
PCBs should be used with a characteristic line impedance Z  
of 50.  
O
time by providing an AC ground at the current source base  
node. The Full Scale Output Current is controlled by the REF  
To terminate the clock line, a shunt terminator to ground is  
the most effective type at a 100 MSPS clock rate. A typical  
value for termination can be determined by the equation:  
OUT pin and the set resistor (R  
). The ratio is:  
) x 16.  
SET  
I
(Full Scale) = (V  
/R  
OUT  
REF OUT SET  
R
= Z  
O
The internal reference (REF OUT) can be overdriven with a  
more precise external reference to provide better  
performance over temperature. Figure 21 illustrates a typical  
external reference configuration.  
T
for the termination resistor. For a controlled impedance board  
with a Z of 50, the R = 50. Shunt termination is best  
used at the receiving end of the transmission line or as close  
O
T
to the HI5741 CLK pin as possible.  
HI5741  
-1.25V  
(26) REF OUT  
R
-5.2V  
FIGURE 21. EXTERNAL REFERENCE CONFIGURATION  
FN4071.12  
September 20, 2006  
9
HI5741  
Multiplying Capability  
TABLE 1. CAPACITOR SELECTION  
The HI5741 can operate in two different multiplying  
configurations. For frequencies from DC to 100kHz, a signal  
f
C
C
2
IN  
1
100kHz  
>1MHz  
0.01µF  
1µF  
of up to 0.6V  
can be applied directly to the REF OUT pin  
P-P  
0.001µF  
0.1µF  
as shown in Figure 22.  
Also, the input signal must be limited to 1V  
P-P  
distortion in the DAC output current caused by excessive  
modulation of the internal current sources.  
to avoid  
CTRL OUT  
CTRL IN  
0.01µF  
AV  
EE  
HI5741  
Outputs  
REF OUT  
RSET  
C
(OPTIONAL)  
IN  
V
The outputs I  
OUT  
and I  
OUT  
outputs. Current is steered to either I  
are complementary current  
or I in proportion  
IN  
OUT  
OUT  
to the digital input code. The sum of the two currents is always  
equal to the full scale current minus one LSB. The current  
output can be converted to a voltage by using a load resistor.  
Both current outputs should have the same load resistor (64Ω  
typically). By using a 64load on the output, a 50effective  
FIGURE 22. LOW FREQUENCY MULTIPLYING BANDWIDTH  
CIRCUIT  
The signal must have a DC value such that the peak  
negative voltage equals -1.25V. Alternately, a capacitor can  
be placed in series with REF OUT if a DC multiplying is not  
required. The lower input bandwidth can be calculated using  
the following formula:  
output resistance (R  
) is achieved due to the 227(±15%)  
OUT  
parallel resistance seen looking back into the output. This is the  
nominal value of the R2R ladder of the DAC. The 50output is  
needed for matching the output with a 50line. The load  
resistor should be chosen so that the effective output resistance  
1
C
= -------------------------------------------  
IN  
(R  
) matches the line resistance. The output voltage is:  
OUT  
(2π)(1400)(f  
)
IN  
V
I
= I  
x R .  
OUT  
OUT  
OUT  
For multiplying frequencies above 100kHz, the CTRL IN pin  
can be driven directly as seen in Figure 23.  
is defined in the reference section. I  
OUT  
is not trimmed to  
OUT  
14 bits, so it is not recommended that it be used in conjunction  
HI5741  
with I in a differential-to-single-ended application. The  
OUT  
compliance range of the output is from -1.25V to 0V, with a  
CTRL OUT  
C
2
1V  
P-P  
voltage swing allowed within this range.  
200Ω  
AV  
EE  
TABLE 2. INPUT CODING vs CURRENT OUTPUT  
V
C
1
IN  
INPUT CODE (D13-D0)  
I
(mA)  
I
(mA)  
OUT  
CTRL IN  
OUT  
11 1111 1111 1111  
10 0000 0000 0000  
00 0000 0000 0000  
-20.48  
0
50Ω  
-10.24  
0
-10.24  
-20.48  
FIGURE 23. HIGH FREQUENCY MULTIPLYING BANDWIDTH  
CIRCUIT  
Settling Time  
The nominal input/output relationship is defined as:  
The settling time of the HI5741 is measured as the time it  
V  
IN  
I  
= -------------  
takes for the output of the DAC to settle to within a ±defined  
1
OUT  
80Ω  
error band of its final value during a / th (code 0000... to  
16  
In order to prevent the full scale output current from  
exceeding 20.48mA, the R resistor must be adjusted  
according to the following equation:  
0001 0000.... or 1111... to 1110 1111...) scale transition. In  
defining settling time specifications for the HI5741, two levels  
of accuracy are considered. The accuracy levels defined for  
the HI5741 are 12 (or 0.024%) and 13 (0.012%) bits.  
SET  
16V  
REF  
R
= -----------------------------------------------------------------------------------------  
SET  
V
Glitch  
IN(PEAK)  
-----------------------------  
I
(Full scale) –  
OUT  
80Ω  
The output glitch of the HI5741 is measured by summing the  
area under the switching transients after an update of the  
DAC. Glitch is caused by the time skew between bits of the  
incoming digital data. Typically, the switching time of digital  
inputs are asymmetrical meaning that the turn off time is  
faster than the turn on time (TTL designs). Unequal delay  
paths through the device can also cause one current source  
The circuit in Figure 23 can be tuned to adjust the lower  
cutoff frequency by adjusting capacitor values. Table 1  
illustrates the relationship.  
FN4071.12  
September 20, 2006  
10  
HI5741  
to change before another. In order to minimize this, the  
Intersil HI5741 employs an internal register, just prior to the  
current sources, which is updated on the clock edge. Lastly,  
the worst case glitch on traditional D/A converters usually  
occurs at the major transition (i.e., code 8191 to 8192).  
However, due to the split architecture of the HI5741, the  
glitch is moved to the 1023 to 1024 transition (and every  
subsequent 1024 code transitions thereafter). This split  
R/2R segmented current source architecture, which  
decreases the amount of current switching at any one time,  
makes the glitch practically constant over the entire output  
range. By making the glitch a constant size over the entire  
output range this effectively integrates this error out of the  
end application.  
5kΩ  
-
-
REF OUT  
(26)  
+
+
5kΩ  
60Ω  
1
1
/
CA2904  
/
CA2904  
2
2
0.1µF  
240Ω  
240Ω  
HI5741  
50Ω  
I
OUT  
(21)  
V
OUT  
-
+
HFA1100  
FIGURE 26. BIPOLAR OUTPUT CONFIGURATION  
Interfacing to the HSP45106 NCO-16  
In measuring the output glitch of the HI5741 the output is  
terminated into a 64load. The glitch is measured at any  
one of the current cell carry (code 1023 to 1024 transition or  
any multiple thereof) throughout the DACs output range.  
The HSP45106 is a 16-bit Numerically Controlled Oscillator  
(NCO). The HSP45106 can be used to generate various  
modulation schemes for Direct Digital Synthesis (DDS)  
applications. Figure 27 shows how to interface an HI5741 to  
the HSP45106.  
The glitch energy is calculated by measuring the area under  
the voltage-time curve. Figure 25 shows the area considered  
as glitch when changing the DAC output. Units are typically  
specified in picoVolt/seconds (pV/s).  
Definition of Specifications  
Integral Linearity Error (INL) is the measure of the worst  
case point that deviates from a best fit straight line of data  
values along the transfer curve.  
HI5741  
100MHz  
SCOPE  
LOW PASS  
FILTER  
(21) I  
OUT  
Differential Linearity Error (DNL) is the measure of the error  
in step size between adjacent codes along the converter’s  
transfer curve. Ideally, the step size is 1 LSB from one code to  
the next, and the deviation from 1 LSB is known as DNL. A  
DNL specification of greater than -1 LSB guarantees  
monotonicity.  
64Ω  
50Ω  
FIGURE 24. GLITCH TEST CIRCUIT  
Feedthru is the measure of the undesirable switching noise  
coupled to the output.  
Output Voltage Full Scale Settling Time is the time  
required from the 50% point on the clock input for a full scale  
1
a (mV)  
step to settle within an ± / LSB error band.  
2
Output Voltage Small Scale Settling Time is the time  
GLITCH ENERGY = (a x t)/2  
required from the 50% point on the clock input for a 100mV  
1
step to settle within an / LSB error band. This is used by  
2
t (ns)  
applications reconstructing highly correlated signals such as  
sine waves with more than 5 points per cycle.  
FIGURE 25. MEASURING GLITCH ENERGY  
Glitch Area (GE) is the switching transient appearing on the  
output during a code transition. It is measured as the area  
under the curve and expressed as a volt • time specification  
(typically pV-s).  
Applications  
Bipolar Applications  
To convert the output of the HI5741 to a bipolar 4V swing,  
the following applications circuit is recommended. The  
reference can only provide 125µA of drive, so it must be  
buffered to create the bipolar offset current needed to  
generate the -2V output with all bits ‘off’. The output current  
must be converted to a voltage and then gained up and  
offset to produce the proper swing. Care must be taken to  
compensate for the voltage swing and error.  
Differential Gain (A ) is the gain error from an ideal sine  
V
wave with a normalized amplitude.  
Differential Phase (∆Φ) is the phase error from an ideal sine  
wave.  
FN4071.12  
September 20, 2006  
11  
HI5741  
Signal to Noise Ratio (SNR) is the ratio of a fundamental to  
Multi-Tone Power Ratio (MTPR) is the amplitude difference  
from peak amplitude to peak distortion (either harmonic or  
non-harmonic). An 8 tone pattern is loaded into the D/A. The  
tone spacing of this pattern (f) is created such that tones 1  
through 4 and 5 through 8 are spaced equally, with tones 4  
and 5 spaced at 2f. MTPR is measured as the dynamic  
range from peak power to peak distortion in the 2f gap.  
the noise floor of the analog output. The first 5 harmonics  
1
are ignored, and an output filter of / the clock frequency is  
2
used to eliminate alias products.  
Total Harmonic Distortion (THD) is the ratio of the DAC  
output fundamental to the RMS sum of the harmonics. The  
1
first 5 harmonics are included, and an output filter of / the  
2
clock frequency is used to eliminate alias products.  
Intermodulation Distortion (IMD) is the measure of the  
sum and difference products produced when a two tone  
input is driven into the D/A. The distortion products created  
will arise at sum and difference frequencies of the two tones.  
IMD can be calculated using the following equation:  
Spurious Free Dynamic Range (SFDR) is the amplitude  
difference from a fundamental to the largest harmonically or  
non-harmonically related spur. A sine wave is loaded into  
1
the D/A and the output filtered at / the clock frequency to  
2
20Log (RMS of Sum and Difference Distortion Products)  
eliminate noise from clocking alias terms.  
IMD = ------------------------------------------------------------------------------------------------------------------------------------------------------  
(RMS Amplitude of the Fundamental)  
U2  
K9  
33 MSPS  
CLK  
CLK  
C11  
B11  
C10  
TO RF  
UP-CONVERT  
STAGE  
MOD2  
MOD1  
BASEBAND  
BIT  
STREAM  
FILTER  
ENCODER  
U1  
DV  
MOD0  
16  
R
1
V
CC  
CC  
L1  
21  
20  
A11  
I
DACSTRB  
OUT  
/
PMSEL  
K3  
L2  
L3  
L4  
J5  
K5  
L5  
K6  
J6  
J7  
L7  
L6  
L8  
K8  
L9  
L10  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
64  
F10  
F9  
F11  
H11  
G11  
G9  
D13 (MSB)  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
SIN15  
SIN14  
SIN13  
SIN12  
SIN11  
SIN10  
SIN9  
SIN8  
SIN7  
SIN6  
SIN5  
SIN4  
SIN3  
SIN2  
SIN1  
SIN0  
ENPOREG  
ENOFREG  
ENCFREG  
ENPHAC  
ENTIREG  
INHOFR  
R
2
I
OUT  
64  
24  
25  
C AMP IN  
-5.2V_A  
-5.2V_A  
J11  
G10  
C
0.1µF  
0.01µF  
2
1
INITPAC  
INITTAC  
C AMP OUT  
C
D10  
J10  
TEST  
V
PARSER  
BINFMT  
CC  
26  
23  
19  
CONTROLLER  
K11  
REF OUT  
D0 (LSB)  
R
3
R
B8  
A8  
B6  
B7  
A7  
C7  
C6  
A6  
A5  
C5  
A4  
B4  
A3  
A2  
B3  
A1  
15  
SET  
C15_MSB  
C4  
CLK  
976  
R
50  
4
28  
17  
DGND  
DGND  
C13  
C12  
C11  
C10  
C9  
C8  
C7  
C6  
C5  
C4  
C3  
ARET  
27  
22  
AV  
AV  
SS  
C2  
B1  
C1  
D1  
E3  
E2  
E1  
F2  
F3  
G3  
G1  
G2  
H1  
H2  
J1  
COS15  
COS14  
COS13  
COS12  
COS11  
COS10  
COS9  
COS8  
COS7  
COS6  
COS5  
COS4  
COS3  
COS2  
COS1  
COS0  
18  
-5.2V_A  
DV  
EE  
EE  
-5.2V_D  
HI5741  
L
1
-5.2V_D  
-5.2V_A  
10µH  
C2  
C1  
C0  
B10  
B9  
A10  
E11  
E9  
A2  
A1  
A0  
CS  
WR  
L
2
10µH  
K1  
H10  
B2  
V
V
PACI  
TICO  
CC  
K2  
J2  
OES  
OEC  
CC  
HSP45106  
FIGURE 27. PSK MODULATOR USING THE HI5741 AND HSP45106 16-BIT NCO  
FN4071.12  
September 20, 2006  
12  
HI5741  
Small Outline Plastic Packages (SOIC)  
M28.3 (JEDEC MS-013-AE ISSUE C)  
N
28 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE  
INDEX  
0.25(0.010)  
M
B M  
H
AREA  
INCHES  
MILLIMETERS  
E
SYMBOL  
MIN  
MAX  
MIN  
2.35  
0.10  
0.33  
0.23  
MAX  
2.65  
0.30  
0.51  
0.32  
18.10  
7.60  
NOTES  
-B-  
A
A1  
B
C
D
E
e
0.0926  
0.0040  
0.013  
0.1043  
0.0118  
0.0200  
0.0125  
-
-
1
2
3
L
9
SEATING PLANE  
A
0.0091  
0.6969  
0.2914  
-
0.7125 17.70  
3
-A-  
o
h x 45  
D
0.2992  
7.40  
4
0.05 BSC  
1.27 BSC  
-
-C-  
α
µ
H
h
0.394  
0.01  
0.419  
0.029  
0.050  
10.00  
0.25  
0.40  
10.65  
0.75  
1.27  
-
e
A1  
C
5
B
0.10(0.004)  
L
0.016  
6
0.25(0.010) M  
C A M B S  
N
α
28  
28  
7
o
o
o
o
0
8
0
8
-
NOTES:  
Rev. 0 12/93  
1. Symbols are defined in the “MO Series Symbol List” in Section 2.2  
of Publication Number 95.  
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.  
3. Dimension “D” does not include mold flash, protrusions or gate  
burrs. Mold flash, protrusion and gate burrs shall not exceed  
0.15mm (0.006 inch) per side.  
4. Dimension “E” does not include interlead flash or protrusions. In-  
terlead flash and protrusions shall not exceed 0.25mm (0.010  
inch) per side.  
5. The chamfer on the body is optional. If it is not present, a visual  
index feature must be located within the crosshatched area.  
6. “L” is the length of terminal for soldering to a substrate.  
7. “N” is the number of terminal positions.  
8. Terminal numbers are shown for reference only.  
9. The lead width “B”, as measured 0.36mm (0.014 inch) or greater  
above the seating plane, shall not exceed a maximum value of  
0.61mm (0.024 inch)  
10. Controlling dimension: MILLIMETER. Converted inch dimen-  
sions are not necessarily exact.  
All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.  
Intersil Corporation’s quality certifications can be viewed at www.intersil.com/design/quality  
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without  
notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and  
reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result  
from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.  
For information regarding Intersil Corporation and its products, see www.intersil.com  
FN4071.12  
September 20, 2006  
13  

相关型号:

HI5741BIB

14-Bit, 100MSPS, High Speed D/A Converter
INTERSIL

HI5741BIB-T

14-Bit, 100MSPS, High Speed D/A Converter
INTERSIL

HI5741BIBZ

14-Bit, 100MSPS, High Speed D/A Converter
INTERSIL

HI5741BIBZ-T

14-Bit, 100MSPS, High Speed D/A Converter
INTERSIL

HI5741BIP

14-Bit, 100 MSPS, High Speed D/A Converter
INTERSIL

HI5741_06

14-Bit, 100MSPS, High Speed D/A Converter
INTERSIL

HI5746

10-Bit, 40 MSPS A/D Converter
INTERSIL

HI5746EVAL1

10-Bit, 40 MSPS A/D Converter
INTERSIL

HI5746KCA

10-Bit, 40 MSPS A/D Converter
INTERSIL

HI5746KCAZ

10-Bit, 40MSPS A/D Converter
INTERSIL

HI5746KCB

10-Bit, 40 MSPS A/D Converter
INTERSIL

HI5746KCB-T

Analog-to-Digital Converter, 10-Bit
ETC