HFBR-5701LP [ETC]

1.25/1.0625 GBd MMF Pluggable (SFP) Transceiver for GbE and Fibre Channel: Bail-wire delatch ; 1.25 / 1.0625 GBd的MMF可插拔(SFP)收发器千兆以太网和光纤通道:保释线锁上\n
HFBR-5701LP
型号: HFBR-5701LP
厂家: ETC    ETC
描述:

1.25/1.0625 GBd MMF Pluggable (SFP) Transceiver for GbE and Fibre Channel: Bail-wire delatch
1.25 / 1.0625 GBd的MMF可插拔(SFP)收发器千兆以太网和光纤通道:保释线锁上\n

光纤 以太网
文件: 总16页 (文件大小:252K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Agilent HFBR-5701L/LP  
Small Form Factor Pluggable  
Optical Transceiver for  
Gigabit Ethernet (1.25 GBd) and  
Fibre Channel (1.0625 GBd)  
Data Sheet  
Applications  
• Switch to switch interface  
• Switched backplane applications  
• File server interface  
• iSCSI applications  
Description  
Features  
Related Products  
The HFBR-5701L optical transceiver  
is compliant with the specifications  
set forth in the IEEE802.3  
• IEEE 802.3 Gigabit Ethernet (1.25  
GBd) 1000BASE-SX compliant  
• HFBR-5710L: 1.25 GBd Ethernet  
(1000BASE-SX) SFP  
Fibre Channel (100-M5-SN-I, 100-  
(1000BASE-SX), Fibre Channel  
(100-M5-SN-I, 100-M6-SN-I), and the  
Small Form-Factor Pluggable (SFP)  
Multi-Source Agreement (MSA). Its  
primary application is servicing  
Gigabit Ethernet and Fibre Channel  
links between optical networking  
equipment. It offers previously  
unavailable system cost, upgrade,  
and reliability benefits by virtue of  
being hot-pluggable. Further, it  
incorporates the latest 3.3 VDC  
compatible transceiver technology  
including an 850 nm VCSEL  
• HFBR-5720L: 2.125 GBd Fibre  
Channel (200-M5-SN-I, 200-M6-SN-I)  
Multi-Mode SFP  
M6-SN-I) compliant  
• Small Form Factor Pluggable (SFP)  
Multi-Source Agreement (MSA)  
compliant  
• HFBR-5730L: 1.0625 GBd Fibre  
Channel (100-M5-SN-I, 100-M6-SN-I)  
Multi-Mode SFP  
• Manufactured in an ISO 9001  
compliant facility  
• HDMP-1687: Quad Channel SerDes  
IC 1.25 GBd Ethernet  
• Hot-pluggable  
• Optional extended de-latch for  
high density applications as shown  
in Figure 10  
– HFBR-5701LP bail-wire pull  
de-latch  
• HDMP-1646A: Single Channel  
SerDes IC for 1.25 GBd Ethernet and  
1.0625 GBd Fibre Channel  
– HFBR-5701L standard de-latch  
transmitter as well as a convenient  
LC-Duplex optical interface.  
• +3.3 V DC power supply  
• Industry leading EMI performance  
for high port density  
• 850 nm Vertical Cavity Surface  
Emitting Laser (VCSEL)  
• Eye safety certified:  
– US 21 CFR(J)  
– EN 60825-1 (+All)  
• LC-Duplex fiber connector  
compliant  
• Fiber compatibility:  
– 2 to 550 meters with 50/125 µm  
fiber  
– 2 to 275 meters with 62.5/125 µm  
fiber  
OPTICAL INTERFACE  
RECEIVER  
ELECTRICAL INTERFACE  
RD+ (RECEIVE DATA)  
RD– (RECEIVE DATA)  
LOSS OF SIGNAL  
AMPLIFICATION  
& QUANTIZATION  
INCOMING OPTICAL SIGNAL  
PHOTODETECTOR  
TRANSMITTER  
VCSEL  
TX_DISABLE  
LASER  
DRIVER &  
SAFETY  
TD+ (TRANSMIT DATA)  
TD– (TRANSMIT DATA)  
TX_FAULT  
OUTGOING OPTICAL SIGNAL  
CIRCUITRY  
MOD-DEF2  
MOD-DEF1  
MOD-DEF0  
EEPROM  
Figure 1. HFBR-5701L block diagram.  
Overview  
Factor port regardless of whether  
the host equipment is operating  
or not. The module is simply  
inserted, electrical-interface first,  
under finger-pressure. Controlled  
hot-plugging is ensured by  
3-stage pin sequencing at the  
electrical interface. This printed  
circuit board card-edge connector  
is depicted in Figure 2.  
As the HFBR-5701L is inserted,  
first contact is made by the  
housing ground shield,  
The HFBR-5701L offers maxi-  
mum flexibility to designers,  
manufacturers, and operators of  
Gigabit Ethernet networking  
equipment. A pluggable architec-  
ture allows the module to be  
installed into MSA standard SFP  
ports at any time – even with the  
host equipment operating and  
online. This facilitates the rapid  
configuration of equipment to  
precisely the user’s needs –  
reducing inventory costs and  
network downtime. Compared  
with traditional transceivers, the  
size of the Small Form Factor  
package enables higher port  
densities.  
discharging any potentially  
component-damaging static  
electricity. Ground pins engage  
next and are followed by Tx and  
Rx power supplies. Finally, signal  
lines are connected. Pin functions  
and sequencing are listed in  
Table 2.  
3 2 1  
3 2 1  
ENGAGEMENT  
SEQUENCE  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
T
1
2
V
T
EE  
EE  
TD–  
TD+  
TX FAULT  
3
TX DISABLE  
MOD-DEF(2)  
MOD-DEF(1)  
MOD-DEF(0)  
RATE SELECT  
LOS  
V
V
V
V
T
4
EE  
CC  
CC  
Module Diagrams  
T
5
Figure 1 illustrates the major  
functional components of the  
HFBR-5701L. The external  
configuration of the module is  
depicted in Figure 7. Figure 8  
depicts the panel and host board  
footprints.  
R
6
R
7
EE  
RD+  
RD–  
8
9
V
R
R
EE  
V
R
10  
V
EE  
EE  
Installation  
The HFBR-5701L can be installed  
in or removed from any MSA-  
compliant Pluggable Small Form  
TOP OF BOARD  
BOTTOM OF BOARD  
(AS VIEWED THROUGH TOP OF BOARD)  
Figure 2. Pin description of the SFP electrical interface.  
2
Before extracting the module, the  
black plastic tab beneath the  
optical port must be depressed,  
releasing the latch mechanism.  
The transceiver can then be  
operation. In the event of a fault  
(e.g., eye safety circuit activated),  
cycling this control signal resets  
the module as depicted in Figure 6.  
Loss of Signal  
The Loss Of Signal (LOS) output  
indicates an unusable optical  
input power level. A high LOS  
output signal indicates a loss of  
signal while a low LOS output  
signal indicates normal operation.  
The Loss Of Signal thresholds are  
set to indicate a definite optical  
fault has occurred (e.g.,  
pulled out of the port manually by Eye Safety Circuit  
gripping the side of the LC ports.  
The HFBR-5701L provides Class  
1 eye safety by design and has  
been tested for compliance with  
the requirements listed in  
Table 1. The eye safety circuit  
continuously monitors optical  
output power levels and will  
disable the transmitter and assert  
a TX_FAULT signal upon  
detecting an unsafe condition.  
Such unsafe conditions can be  
created by inputs from the host  
board (Vcc fluxuation,  
For easier fingertip delatching in  
high port density applications, an  
optional extended tab is offered  
as shown in Figure 10.  
disconnected or broken fiber  
connection to receiver, failed  
transmitter, etc.).  
Serial Identification (EEPROM)  
The HFBR-5701L features an  
EEPROM for Serial ID. It  
Functional I/O  
The HFBR-5701L accepts  
industry standard differential  
signals such as LVPECL and CML  
within the scope of the SFP MSA.  
To simplify board requirements,  
transmitter bias resistors and  
coupling capacitors are  
incorporated into the transceiver  
module. The module is “ac-  
coupled” and internally  
contains the product data stored  
for retrieval by host equipment.  
This data is accessed via the 2-  
wire serial EEPROM protocol of  
the ATMEL AT24C01A or similar  
in compliance with the industry  
standard SFP Multi-Source  
Agreement. Contents of the  
HFBR-5701L serial ID memory  
are displayed in Table 9.  
unbalanced code) or faults within  
the module.  
Receiver Section  
The receiver section includes the  
Receiver Optical Subassembly  
(ROSA) and amplification/  
terminated.  
quantization circuitry. The ROSA,  
containing a PIN photodiode and  
custom trans-impedance  
Transmitter Section  
Figure 4 illustrates a recom-  
mended interface circuit to link  
the HFBR-5701L to the  
supporting Physical Layer  
integrated circuits.  
The transmitter section includes  
the Transmitter Optical Sub-  
assembly (TOSA) and laser driver  
circuitry. The TOSA, containing  
an 850 nm VCSEL (Vertical  
Cavity Surface Emitting Laser)  
light source, is located at the  
optical interface and mates with  
the LC optical connector. The  
TOSA is driven by a custom IC,  
which converts differential logic  
signals into an analog laser diode  
drive current. This Tx driver  
circuit regulates the optical  
power at a constant level  
preamplifier, is located at the  
optical interface and mates with  
the LC optical connector. The  
ROSA is mated to a custom IC  
that provides post-amplification  
and quantization. Also included is  
a Loss Of Signal (LOS) detection  
circuit.  
Timing diagrams for the MSA  
compliant control signals  
implemented in this module are  
depicted in Figure 6.  
1 µH  
V
T
CC  
0.1 µF  
0.1 µF  
provided the data pattern is DC  
balanced (8B10B code for  
example).  
1 µH  
3.3 V  
V
R
CC  
Tx Disable  
10 µF  
0.1 µF  
10 µF  
The HFBR-5701L accepts a  
transmit disable control signal  
input which shuts down the  
transmitter. A high signal  
SFP MODULE  
HOST BOARD  
implements this function while a  
low signal allows normal laser  
Figure 3. MSA required power supply filter.  
3
Required Host Board Components  
Electrostatic Discharge (ESD)  
The metal housing and shielded  
design of the HFBR-5701L  
minimize the EMI challenge  
facing the host equipment  
designer.  
The MSA power supply noise  
rejection filter is required on the  
host PCB to meet data sheet  
performance. The MSA filter  
incorporates an inductor which  
should be rated 400 mADC and  
1 series resistance or better. It  
should not be replaced with a  
ferrite. The required filter is  
illustrated in Figure 3.  
There are two design cases in  
which immunity to ESD damage  
is important.  
The first case is during handling  
of the transceiver prior to  
Flammability  
insertion into the transceiver  
port. To protect the transceiver,  
it’s important to use normal ESD  
handling precautions. These  
precautions include using  
The HFBR-5701L transceiver is  
made of metal and high strength,  
heat resistant, chemically  
resistant, and UL 94V-0 flame  
retardant plastic.  
The MSA also specifies that 4.7 K  
to 10 Kpull-up resistors for  
TX_FAULT, LOS, and  
MOD_DEF0,1,2 are required on  
the host PCB.  
grounded wrist straps, work  
benches, and floor mats in ESD  
controlled areas. The ESD  
sensitivity of the HFBR-5701L is  
compatible with typical industry  
production environments.  
Caution  
There are no user serviceable  
parts nor any maintenance  
required for the HFBR-5701L. All  
adjustments are made at the  
factory before shipment to our  
customers. Tampering with,  
modifying, misusing or improp-  
erly handling the HFBR-5701L  
will void the product warranty. It  
may also result in improper  
operation of the HFBR-5701L  
circuitry, and possible overstress  
of the laser source. Device  
degradation or Product failure  
may result. Connection of the  
HFBR-5701L to a non-Gigabit  
Ethernet-compliant optical  
source, operating above the  
recommended absolute maximum  
conditions or operating the  
Application Support  
Evaluation Kit  
The second case to consider is  
static discharges to the exterior  
of the host equipment chassis  
after installation. To the extent  
that the optical interface is  
exposed to the outside of the host  
equipment chassis, it may be  
subject to system-level ESD  
requirements.  
To assist in the transceiver  
evaluation process, Agilent offers  
a 1.25 Gbd Gigabit Ethernet  
evaluation board which facilitates  
testing of the HFBR-5701L. It can  
be obtained through the Agilent  
Field Organization by referencing  
Agilent part number HFBR-0571.  
Immunity  
Reference Designs  
The ESD performance of the  
HFBR-5701L exceeds typical  
industry standards.  
A Reference Design including the  
HFBR-5701L and the HDMP-  
1687 GigaBit Quad SerDes is  
available. It may be obtained  
through the Agilent Field Sales  
organization.  
Equipment hosting HFBR-5701L  
modules will be subjected to  
radio-frequency electromagnetic  
fields in some environments. The  
transceiver has good immunity to  
such fields due to its shielded  
design.  
HFBR-5701L in a manner  
inconsistent with its design and  
function may result in hazardous  
radiation exposure and may be  
considered an act of modifying or  
manufacturing a laser product.  
The person(s) performing such  
an act is required by law to re-  
certify and re-identify the laser  
product under the provisions of  
U.S. 21 CFR (Subchapter J).  
Regulatory Compliance  
See Table 1 for transceiver  
Regulatory Compliance. Certi-  
fication level is dependent on the  
overall configuration of the host  
equipment. The transceiver  
performance is offered as a figure  
of merit to assist the designer.  
Electromagnetic Interference (EMI)  
Equipment incorporating Gigabit  
Ethernet transceivers is typically  
required to meet the require-  
ments of the FCC in the United  
States, CENELEC EN55022  
(CISPR 22) in Europe, and VCCI  
in Japan.  
4
1 µH  
1 µH  
V
T,R  
CC  
HOUSING  
GROUND  
10 µF  
0.1 µF  
AGILENT  
HFBR-5701L  
V
T
CC  
*RES  
TX_DISABLE  
*RES  
0.1  
µF  
TX_FAULT  
50 Ω  
TD+  
SO1+  
SO1–  
C
R
LASER DRIVER  
& EYE SAFETY  
CIRCUITRY  
TX[0:9]  
C
50 Ω  
TD–  
VEET  
SYNC  
LOOP  
AGILENT  
HDMP-1687  
V
R
CC  
10  
µF  
0.1  
µF  
MAC  
ASIC  
RX[0:9]  
RD+  
50 Ω  
50 Ω  
SYN1  
SI1+  
SI1–  
C
C
RC1(0:1)  
RCM0  
R
AMPLIFICATION  
&
RD–  
RFCT  
QUANTIZATION  
REF_RATE  
V
T,R  
CC  
*RES  
*RES  
*RES  
*RES  
RX_LOS  
MOD_DEF2  
MOD_DEF1  
MOD_DEF0  
EEPROM  
REFCLK  
125 MHz  
VEER  
NOTE: * 4.7 k < RES < 10 kΩ  
Figure 4. Typical application configuration.  
Table 1. Regulatory Compliance  
Feature  
Test Method  
Performance  
Class 2 (> +2000 Volts)  
Electrostatic Discharge (ESD) JEDEC/EIA  
to the Electrical Pins  
JESD22-A114-A  
Electrostatic Discharge (ESD) Variation of IEC 6100-4-2  
to the Duplex LC Receptacle  
Typically withstands at least 25 kV without  
damage when the duplex LC connector  
receptacle is contacted by a Human Body  
Model probe  
Electromagnetic Interference  
(EMI)  
FCC Class B  
CENELEC EN55022 Class B  
(CISPR 22A) VCCI Class 1  
Applications with high SFP port counts are  
expected to be compliant; however, margins are  
dependent on customer board and chassis design.  
Immunity  
Variation of IEC 61000-4-3  
Typically shows a negligible effect from a  
10 V/m field swept from 80 to 1000 MHz applied  
to the transceiver without a chassis enclosure.  
[1]  
Eye Safety  
US FDA CDRH AEL Class 1  
EN(IEC)60825-1,2, EN60950  
Class 1  
CDRH certification #9720151-13  
TUV file #E9971083.07  
Component Recognition  
Underwriters Laboratories and  
Canadian Standards Associa-  
tion Joint Component Recognition  
for Information Technology  
Equipment Including Electrical  
Business Equipment  
UL File #E173874  
Note:  
1. Changes to IEC 60825-1,2 are currently anticipated to allow higher eye-safe Optical Output Power levels. Agilent may choose to take advantage of these  
in future revisions to this part.  
5
Table 2. Pin Description  
Pin Name Function/Description  
Engagement Order  
(insertion)  
Notes  
1
2
3
4
5
6
7
8
9
VeeT  
Transmitter Ground  
1
3
3
3
3
3
3
3
1
1
1
3
3
1
2
2
1
3
3
1
TX Fault  
Transmitter Fault Indication  
1
2
3
3
3
TX Disable Transmitter Disable - Module disables on high or open  
MOD-DEF2 Module Definition 2 - Two wire serial ID interface  
MOD-DEF1 Module Definition 1 - Two wire serial ID interface  
MOD-DEF0 Module Definition 0 - Grounded in module  
Rate Select Not Connected  
LOS  
Loss of Signal  
4
VeeR  
Receiver Ground  
10 VeeR  
11 VeeR  
12 RD-  
Receiver Ground  
Receiver Ground  
Inverse Received Data Out  
Received Data Out  
5
5
13 RD+  
14 VeeR  
15 VccR  
16 VccT  
17 VeeT  
18 TD+  
19 TD-  
Receiver Ground  
Receiver Power - 3.3 V ±5%  
Transmitter Power - 3.3 V ±5%  
Transmitter Ground  
Transmitter Data In  
Inverse Transmitter Data In  
Transmitter Ground  
6
6
7
7
20 VeeT  
Notes:  
1. TX Fault is an open collector/drain output which should be pulled up externally with a 4.7K – 10 Kresistor on the host board to a supply < VccT+0.3 V  
or VccR+0.3 V. When high, this output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to  
< 0.8 V.  
2. TX disable input is used to shut down the laser output per the state table below. It is pulled up within the module with a 4.7-10 K resistor.  
Low (0 – 0.8 V):  
Transmitter on  
Between (0.8 V and 2.0 V): Undefined  
High (2.0 – 3.465 V):  
Open:  
Transmitter Disabled  
Transmitter Disabled  
3. Mod-Def 0,1,2. These are the module definition pins. They should be pulled up with a 4.7-10 Kresistor on the host board to a supply less than  
VccT +0.3 V or VccR+0.3 V.  
Mod-Def 0 is grounded by the module to indicate that the module is present  
Mod-Def 1 is clock line of two wire serial interface for optional serial ID  
Mod-Def 2 is data line of two wire serial interface for optional serial ID  
4. LOS (Loss of Signal) is an open collector/drain output which should be pulled up externally with a 4.7 K – 10 Kresistor on the host board to a supply  
< VccT,R+0.3 V. When high, this output indicates the received optical power is below the worst case receiver sensitivity (as defined by the standard in  
use). Low indicates normal operatio0n. In the low state, the output will be pulled to < 0.8 V.  
5. RD-/+: These are the differential receiver outputs. They are AC coupled 100 differential lines which should be terminated with 100 differential at the  
user SERDES. The AC coupling is done inside the module and is thus not required on the host board. The voltage swing on these lines must be between  
370 and 2000 mV differential (185 – 1000 mV single ended) according to the MSA. Typically it will be 1500mv differential.  
6. VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.135 – 3.465 V at the SFP connector pin. The in-rush current will  
typically be no more than 30 mA above steady state supply current after 500 nanoseconds.  
7. TD-/+: These are the differential transmitter inputs. They are AC coupled differential lines with 100 differential termination inside the module. The AC  
coupling is done inside the module and is thus not required on the host board. The inputs will accept differential swings of 500 – 2400 mV (250 – 1200 mV  
single ended). However, the applicable recommended differential voltage swing is found in Table 5.  
6
Table 3. Absolute Maximum Ratings  
Parameter  
Symbol  
Minimum  
Maximum  
Unit  
Notes  
Ambient Storage Temperature  
(Non-Operating)  
Ts  
–40  
+100  
°C  
1
Case Temperature  
T
–40  
5
+85  
95  
°C  
%
1
1
1
1
1
1
C
Relative Humidity  
RH  
Supply Voltage  
V
–0.5  
–0.5  
3.6  
V
CCT,R  
Voltage at any Input Pin  
Sense Output Current – LOS, TX Fault  
Sense Output Current – MOD_DEF2  
V
V
CC  
V
IH  
ID  
ID  
150  
5
mA  
mA  
Notes:  
1. Absolute Maximum Ratings are those values beyond which damage to the device may occur if these limits are exceeded. See Reliability Data Sheet for  
specific reliability performance.  
2. Between Absolute Maximum Ratings and the Recommended Operating Conditions functional performance is not intended, device reliability is not  
implied, and damage to the device may occur.  
Table 4. Recommended Operating Conditions  
Parameter  
Symbol  
Minimum  
Typical  
25  
Maximum  
70  
Unit  
°C  
Notes  
1, 2  
1
Case Temperature  
Supply Voltage  
Data Rate  
T
0
C
V
CC  
3.135  
3.3  
3.465  
V
1.25  
Gb/s  
Gb/s  
1, 3  
1, 4  
Data Rate  
1.0625  
Notes:  
1. Recommended Operating Conditions are those within which functional performance within data sheet characteristics is intended.  
2. Refer to the Reliability Data Sheet for specific reliability performance predictions.  
3. IEEE802.3 Gigabit Ethernet.  
4. ANSIX3.230 (FC-PI).  
7
Table 5. Transceiver Electrical Characteristics (T = 0°C to 70°C, V  
= 3.3 V ±5%)  
C
CCT,R  
Parameter  
Symbol  
Minimum  
Typical  
160  
Maximum  
220  
Unit  
mA  
Notes  
Module Supply Current  
Power Dissipation  
I
CC  
P
DISS  
530  
765  
mW  
Power Supply Noise  
Rejection (peak-peak)  
PSNR  
100  
mV  
1
2
3
PP  
PP  
PP  
Data Input:  
Transmitter Differential  
Input Voltage (TD +/–)  
V
I
500  
370  
1660  
2000  
mV  
Data Output:  
Receiver Differential  
Output Voltage (RD +/–)  
V
O
1500  
220  
mV  
ps  
Receive Data Rise & Fall  
Times  
T
rf  
Sense Outputs:  
Transmit Fault  
[TX_FAULT,  
Loss of Signal (LOS),  
MOD_DEF2]  
V
2.0  
0
V
V
V
OH  
CC  
V
OL  
0.8  
Control Inputs:  
Transmitter Disable  
[TX_DISABLE,  
MOD_DEF1,2]  
V
V
2.0  
0
V
V
V
IH  
CC  
0.8  
IL  
Notes:  
1. Measured at the input of therequired MSA Filter on host board.  
2. Internally AC coupled and terminated to 100 Ohm differential load.  
3. Internally AC coupled, but requires a 100 Ohm differential termination at or internal to Serializer/Deserializer.  
8
Table 6. Transmitter Optical Characteristic(sT = 0°C to 70°C, V  
= 3.3 V± 5%)  
C
CCT,R  
Parameter  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
Notes  
Output Optical Power (Average)  
Optical Extinction Ratio  
Pout  
ER  
–9.5  
–6.5  
14.5  
850  
0
dBm  
dB  
1, 2, 3  
1
9
Center Wavelength  
λ
830  
860  
nm  
1
1
1
C
Spectral Width – rms  
σ
0.85  
260  
nm  
Optical Rise/Fall Time (1.25 GBd)  
Optical Rise/Fall Time (1.0625 GBd)  
Relative Intensity Noise, maximum  
T
T
150  
150  
ps  
rise/fall  
rise/fall  
300  
ps  
1,4  
1
RIN  
TJ  
–117  
dB/Hz  
Total Jitter  
(TP1 to TP2 Contribution 1.25 GBd)  
227  
ps  
UI  
ps  
UI  
1
1
4
4
0.284  
252  
(TP1 to TP2 Contribution 1.0625 GBd)  
0.267  
Deterministic Jitter  
(TP1 to TP2 Contribution 1.0625 GBd)  
DJ  
85  
ps  
4
4
1
4
0.09  
–35  
UI  
Pout TX_DISABLE Asserted  
Optical Modulation Amplitude  
P
OFF  
dBm  
µW  
OMA  
156  
Notes:  
1. IEEE 802.3.  
2. Max. Pout is the lesser of 0 dBm or Maximum allowable per Eye Safety Standard.  
3. 50/125 µm fiber with NA = 0.2, 62.5/125 µm fiber with NA = 0.275.  
4. ANSIX3.230 (FC-PI).  
NORMALIZED TIME (UNIT INTERVAL)  
0
0.22 0.375  
0.625 0.78  
1.0  
1.30  
130  
100  
80  
1.00  
0.80  
50  
0.50  
20  
0
0.20  
0
–20  
–0.20  
0
22 37.5  
62.5 78  
100  
NORMALIZED TIME (% OF UNIT INTERVAL)  
Figure 5a. Gigabit Ethernet transmitter eye mask diagram.  
Figure 5b. Typical HFBR-5701L eye mask diagram.  
9
Table 7. Receiver Optical Characteristics (T = 0°C to 70°C, V  
= 3.3 V ± 5%)  
C
CCT,R  
Parameter  
Symbol  
PR  
Minimum  
Typical  
Maximum  
Unit  
dBm  
dBm  
Notes  
Optical Input Power  
–17  
0
1
1
Receiver Sensitivity  
(Optical Input Power)  
PRMIN  
–21  
–17  
Stressed Receiver Sensitivity  
1.25 GBd (GBE)  
–12.5  
–13.5  
–11.74  
–12.59  
266  
dBm  
dBm  
dBm  
dBm  
ps  
1, 2  
1, 3  
2, 4  
3, 4  
1
Stressed Receiver Sensitivity  
1.0625 GBd (FC-PI)  
Total Jitter  
TJ  
TJ  
DJ  
(TP3 to TP4 Contribution 1.25 GBd)  
Total Jitter  
0.332  
205  
UI  
1
ps  
4
(TP3 to TP4 Contribution 1.0625 GBd)  
Deterministic Jitter  
0.218  
113  
UI  
4
ps  
4
(TP3 to TP4 Contribution 1.0625 GBd)  
Return Loss  
0.12  
UI  
4
–12  
dB  
1
LOS De-Asserted  
P
–17  
dBm  
dBm  
dB  
1
D
LOS Asserted  
P
A
–31  
31  
1
LOS Hysterisis  
P - P  
D
3
1
A
Optical Modulation Amplitude  
OMA  
µW  
4
Notes:  
1. IEEE 802.3.  
2. 62.5/125 µm fiber.  
3. 50/125 µm fiber.  
4. ANSIX3.230 (FC-PI).  
Table 8. Transceiver Timing Characteristics (T = 0°C to 70°C, V  
= 3.3 V ±5%)  
C
CCT,R  
Parameter  
Symbol  
t_off  
Minimum  
Typical  
Maximum  
Unit  
Notes  
Tx Disable Assert Time  
Tx Disable Negate Time  
10  
1
µs  
1
2
3
t_on  
ms  
ms  
Time to initialize, including  
reset of Tx_Fault  
t_init  
300  
Tx Fault Assert Time  
Tx Disable to Reset  
LOS Assert Time  
t_fault  
100  
µs  
µs  
µs  
µs  
kHz  
4
5
6
7
t_reset  
10  
t_loss_on  
t_loss_off  
f_serial_clock  
100  
100  
100  
LOS Deassert Time  
Serial ID Clock Rate  
Notes:  
1. Time from rising edge of Tx Disable to when the optical output falls below 10% of nominal.  
2. Time from falling edge of Tx Disable to when the modulated optical output rises above 90% of nominal.  
3. From power on or negation of Tx Fault using Tx Disable.  
4. Time from fault to Tx fault on.  
5. Time Tx Disable must be held high to reset Tx_fault.  
6. Time from LOS state to Rx LOS assert.  
7. Time from non-LOS state to RX LOS deassert.  
10  
V
> 3.15 V  
V
> 3.15 V  
CC  
CC  
TX_FAULT  
TX_FAULT  
TX_DISABLE  
TX_DISABLE  
TRANSMITTED SIGNAL  
TRANSMITTED SIGNAL  
t_init  
t_init  
t-init: TX DISABLE NEGATED  
t-init: TX DISABLE ASSERTED  
V
> 3.15 V  
TX_FAULT  
TX_DISABLE  
CC  
TX_FAULT  
TX_DISABLE  
TRANSMITTED SIGNAL  
TRANSMITTED SIGNAL  
t_off  
t_on  
t_init  
INSERTION  
t-init: TX DISABLE NEGATED, MODULE HOT PLUGGED  
t-off & t-on: TX DISABLE ASSERTED THEN NEGATED  
OCCURANCE OF FAULT  
OCCURANCE OF FAULT  
TX_FAULT  
TX_FAULT  
TX_DISABLE  
TX_DISABLE  
TRANSMITTED SIGNAL  
t_reset  
TRANSMITTED SIGNAL  
t_fault  
* SFP SHALL CLEAR TX_FAULT IN  
t_init IF THE FAILURE IS TRANSIENT  
t_init*  
t-fault: TX FAULT ASSERTED, TX SIGNAL NOT RECOVERED  
t-reset: TX DISABLE ASSERTED THEN NEGATED, TX SIGNAL RECOVERED  
OCCURANCE OF FAULT  
OPTICAL SIGNAL  
TX_FAULT  
TX_DISABLE  
OCCURANCE OF LOSS  
LOS  
TRANSMITTED SIGNAL  
t_fault2  
t_reset  
t_loss_on  
t_loss_off  
* SFP SHALL CLEAR Tx_FAULT IN  
t_init*  
t_init IF THE FAILURE IS TRANSIENT  
t-fault2: TX DISABLE ASSERTED THEN NEGATED,  
TX SIGNAL NOT RECOVERED  
t-loss-on & t-loss-off  
NOTE: t_fault2 timing is typically 1.7 to 2 ms.  
Figure 6. Transceiver timing diagrams (Module installed except where noted).  
11  
Table 9. EEPROM Serial ID Memory Contents  
Address  
0
Hex  
03  
04  
07  
00  
00  
00  
01  
20  
40  
0C  
00  
01  
0C  
00  
00  
00  
37  
1B  
00  
00  
41  
47  
49  
4C  
45  
4E  
54  
20  
20  
20  
20  
20  
ASCII  
Address  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
Hex  
20  
20  
20  
20  
00  
00  
30  
D3  
48  
46  
42  
52  
2D  
35  
37  
30  
31  
4C  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
00  
00  
00  
Note 3  
ASCII  
Address  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
Hex ASCII Address  
Hex  
ASCII  
00  
96  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
Note 4  
1
1A  
97  
2
00  
98  
3
00  
99  
4
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 1  
Note 2  
Note 2  
Note 2  
Note 2  
Note 2  
Note 2  
Note 2  
Note 2  
00  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
5
6
7
8
H
F
B
R
-
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
5
7
0
1
L
A
G
I
L
E
N
T
00  
00  
Note 3  
Notes:  
1. These addresses are reserved for serial number information and will vary from module to module.  
2. These addresses are reserved for date code information and may vary from lot to lot.  
3. Byte Addresses 63 and 95 are Check Sums which may vary from module to module.  
4. These fields are reserved for future use by Agilent Technologies.  
12  
AGILENT HFBR-5701L  
850 nm LASER PROD  
21CFR(J) CLASS 1  
COUNTRY OF ORIGIN YYWW  
TX  
RX  
TUV  
UL  
XXXXXX  
13.40 ± 0.1  
(0.53 ± 0.004)  
13.75 ± 0.1  
(0.54 ± 0.004)  
56.40 ± 0.2  
(2.22 ± 0.01)  
SEE DETAIL 1  
TCASE REFERENCE POINT  
AREA  
FOR  
13.0 ± 0.1  
PROCESS  
PLUG  
(0.51 ± 0.004)  
14.8  
(0.58)  
MAX. UNCOMPRESSED  
14.20 ± 0.1  
(0.56 ± 0.004)  
DETAIL 1  
SCALE 2x  
FRONT EDGE OF SFP  
TRANSCEIVER CAGE  
6.25 ± 0.05  
(0.25 ± 0.002)  
0.7  
(0.03)  
MAX. UNCOMPRESSED  
8.50 ± 0.1  
(0.33 ± 0.004)  
11.80 ± 0.2  
(0.46 ± 0.008)  
TX  
RX  
DIMENSIONS ARE IN MILLIMETERS (INCHES)  
Figure 7. Module drawing.  
13  
X
Y
34.5  
3x 10  
7.2  
2.5  
7.1  
10x 1.05 ± 0.01  
0.1 S X A S  
0.85 ± 0.05  
0.1 S X Y  
16.25  
MIN. PITCH  
B
1
2.5  
A
1
PCB  
EDGE  
3.68  
5.68  
20  
PIN 1  
8.58  
11.08  
14.25  
8.48  
2x 1.7  
11.93  
16.25  
REF.  
9.6  
4.8  
11  
10  
SEE DETAIL 1  
9x 0.95 ± 0.05  
11x 2.0  
3
0.1 L X A S  
11x 2.0  
5
26.8  
2
3x 10  
41.3  
42.3  
5
20x 0.5 ± 0.03  
0.06 S A S B S  
3.2  
0.9  
NOTES:  
1. PADS AND VIAS ARE CHASSIS GROUND.  
2. THROUGH HOLES, PLATING OPTIONAL.  
20  
11  
PIN 1  
10.53  
10.93  
11.93  
9.6  
0.8  
TYP.  
3. HATCHED AREA DENOTES COMPONENT AND  
TRACE KEEPOUT (EXCEPT CHASSIS GROUND).  
10  
4. AREA DENOTES COMPONENT KEEPOUT  
(TRACES ALLOWED).  
4
2 ± 0.05 TYP.  
0.06 L A S B S  
2x 1.55 ± 0.05  
0.1 L A S B S  
DIMENSIONS IN MILLIMETERS  
DETAIL 1  
Figure 8. SFP host board mechanical layout.  
14  
1.7 ± 0.9  
(0.07 ± 0.04)  
3.5 ± 0.3  
(0.14 ± 0.01)  
41.73 ± 0.5  
(1.64 ± 0.02)  
PCB  
BEZEL  
AREA  
FOR  
PROCESS  
PLUG  
15  
(0.59)  
MAX.  
CAGE ASSEMBLY  
15.25 ± 0.1  
(0.60 ± 0.004)  
11  
(0.43)  
REF.  
10.4 ± 0.1  
(0.41 ± 0.004)  
9.8  
MAX.  
(0.39)  
10  
(0.39)  
TO PCB  
REF  
1.5  
REF.  
(0.06)  
BELOW PCB  
16.25 ± 0.1  
(0.64 ± 0.004)  
MIN. PITCH  
0.4 ± 0.1  
(0.02 ± 0.004)  
BELOW PCB  
MSA-SPECIFIED BEZEL  
DIMENSIONS ARE IN MILLIMETERS (INCHES).  
Figure 9. Assembly drawing.  
15  
www.agilent.com/semiconductors  
For product information and a complete list of  
distributors, please go to our web site.  
For technical assistance call:  
Americas/Canada: +1 (800) 235-0312 or  
(408) 654-8675  
Europe: +49 (0) 6441 92460  
China: 10800 650 0017  
Hong Kong: (+65) 6271 2451  
India, Australia, New Zealand: (+65) 6271 2394  
Japan: (+81 3) 3335-8152(Domestic/Interna-  
tional), or 0120-61-1280(Domestic Only)  
Korea: (+65) 6271 2194  
Malaysia, Singapore: (+65) 6271 2054  
Taiwan: (+65) 6271 2654  
Data subject to change.  
Copyright © 2002 Agilent Technologies, Inc.  
Obsoletes 5988-2954EN  
July 16, 2002  
5988-7281EN  

相关型号:

HFBR-5710L

Small Form Factor Pluggable Optical Transceiver for Gigabit
AGILENT

HFBR-5710LP

Small Form Factor Pluggable Optical Transceiver for Gigabit
AGILENT

HFBR-5720AL

2.125/1.0625 GBd MMF SFP Transceiver for Fibre Channel: Ext Temp & Voltage. Standard delatch
ETC

HFBR-5720ALP

Optoelectronic
ETC

HFBR-5720L

Fibre Channel 2.125/1.0625 GBd 850 nm Small Form Pluggable Low Voltage (3.3 V) Optical Transceiver
AGILENT

HFBR-5720L

Fibre Channel 2.125/1.0625 GBd 850 nm Small Form Pluggable Low Voltage (3.3 V) Optical Transceiver
HP

HFBR-5720LP

Fibre Channel 2.125/1.0625 GBd 850 nm Small Form Pluggable Low Voltage (3.3 V) Optical Transceiver
AGILENT

HFBR-5720LP

Fibre Channel 2.125/1.0625 GBd 850 nm Small Form Pluggable Low Voltage (3.3 V) Optical Transceiver
HP

HFBR-5730L

1.0625 GBd MMF Small Form Factor Pluggable (SFP) Transceiver for Fibre Channel: Standard delatch
ETC

HFBR-5730LP

1.0625 GBd MMF Small Form Factor Pluggable (SFP) Transceiver for Fibre Channel: Bail-wire delatch
ETC

HFBR-5760AL

FIBER OPTIC TRANSCEIVER, 100Mbps(Tx), 100Mbps(Rx), LC CONNECTOR
AVAGO

HFBR-5760ALP

Transceiver
AGILENT