HFBR-5602 [ETC]

Gigabit Interface Converters (GBIC) for Fibre Channel/Storage Applications ; 千兆位接口转换器( GBIC )光纤通道/存储应用\n
HFBR-5602
型号: HFBR-5602
厂家: ETC    ETC
描述:

Gigabit Interface Converters (GBIC) for Fibre Channel/Storage Applications
千兆位接口转换器( GBIC )光纤通道/存储应用\n

转换器 光纤 存储
文件: 总14页 (文件大小:176K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Agilent HFBR-5602/HFCT-5612  
Gigabit Interface Converters  
(GBIC) for Fibre Channel  
Data Sheet  
Features  
Compliant with Gigabit Interface  
Converter specification Rev. 5.4 (1)  
HFBR-5602 is compliant with ANSI  
X3.297-1996 Fibre Channel Physical  
Interface FC-PH-2 Revision 7.4  
proposed specifications  
HFCT-5612 is compliant with ANSI  
100-SM-LC-L Revision 2  
enhancement to X3.297-1996  
FC-PH-2 Revision 7.4  
Performance:  
HFBR-5602:  
300 m over 62.5/125 µm MMF  
500 m over 50/125 µm MMF  
HFCT-5612:  
500 m with 50/125 µm MMF  
500 m with 62.5/125 µm MMF  
10 km with 9/125 µm SMF  
Horizontal or vertical installation  
AEL Laser Class 1 eye safe per  
IEC 60825-1  
Description  
The mechanical and electrical  
interfaces of these converters to  
the host system are identical for  
all implementations of the  
converter regardless of external  
media type. A 20-pin connector is  
used to connect the converter to  
the host system. Surge currents  
are eliminated by using pin  
The HFBR-56xx/HFCT-56xx  
family of interface converters  
meet the Gigabit Interface  
Converter specification Rev. 5.4.  
The family provides a uniform  
form factor for a wide variety of  
standard connections to  
transmission media. The  
converters can be inserted or  
removed from a host chassis  
AEL Laser Class I eye safe per  
US 21 CFR  
Hot-Pluggable  
sequencing at this connector and  
a slow-start circuit. Two ground  
Applications  
without removing power from the tabs at this connector also make  
Mass storage system I/O  
Computer system I/O  
High-speed peripheral interface  
High-speed switching systems  
Host adapter I/O  
host system.  
contact before any other pins,  
discharging possible component-  
damaging static electricity. In  
addition, the connector itself  
performs a two-stage contact  
sequence. Operational signals and  
power supply ground make  
contact in stage 1 while power  
makes contact in stage 2.  
The converters are suitable for  
interconnections in the Fibre  
Channel mass storage and data  
transfer environment. The design  
of these converters is also  
RAID cabinets  
Related Products  
practical for other high  
850 nm 1 x 9 VCSEL transceiver for  
Fibre Channel applications  
(HFBR-53D3)  
1300 nm, 1 x 9 laser transceiver for  
Fibre Channel applications  
(HFCT-53D3)  
Physical layer ICs available for  
optical or copper interface  
(HDMP-1536A/46A)  
Versions of both 1 x 9 and GBIC  
transceiver module for Gigabit  
Ethernet  
performance, point-to-point  
communication requiring gigabit  
interconnections. Since the  
The HFBR-5602 has been  
converters are hot-pluggable, they developed with 850 nm short  
allow system configuration wavelength VCSEL technology  
changes or maintenance simply by while the HFCT-5612 is based on  
plugging in a different type of  
converter.  
1300 nm long wavelength Fabry  
Perot laser technology.  
The HFBR-5602 complies with  
Electrostatic Discharge (ESD)  
Immunity  
Annex E of the GBIC specification There are two design cases in  
Equipment utilizing these  
Revision 5.4. In the Fibre Channel  
environment, the HFBR-5602  
achieves 300 m transmission  
distance with 62.5 µm and 50 µm  
multimode fibre.  
which immunity to ESD damage is transceivers will be subject to  
important.  
radio-frequency electromagnetic  
fields in some environments.  
These transceivers have good  
immunity to such fields due to  
their shielded design.  
The first case is during handling of  
the transceiver prior to inserting it  
into the host system. It is  
The HFCT-5612 complies with  
important to use normal ESD  
Annex C of the GBIC specification handling precautions for ESD  
Eye Safety  
Revision 5.4 and reaches 10 km  
with 9/125 µm single mode fiber.  
Both the HFBR-5602 and the  
HFCT-5612 are Class 1 Eye Safe  
laser devices.  
sensitive devices. These  
precautions include using  
grounded wrist straps, work  
benches, and floor mats in ESD  
controlled areas.  
Laser-based GBIC transceivers  
provide Class 1 (IEC 60825-1) and  
Class I (US 21 CFR[J]) laser eye  
safety by design. Agilent has  
tested the current transceiver  
design for compliance with the  
requirements listed below under  
normal operating conditions and  
for compliance under single fault  
conditions.  
Serial Identification  
The HFBR-56xx and HFCT-5612  
family complies with Annex D  
(Module Definition 4) of the GBIC There are two guide tabs  
specification Revision 5.4, which  
defines the Serial Identification  
Protocol.  
The second case to consider is  
static discharges during insertion  
of the GBIC into the host system.  
integrated into the 20-pin  
connector on the GBIC. These  
guide tabs are connected to  
circuit ground. When the GBIC is  
inserted into the host system,  
these tabs shall engage before any Converter specification Rev. 5.4.  
of the connector pins. The mating  
connector in the host system  
should have its tabs connected to  
circuit ground. This discharges  
Outline Drawing  
An outline drawing is shown in  
Figure 1. More detailed drawings  
are shown in Gigabit Interface  
Definition 4 specifies a serial  
definition protocol. For this  
definition, upon power up,  
MOD_DEF(1:2) (Pins 5 and 6 on  
the 20-pin connector) appear as  
NC. Pin 4 is TTL ground. When the  
host system detects this  
CAUTION:  
There are no user serviceable  
parts nor any maintenance  
required for the HFBR-56xx and  
any stray static charges and  
condition, it activates the public  
domain serial protocol. The  
protocol uses the 2-wire serial  
HFCT-56xx product family. All  
establishes a reference for the  
adjustments are made at the  
factory before shipment to our  
customers. Tampering with or  
power supplies that are sequenced  
later.  
2
CMOS E PROM protocol of the  
ATMEL AT24C01A or similar.  
Electromagnetic Interference (EMI)  
Most equipment designs utilizing  
these high-speed transceivers  
from Agilent will be required to  
meet the requirements of FCC in  
the United States, CENELEC  
EN55022 (CISPR 22) in Europe  
and VCCI in Japan.  
modifying the performance of any  
Agilent GBIC unit will result in  
voided product warranty. It may  
also result in improper operation  
of the circuitry, and possible  
overstress of the semiconductor  
components. Device degradation  
or product failure may result.  
The data transfer protocol and the  
details of the mandatory and  
vendor specific data structures  
are defined in Annex D of the  
GBIC specification Revision 5.4.  
Regulatory Compliance  
See the Regulatory Compliance  
Table for the targeted typical and  
measured performance for these  
transceivers.  
The overall equipment design will  
determine the level it is able to be  
certified to. These transceiver  
performance targets are offered as  
a figure of merit to assist the  
designer in considering their use  
in equipment designs.  
2
GBIC Serial ID Memory Contents - HFBR-5602  
Addr  
0
1
2
3
4
5
6
7
Hex  
1
5
1
0
0
0
0
40  
40  
0C  
1
1
0B  
0
0
0
32  
1E  
0
ASCII  
Addr  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
Hex  
48  
46  
42  
52  
2D  
35  
36  
30  
32  
20  
20  
20  
20  
20  
20  
20  
30  
30  
30  
30  
0
ASCII  
Addr  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
Hex  
39  
38  
30  
36  
32  
33  
30  
33  
32  
39  
33  
36  
38  
39  
34  
32  
39  
38  
30  
36  
32  
33  
30  
30  
0
ASCII  
Addr  
96  
97  
98  
99  
Hex  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
ASCII  
H
F
B
R
-
5
6
0
2
9
8
0
6
2
3
0
3
2
9
3
6
8
9
4
2
9
8
0
6
2
3
0
0
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
0
0
0
0
0
41  
47  
49  
4C  
45  
4E  
54  
20  
20  
20  
20  
20  
20  
20  
20  
20  
0
A
G
I
0
0
6
0
1A  
0
0
L
E
N
T
0
0
0
0
0
0
Note: Blanks in ASCII column are numeric values not ASCII characters.  
3
GBIC Serial ID Memory Contents - HFCT-5612  
Addr  
0
1
2
3
4
5
6
7
Hex  
1
3
1
0
0
0
0
12  
0
0D  
1
1
0B  
0
0
64  
32  
32  
0
ASCII  
Addr  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
Hex  
48  
46  
43  
54  
2D  
35  
36  
31  
32  
20  
20  
20  
20  
20  
20  
20  
30  
30  
30  
30  
0
ASCII  
Addr  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
Hex  
39  
38  
30  
36  
31  
38  
31  
31  
30  
33  
31  
32  
31  
33  
30  
30  
39  
38  
30  
36  
31  
38  
30  
30  
0
ASCII  
Addr  
96  
97  
98  
99  
Hex  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
ASCII  
H
F
C
T
-
5
6
1
2
9
8
0
6
1
8
1
1
0
3
1
2
1
3
0
0
9
8
0
6
1
8
0
0
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
0
0
0
0
0
41  
47  
49  
4C  
45  
4E  
54  
20  
20  
20  
20  
20  
20  
20  
20  
20  
0
A
G
I
0
0
31  
0
1A  
0
L
E
N
T
0
0
E6  
0
0
0
0
Note: Blanks in ASCII column are numeric values not ASCII characters.  
4
Figure 1. Outline Drawing of HFBR-5602 and HFCT-5612.  
5
Connection of either the  
HFBR-5602 or the HFCT-5612 to a  
non-approved optical source,  
operating above the  
recommended absolute maximum  
conditions, or operating in a  
manner inconsistent with unit  
design and function, may result in  
hazardous radiation exposure and  
may be considered an act of  
modifying or manufacturing a  
laser product. The person(s)  
performing such an act is required  
by law to recertify the laser  
product under the provisions of  
US 21 CFR (Subchapter J).  
Regulatory Compliance  
Feature  
Test Method  
Targeted Performance  
Electrostatic Discharge MIL-STD-883C  
Class 1 (>2000 V)  
(ESD) to the Electrical  
Pins  
Method 3015.4  
Electrostatic Discharge Variation of IEC 801-2  
(ESD) to the Duplex SC  
Receptacle  
Typically withstand at least 15 kV without damage  
when port is contacted by a Human Body Model  
probe.  
Electromagnetic  
Interference (EMI)  
FCC Class B  
CENELEC EN55022 Class B  
(CISPR 22A)  
Margins are dependent on customer board and  
chassis design.  
VCCI Class 1  
Immunity  
Variation of IEC 801-3  
Typically show no measurable effect from a  
10 V/m field swept from 27 to 1000 MHz applied to  
the transceiver without a chassis enclosure  
Laser Eye Safety  
US 21 CFR, Subchapter J per  
paragraphs 1002.10 and 1002.12  
AEL Class I, FDA/CDRH  
HFBR-5602 Accession No. 9720151-04  
HFCT-5612 Accession No. 9521220-16  
AEL Class 1, TUV Rheinland of North America  
HFBR-5602 Certificate No. R9771018-7  
HFCT-5612 Certificate No. 933/51083 Protection  
Class III  
EN 60825-1: 1994+A11  
EN 60825-2: 1994  
EN 60950: 1992+A1+A2+A3  
Component Recognition Underwriters Laboratories and  
Canadian Standards Association  
Joint Component Recognition for  
Information Technology Equipment  
Including Electrical Business  
UL File E173874 (Pending)  
Equipment.  
Note: HFBR-5602 is non-compliant for Tx fault timing.  
6
20-Pin SCA-2 Host Connector Characteristics  
Table 1. SCA-2 Host connector pin assignment  
Pin  
1
2
3
4
5
6
7
8
Name  
RX_LOS  
RGND  
RGND  
MOD_DEF(0)  
MOD_DEF(1)  
MOD_DEF(2)  
TX_DISABLE*  
TGND  
Sequence  
Pin  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Name  
RGND  
-RX_DAT  
+RX_DAT  
RGND  
VDDR  
VDDT  
TGND  
Sequence  
2
2
2
2
2
2
2
2
2
2
1
1
1
1
2
2
1
1
1
1
+TX_DAT  
-TX_DAT  
TGND  
9
10  
TGND  
TX_FAULT  
Notes:  
A sequence value of 1 indicates that the signal is in the first group to engage during plugging of a module. A sequence value of 2 indicates that  
the signal is the second and last group. The two guide pins integrated on the connector are connected to TGND. These two guide pins make  
contact with circuit ground prior to Sequence 1 signals.  
*
This pin is tied high via 10 K pull-up resistor.  
Table 2. Signal Definition  
Pin  
1
2
Signal Name  
RX_LOS  
RGND  
Input/Output  
Output  
Description  
Receiver Loss of Signal, TTL High, open collector  
Receiver Ground  
3
RGND  
Receiver Ground  
4
5
6
7
MOD_DEF(0)  
MOD_DEF(1)  
MOD_DEF(2)  
TX_DISABLE  
TGND  
Output  
Input  
Input/Output  
Input  
TTL Low  
SCL Serial Clock Signal  
SDA Serial Data Signal  
Transmit Disable  
8
Transmitter Ground  
9
TGND  
Transmitter Ground  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
TX_FAULT  
RGND  
-RX_DAT  
+RX_DAT  
RGND  
VDDR  
VDDT  
TGND  
Output  
Transmit Fault  
Receiver Ground  
Received Data, Differential PECL, ac coupled  
Received Data, Differential PECL, ac coupled  
Receiver Ground  
Receiver +5 V supply  
Transmitter +5 V supply  
Transmitter Ground  
Transmit Data, Differential PECL, ac coupled  
Transmit Data, Differential PECL, ac coupled  
Transmitter Ground  
Output  
Output  
Input  
Input  
+TX_DAT  
-TX_DAT  
TGND  
Input  
Input  
Table 3. Module Definition  
Defntn. MOD_DEF(0) Pin 4  
MOD_DEF(1) Pin 5  
MOD_DEF(2) Pin 6  
Interpretation by host  
4
TTL Low  
SCL  
SDA  
Serial module definition protocol  
Note: All Agilent GBIC modules comply with Module Definition 4 of the GBIC specification Rev 5.4  
7
Short Wavelength GBIC: HFBR-5602  
Transmitter Section  
The transmitter section consists  
of an 850 nm VCSEL in an optical  
subassembly (OSA), which mates  
to the fiber cable. The VCSEL  
OSA is driven by a custom, silicon usable input optical signal.  
bipolar IC which converts  
differential logic signals into an  
that provides post-amplification  
and quantization. The post-  
amplifier includes a Signal Detect  
circuit that provides TTL  
compatible logic-low output in  
response to the detection of a  
There are three key elements to  
the safety circuitry: a monitor  
diode, a window detector circuit,  
and direct control of the laser  
bias. The window detection  
circuit monitors the average  
optical power using the monitor  
diode. If a fault occurs such that  
the dc regulation circuit cannot  
maintain the preset bias  
Eye Safety Design  
The laser driver is designed to be  
Class 1 eye safe (CDRH21 CFR(J),  
IEC 60825-1) under a single fault  
condition. To be eye safe, only  
analog Laser Diode drive current.  
conditions within 20ꢀ, the  
Receiver Section  
The receiver includes a silicon  
PIN photodiode mounted together one of two results can occur in  
with a custom, silicon bipolar  
transimpedance preamplifier IC,  
transmitter will automatically be  
disabled. Once this has occurred,  
an electrical power reset will  
allow an attempted turn-on of the  
transmitter. TX_FAULT can also  
be cleared by cycling TX_DISABLE  
high for a time interval >10 µs.  
the event of a single fault, the  
transmitter must either maintain  
in an OSA. This OSA interfaces to normal eye safe operation or the  
a custom silicon bipolar circuit  
transmitter should be disabled.  
Absolute Maximum Ratings  
Stresses in excess of the absolute maximum ratings can cause catastrophic damage to the device. Limits apply to each parameter  
in isolation, all other parameters having values within the recommended operating conditions. It should not be assumed that  
limiting values of more than one parameter can be applied to the product at the same time. Exposure to the absolute maximum  
ratings for extended periods can adversely affect device reliability.  
Parameter  
Storage Temperature  
Supply Voltage  
Symbol  
TS  
Min.  
-40  
-0.5  
Typ.  
Max.  
+85  
6.0  
Unit  
°C  
V
Notes  
VDDT  
VDDR  
Data Input Voltage  
Transmitter  
Differential Input Voltage  
Relative Humidity  
TX_DAT  
TX_DAT  
-0.5  
5
VDD  
2000  
T
V
1
mV p-p  
RH  
95  
%
Recommended Operating Conditions  
Parameter  
Symbol  
Min.  
0
Typ.  
Max.  
+60  
+75  
Unit  
°C  
°C  
V
Notes  
Ambient Operating Temperature  
Case Temperature  
Supply Voltage  
T
T
A
2
CASE  
V
DD  
V
DD  
T
R
4.75  
5.0  
5.25  
Supply Current  
I
+ I  
200  
300  
mA  
3
TX  
RX  
Transceiver Electrical Characteristics  
(T = 0°C to +60°C, V = 4.75 V to 5.25 V)  
A
CC  
Parameter  
Surge Current  
Power Dissipation  
Symbol  
ISURGE  
PDISS  
Min.  
Typ.  
Max.  
+30  
1.58  
Unit  
mA  
W
Notes  
4
5
1.00  
Notes:  
1. Up to applied V T.  
DD  
2. See Figure 1 for measurement point.  
3. Maximum current is specified at V = maximum @ maximum operating temperature and end of life.  
CC  
4. Hot plug above actual steady state current.  
5. Total T + R .  
X
X
8
HFBR-5602  
Transmitter Electrical Characteristics  
(T = 0°C to +60°C, V = 4.75 V to 5.25 V)  
A
CC  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Notes  
Transmitter  
TX_DAT  
650  
2000  
mV p-p  
Differential Input Voltage  
Transmit Fault Load  
TX_DISABLE Assert Time  
TX_DISABLE Negate Time  
Time to initialize, includes reset  
of TX_FAULT  
TX_FAULT  
t_off  
t_on  
4.7  
10  
10  
1
k
1
2
3
4
Load  
µsec  
msec  
msec  
t_init  
300  
TX_FAULT from fault to assertion  
TX_DISABLE time to start reset  
t_fault  
t_reset  
7
msec  
µsec  
5
6
10  
Receiver Electrical Characteristics  
(T = 0°C to +60°C, V = 4.75 V to 5.25 V)  
A
CC  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Notes  
Receiver  
RX_DAT  
370  
2000  
mV p-p  
Differential Output Voltage  
Receiver Output Rise Time  
Receiver Output Fall Time  
Receiver Loss of Light Load  
Receiver Loss of Signal  
Output Voltage - Low  
t
t
0.25  
0.25  
0.35  
0.35  
10  
ns  
ns  
k
rRX_DAT  
fRX_DAT  
RX_LOS  
RX_LOS  
4.7  
0.0  
1
Load  
0.5  
V
L
Receiver Loss of Signal  
Output Voltage - High  
RX_LOS  
V
-0.5  
V
+0.3  
V
H
CC  
CC  
Receiver Loss of Signal  
Assert Time - Logic low to high  
Receiver Loss of Signal  
t
t
100  
µs  
µs  
A,RX_LOS  
D,RX_LOS  
100  
Deassert Time - Logic high to low  
Notes:  
1. Open collector TTL compatible.  
2. Rising edge of TX_DISABLE to fall of output signal below 10% of nominal.  
3. Falling edge of TX_DISABLE to rise of output signal above 90% of nominal.  
4. From power on or hot plug after V T >4.75 V or From negation of TX_DISABLE during reset of TX_FAULT.  
DD  
5. From occurrence of fault (output safety violation or V T <4.5 V).  
DD  
6. TX_DISABLE HIGH before TX_DISABLE set LOW.  
9
HFBR-5602  
Transmitter Optical Characteristics  
(T = 0°C to +60°C, V = 4.75 V to 5.25 V)  
A
CC  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Notes  
Output Optical Power  
50/125 µm, NA = 0.20 fiber  
PO  
-10  
-4  
dBm  
avg.  
Output Optical Power  
62.5/125 µm, NA = 0.275 fiber  
PO  
-10  
-4  
dBm  
avg.  
Optical Extinction Ratio  
Center Wavelength  
Spectral Width - rms  
Optical Rise/Fall Time  
RIN12  
9
830  
dB  
nm  
nm rms  
ns  
dB/Hz  
850  
860  
0.85  
0.26  
-116  
188  
-35  
C
tr / tf  
1, 2 and Figure 2  
Deterministic Jitter  
Max. Pout TX_DISABLE Asserted  
DJ  
POFF  
ps  
p-p  
dBm  
Receiver Optical Characteristics  
(T = 0°C to +60°C, V = 4.75 V to 5.25 V)  
A
CC  
Parameter  
Input Optical Power  
Operating Center Wavelength  
Return Loss  
Symbol  
PIN  
Min.  
-17  
770  
12  
Typ.  
-22  
Max.  
0
860  
Unit  
dBm avg.  
nm  
Notes  
C
dB  
Receiver Loss of Signal -  
TTL Low  
Receiver Loss of Signal -  
TTL High  
PRX_LOS A  
PRX_LOS D  
-23  
-26  
-17  
dBm avg.  
-31  
dBm avg.  
Notes:  
1. 20% to 80% response time.  
2. Laser transmitter pulse response characteristics are specified by an eye diagram (Figure 2).  
1.3  
1.0  
0.8  
0.5  
0.2  
0
-0.2  
0
0.35  
0.65  
0.85  
1.0  
0.15  
NORMALIZED TIME  
Figure 2. Transmitter Optical Eye Diagram Mask  
10  
Long Wavelength GBIC: HFCT-5612  
Transmitter Section  
The transmitter section consists  
of a 1300 nm MQW Fabry Perot  
Laser in an optical subassembly  
(OSA), which mates to the fiber  
optic cable. The Laser OSA is  
Receiver Section  
There are three key elements to  
the safety circuitry: a monitor  
diode, a window detector circuit,  
and direct control of the laser  
bias. The window detection  
circuit monitors the average  
optical power using the photo  
diode in the laser OSA. If a fault  
occurs such that the dc bias  
circuit cannot maintain the preset  
conditions within 20ꢀ,  
The receiver includes a PIN  
photodiode mounted together  
with a custom, silicon bipolar  
transimpedance preamplifier IC,  
in an OSA. The OSA interfaces to  
a custom silicon bipolar circuit  
driven by a custom, silicon bipolar that provides post-amplification  
IC which converts differential  
PECL logic signals (ECL  
referenced to a +5 V supply) into  
an analog drive current to the  
laser.  
and quantization. The post-  
amplifier includes a Signal Detect  
circuit that provides TTL  
compatible logic-low output in  
response to the detection of a  
usable input optical signal.  
TX_FAULT (Pin 10) will be  
asserted (high).  
The laser driver IC incorporates  
temperature compensation and  
feedback from the OSA to  
Note: Under any single fault, the  
laser optical output power will  
remain within Class 1 eye safe  
Eye Safety Design  
The laser driver is designed to be  
maintain constant output power  
and extinction ratio over the  
operating temperature range.  
Class 1 eye safe (CDRH21 CFR(J), limits.  
IEC 60825-1) under a single fault  
condition.  
Absolute Maximum Ratings  
Stresses in excess of the absolute maximum ratings can cause catastrophic damage to the device. Limits apply to each parameter  
in isolation, all other parameters having values within the recommended operating conditions. It should not be assumed that  
limiting values of more than one parameter can be applied to the product at the same time. Exposure to the absolute maximum  
ratings for extended periods can adversely affect device reliability.  
Parameter  
Storage Temperature  
Supply Voltage  
Symbol  
TS  
Min.  
-40  
-0.5  
Typ.  
Max.  
+85  
6.0  
Unit  
°C  
V
Notes  
VDDT  
VDDR  
Data Input Voltage  
Transmitter  
Differential Input Voltage  
Relative Humidity  
TX_DAT  
TX_DAT  
-0.5  
5
VDD  
2000  
T
V
mV p-p  
RH  
95  
%
Recommended Operating Conditions  
Parameter  
Symbol  
Min.  
0
Typ.  
Max.  
+60  
+75  
Unit  
°C  
°C  
V
Notes  
Ambient Operating Temperature  
Case Temperature  
Supply Voltage  
T
T
A
1
CASE  
V
DD  
V
DD  
T
R
4.75  
5.0  
5.25  
Supply Current  
I
+ I  
200  
300  
mA  
2
TX  
RX  
Transceiver Electrical Characteristics  
(T = 0°C to +70°C, V = 4.75 V to 5.25 V)  
A
CC  
Parameter  
Symbol  
ISURGE  
PDISS  
Min.  
Typ.  
Max.  
+30  
1.58  
Unit  
mA  
W
Notes  
3
4
Surge Current  
Power Dissipation  
Notes:  
1.00  
1. See Figure 1 for measurement point.  
2. Maximum current is specified at V = maximum @ maximum operating temperature and end of life.  
CC  
3. Hot plug above actual steady state current.  
4. Total T + R .  
X
X
11  
HFCT-5612  
Transmitter Electrical Characteristics  
(T = 0°C to +60°C, V = 4.75 V to 5.25 V)  
A
CC  
Parameter  
Transmitter  
Symbol  
TX_DAT  
Min.  
650  
Typ.  
Max.  
2000  
Unit  
mV p-p  
Notes  
Differential Input Voltage  
Transmit Fault Load  
Transmit Fault Output - Low  
Transmit Fault Output - High  
TX_FAULTLoad 4.7  
10  
0.5  
VCC  
+0.3  
k
V
V
1
2
TX_FAULTL  
TX_FAULTH  
0.0  
VCC  
-0.5  
TX_DISABLE Assert Time  
TX_DISABLE Negate Time  
Time to initialize, includes reset  
of TX_FAULT  
t_off  
t_on  
t_init  
3
0.5  
30  
10  
1
300  
µsec  
msec  
msec  
3
4
5
TX_FAULT from fault to assertion  
TX_DISABLE time to start reset  
t_fault  
t_reset  
20  
100  
µsec  
µsec  
6
7
10  
Receiver Electrical Characteristics  
(T = 0°C to +60°C, V = 4.75 V to 5.25 V)  
A
CC  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Notes  
Receiver  
RX_DAT  
370  
2000  
mV p-p  
Differential Output Voltage  
Receiver Output Rise Time  
Receiver Output Fall Time  
Receiver Loss of Light Load  
Receiver Loss of Signal  
Output Voltage - Low  
t
t
0.35  
0.35  
10  
ns  
ns  
k
8
8
1
rRX_DAT  
fRX_DAT  
RX_LOS  
RX_LOS  
4.7  
0.0  
Load  
L
0.5  
V
Receiver Loss of Signal  
Output Voltage - High  
RX_LOS  
V
-0.5  
V
CC  
+0.3  
V
2
H
CC  
Receiver Loss of Signal  
Assert Time (off to on)  
Receiver Loss of Signal  
Deassert Time (on to off)  
t
t
100  
µs  
µs  
A,RX_LOS  
100  
D,RX_LOS  
Notes:  
1. Open collector TTL compatible.  
2. 4 k7 to 10 k pull-up on host to V  
.
CC  
3. Rising edge of TX_DISABLE to fall of output signal below 10% of nominal.  
4. Falling edge of TX_DISABLE to rise of output signal above 90% of nominal.  
5. From power on or hot plug after V T >4.75 V or From negation of TX_DISABLE during reset of TX_FAULT.  
DD  
6. From occurrence of fault (output safety violation or V T <4.5 V).  
DD  
7. TX_DISABLE HIGH before TX_DISABLE set LOW.  
8. 20% to 80% response time.  
12  
HFCT-5612  
Transmitter Optical Characteristics  
(T = 0°C to +60°C, V = 4.75 V to 5.25 V)  
A
CC  
Parameter  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Notes  
Output Optical Power  
9/125 µm SMF  
P
O
-9.5  
-11.5  
-11.5  
-7  
-3  
-3  
-3  
dBm  
dBm  
dBm  
62.5/125 µm MMF  
50/125 µm MMF  
Optical Extinction Ratio  
9
dB  
Center Wavelength  
Spectral Width - rms  
Optical Rise/Fall Time  
1285  
1310  
1343  
2.8  
0.320  
-116  
188  
nm  
nm rms  
ns  
dB/Hz  
ps  
p-p  
C
t / t  
r
1, 2 and Figure 2  
f
RIN  
12  
Deterministic Jitter  
DJ  
Max. Pout TX_DISABLE Asserted  
P
-35  
dBm  
OFF  
Receiver Optical Characteristics  
(T = 0°C to +60°C, V = 4.75 V to 5.25 V)  
A
CC  
Parameter  
Input Optical Power  
Operating Center Wavelength  
Return Loss  
Symbol  
PIN  
Min.  
-20  
1270  
12  
Typ.  
-25  
Max.  
-3  
1355  
Unit  
dBm avg.  
nm  
Notes  
C
dB  
Receiver Loss of Signal -  
TTL Low  
Receiver Loss of Signal -  
TTL High  
PRX_LOS A  
PRX_LOS D  
-28  
-20  
dBm avg.  
-31  
dBm avg.  
Notes:  
1. 20% to 80% response time.  
2. Laser transmitter pulse response characteristics are specified by an eye diagram (Figure 2).  
13  
www.semiconductor.agilent.com  
Data subject to change.  
Copyright © 2000 Agilent Technologies, Inc.  
Obsoletes: 5980-1539E  
5988-0538EN (10/00)  

相关型号:

HFBR-5701L

1.25/1.0625 GBd MMF Pluggable (SFP) Transceiver for GbE and Fibre Channel: Standard delatch
ETC

HFBR-5701LP

1.25/1.0625 GBd MMF Pluggable (SFP) Transceiver for GbE and Fibre Channel: Bail-wire delatch
ETC

HFBR-5710L

Small Form Factor Pluggable Optical Transceiver for Gigabit
AGILENT

HFBR-5710LP

Small Form Factor Pluggable Optical Transceiver for Gigabit
AGILENT

HFBR-5720AL

2.125/1.0625 GBd MMF SFP Transceiver for Fibre Channel: Ext Temp & Voltage. Standard delatch
ETC

HFBR-5720ALP

Optoelectronic
ETC

HFBR-5720L

Fibre Channel 2.125/1.0625 GBd 850 nm Small Form Pluggable Low Voltage (3.3 V) Optical Transceiver
AGILENT

HFBR-5720L

Fibre Channel 2.125/1.0625 GBd 850 nm Small Form Pluggable Low Voltage (3.3 V) Optical Transceiver
HP

HFBR-5720LP

Fibre Channel 2.125/1.0625 GBd 850 nm Small Form Pluggable Low Voltage (3.3 V) Optical Transceiver
AGILENT

HFBR-5720LP

Fibre Channel 2.125/1.0625 GBd 850 nm Small Form Pluggable Low Voltage (3.3 V) Optical Transceiver
HP

HFBR-5730L

1.0625 GBd MMF Small Form Factor Pluggable (SFP) Transceiver for Fibre Channel: Standard delatch
ETC

HFBR-5730LP

1.0625 GBd MMF Small Form Factor Pluggable (SFP) Transceiver for Fibre Channel: Bail-wire delatch
ETC