G1420? [ETC]

2-W stereo audio power OP amp.|OP Amplifier Series ; 2 -W立体声音频功率运算放大器。| OP放大器系列\n
G1420?
型号: G1420?
厂家: ETC    ETC
描述:

2-W stereo audio power OP amp.|OP Amplifier Series
2 -W立体声音频功率运算放大器。| OP放大器系列\n

运算放大器
文件: 总26页 (文件大小:488K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Global Mixed-mode Technology Inc.  
2W Stereo Audio Amplifier  
General Description  
G1420  
Features  
„ꢀDepop Circuitry Integrated  
„ꢀOutput Power at 1% THD+N, VDD=5V  
--1.8W/CH (typical) into a 4Load  
--1.2W/CH (typical) into a 8Load  
„ꢀBridge-Tied Load (BTL), Single-Ended (SE)  
„ꢀStereo Input MUX  
G1420 is a stereo audio power amplifier in 24pin  
TSSOP thermal pad package. It can drive 1.8W con-  
tinuous RMS power into 4 load per channel in  
Bridge-Tied Load (BTL) mode at 5V supply voltage. Its  
THD is smaller than 1% under the above operation  
condition. To simplify the audio system design in the  
notebook application, G1420 supports the Bridge-Tied  
Load (BTL) mode for driving the speakers, Single-End  
(SE) mode for driving the headphone. G1420 can  
mute the output when Mute-In is activated. For the low  
current consumption applications, the SHDN mode is  
supported to disable G1420 when it is idle. The cur-  
rent consumption can be further reduced to below  
5µA.  
„ꢀMute and Shutdown Control Available  
„ꢀSurface-Mount Power Package  
24-Pin TSSOP-P  
Applications  
„ꢀStereo Power Amplifiers for Notebooks or  
Desktop Computers  
„ꢀMultimedia Monitors  
G1420 also supports two input paths, that means two  
different gain loops can be set in the same PCB and  
choosing either one by setting HP/LINE pin. It en-  
hances the hardware designing flexibility.  
„ꢀStereo Power Amplifiers for Portable Audio  
Systems  
Ordering Information  
ORDER  
TEMP.  
PACKAGE PACKING  
NUMBER  
RANGE  
G1420F31U -40°C to +85°C TSSOP-24L Tape & Reel  
G1420F31T -40°C to +85°C TSSOP-24L  
Tube  
Pin Configuration  
G1420  
GND/HS  
NC  
22 ROUT+  
RLINEIN  
20 RHPIN  
19 RBYPASS  
GND/HS  
24  
23  
1
TJ  
LOUT+  
LLINEIN  
2
3
4
5
6
7
8
9
21  
LHPIN  
LBYPASS  
LVDD  
SHUTDOWN  
MUTE OUT  
LOUT-  
Thermal  
Pad  
18  
17  
16  
RVDD  
NC  
HP/LINE  
10  
15 ROUT-  
14 SE/BTL  
MUTE IN 11  
14  
12  
13  
GND/HS  
GND/HS  
Top View  
24Pin TSSOP  
Bottom View  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.1  
May 23, 2003  
1
Global Mixed-mode Technology Inc.  
G1420  
Absolute Maximum Ratings  
Supply Voltage, VCC…………………..…...…….……...6V  
Operating Ambient Temperature Range  
Power Dissipation (1)  
TA 25°C…………………………………………..2.7W  
TA 70°C…………………………………………..1.7W  
TA 85°C………………….……………………….1.4W  
Electrostatic Discharge, VESD  
TA…….…………………………….……….-40°C to +85°C  
Maximum Junction Temperature, TJ…..……….….150°C  
Storage Temperature Range, TSTG….….-65°C to+150°C  
Soldering Temperature, 10seconds, TS……….……260°C  
Human body mode..……………………...-3000 to 3000(2)  
Note:  
(1) : Recommended PCB Layout  
(2) : Human body model : C = 100pF, R = 1500, 3 positive pulses plus 3 negative pulses  
Electrical Characteristics  
DC Electrical Characteristics, TA=+25°C  
PARAMETER  
SYMBOL  
CONDITIONS  
Stereo BTL  
MIN TYP MAX UNIT  
7
3.5  
8
4
5
8
4
2
9
VDD =3.3V  
DD = 5V  
STEREO SE  
Stereo BTL  
STEREO SE  
5.6  
11  
6.5  
30  
11  
6.5  
5
Supply Current  
IDD  
V
DC Differential Output Voltage  
Supply Current in Mute Mode  
VO(DIFF)  
IDD(MUTE)  
ISD  
VDD = 5V,Gain = 2  
mV  
mA  
µA  
Stereo BTL  
STEREO SE  
VDD = 5V  
IDD in Shutdown  
VDD = 5V  
(AC Operation Characteristics, VDD = 5.0V, TA=+25°C, RL = 4, unless otherwise noted)  
PARAMETER  
SYMBOL  
CONDITIONS  
THD = 1%, BTL, RL = 4  
THD = 1%, BTL, RL = 8Ω  
THD = 10%, BTL, RL = 4Ω  
THD = 10%, BTL, RL = 8Ω  
THD = 1%, SE, RL = 4Ω  
THD = 1%, SE, RL = 8Ω  
THD = 10%, SE, RL = 4Ω  
THD = 10%, SE, RL L = 8Ω  
THD = 0.5%, SE, RL = 32Ω  
PO = 1.6W, BTL, RL = 4Ω  
PO = 1W, BTL, RL = 8Ω  
PO = 75mW, SE, RL = 32Ω  
VI = 1V, RL = 10K, G = 1  
G = 1, THD = 1%  
MIN TYP MAX UNIT  
1.8  
1.12  
2
W
1.4  
500  
320  
Output power (each channel) see Note  
P(OUT)  
mW  
m%  
650  
400  
90  
500  
150  
20  
10  
20  
60  
75  
85  
82  
80  
85  
2
Total harmonic distortion plus noise  
THD+N  
Maximum output power bandwidth  
Phase margin  
Power supply ripple rejection  
Mute attenuation  
Channel-to-channel output separation  
Line/HP input separation  
BTL attenuation in SE mode  
Input impedance  
BOM  
kHz  
°
dB  
dB  
dB  
dB  
dB  
MΩ  
dB  
µV (rms)  
RL = 4, Open Load  
f = 120Hz  
RSRR  
f = 1kHz  
ZI  
Signal-to-noise ratio  
Output noise voltage  
PO = 500mW, BTL  
Output noise voltage  
90  
55  
Vn  
Note :Output power is measured at the output terminals of the IC at 1kHz.  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.1  
May 23, 2003  
2
Global Mixed-mode Technology Inc.  
G1420  
(AC Operation Characteristics, VDD = 3.3V, TA=+25°C, RL = 4, unless otherwise noted)  
PARAMETER  
SYMBOL  
CONDITIONS  
THD = 1%, BTL, RL = 4Ω  
THD = 1%, BTL, RL = 8Ω  
THD = 10%, BTL, RL = 4Ω  
THD = 10%, BTL, RL = 8Ω  
THD = 1%, SE, RL = 4Ω  
THD = 1%, SE, RL = 8Ω  
THD = 10%, SE, RL = 4Ω  
THD = 10%, SE, RL L = 8Ω  
THD = 0.5%, SE, RL = 32Ω  
PO = 1.6W, BTL, RL = 4Ω  
PO = 1W, BTL, RL = 8Ω  
PO = 75mW, SE, RL = 32Ω  
VI = 1V, RL = 10K, G = 1  
G = 1, THD 1%  
MIN TYP MAX UNIT  
0.8  
0.5  
W
1
0.6  
230  
140  
Output power (each channel) see Note  
P(OUT)  
mW  
290  
180  
43  
270  
100  
20  
10  
20  
60  
75  
85  
80  
80  
85  
2
Total harmonic distortion plus noise  
THD+N  
m%  
Maximum output power bandwidth  
Phase margin  
Power supply ripple rejection  
Mute attenuation  
BOM  
kHz  
°
RL = 4, Open Load  
PSRR  
f = 120Hz  
dB  
dB  
Channel-to-channel output separation  
Line/HP input separation  
BTL attenuation in SE mode  
Input impedance  
f = 1kHz  
dB  
dB  
dB  
ZI  
MΩ  
dB  
Signal-to-noise ratio  
PO = 500mW, BTL  
90  
55  
Output noise voltage  
Vn  
Output noise voltage  
µV (rms)  
Note :Output power is measured at the output terminals of the IC at 1kHz.  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.1  
May 23, 2003  
3
Global Mixed-mode Technology Inc.  
G1420  
Pin Description  
PIN  
1,12,13,24  
2
NAME  
GND/HS  
TJ  
I/O  
FUNCTION  
Ground connection for circuitry, directly connected to thermal pad.  
O
Source a current inversely to the junction temperature. This pin should be left uncon-  
nected during normal operation. For more information, see the junction temperature  
measurement section of this document.  
3
4
5
LOUT+  
LLINE IN  
LHP IN  
O
I
I
Left channel + output in BTL mode, + output in SE mode.  
Left channel line input, selected when HP/ pin is held low.  
Left channel headphone input, selected when HP/pin is held high.  
6
7
8
LBYPASS  
LVDD  
SHUTDOWN  
Connect to voltage divider for left channel internal mid-supply bias.  
Supply voltage input for left channel and for primary bias circuits.  
I
I
Shutdown mode control signal input, places entire IC in shutdown mode when held high,  
I
DD = 5µA.  
9
MUTE OUT  
LOUT-  
MUTE IN  
SE/BTL  
ROUT-  
O
O
I
I
O
I
Follows MUTE IN pin, provides buffered output.  
10  
11  
14  
15  
16  
Left channel - output in BTL mode, high impedance state in SE mode.  
Mute control signal input, hold low for normal operation, hold high to mute.  
Mode control signal input, hold low for BTL mode, hold high for SE mode.  
Right channel - output in BTL mode, high impedance state in SE mode.  
MUX control input, hold high to select headphone inputs (5,20), hold low to select line  
inputs (4,21).  
HP/LINE  
17,23  
18  
NC  
RVDD  
I
Supply voltage input for right channel.  
19  
20  
21  
22  
RBYPASS  
RHP IN  
RLINE IN  
ROUT+  
Connect to voltage divider for right channel internal mid-supply bias.  
Right channel headphone input, selected when HP/pin is held high.  
Right channel line input, selected when HP/pin is held low.  
Right channel + output in BTL mode, + output in SE mode.  
I
I
O
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.1  
May 23, 2003  
4
Global Mixed-mode Technology Inc.  
G1420  
Typical Characteristics  
Table of Graphs  
FIGURE  
vs Frequency  
2,4,5,7,8,11,12,14,15,17,18,20,21,23,24,26,27,29,30,32,33  
THD +N Total harmonic distortion plus noise  
vs Output power  
vs Frequency  
1,3,6,9,10,13,16,19,22,25,28,31  
Vn  
34,35  
Output noise voltage  
Supply ripple rejection ratio  
Crosstalk  
vs Frequency  
36,37  
vs Frequency  
38,39,40,41  
42,43,44,45  
46  
vs Frequency  
Closed loop response  
IDD  
PO  
vs supply voltage  
vs supply voltage  
vs Load resistance  
vs Output power  
Supply ripple rejection ratio  
47,48  
Output power  
49,50  
51,52,53,54  
PD  
Power dissipation  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT FREQUENCY  
10  
5
10  
5
20kHz  
2
2
1
1
Po=1.8W  
0.5  
1kHz  
0.5  
%
%
0.2  
0.1  
0.2  
0.1  
VDD=5V  
RL=3Ω  
BTL  
Po=1.5W  
20 Hz  
VDD=5V  
RL=3Ω  
BTL  
0.05  
0.05  
Av=-2V/V  
0.02  
0.01  
0.02  
0.01  
3m  
5m  
10m  
20m  
50m  
100m  
W
200m  
500m  
1
2
3
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k 20k  
Figure 1  
Figure 2  
Ver: 1.1  
May 23, 2003  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
5
Global Mixed-mode Technology Inc.  
G1420  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT FREQUENCY  
10  
5
10  
5
Av=-4V/V  
20kHz  
2
2
1
1
Av=-2V/V  
0.5  
0.5  
1kHz  
%
%
0.2  
0.1  
0.2  
0.1  
VDD=5V  
RL=4Ω  
BTL  
Av=-1V/V  
VDD=5V  
RL=4Ω  
BTL  
20 Hz  
0.05  
0.05  
Po=1.5W  
0.02  
0.01  
0.02  
0.01  
3m  
5m  
10m  
20m  
50m  
100m  
W
200m  
500m  
1
2
3
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k 20k  
Figure 3  
Figure 4  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT POWER  
10  
10  
VDD=5V  
VDD=5V  
5
5
RL=8Ω  
RL=4Ω  
20kHz  
Po=1.5W  
BTL  
Av=-2V/V  
BTL  
Av=-2V/V  
2
2
1
1
Po=0.25W  
0.5  
0.5  
%
%
0.2  
0.1  
0.2  
0.1  
1kHz  
Po=0.75W  
0.05  
0.05  
20Hz  
0.02  
0.01  
0.02  
0.01  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k 20k  
3m  
5m  
10m  
20m  
50m  
100m  
W
200m  
500m  
1
2
3
Figure 5  
Figure 6  
Ver: 1.1  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
May 23, 2003  
6
Global Mixed-mode Technology Inc.  
G1420  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT FREQUENCY  
10  
10  
5
5
VDD=5V  
VDD=5V  
RL=8Ω  
RL=8Ω  
2
1
Po=1W  
2
Av=-4V/V  
BTL  
Av=-2V/V  
BTL  
Po=1W  
1
Po=0.25W  
0.5  
0.5  
%
Av=-2V/V  
%
0.2  
0.1  
0.2  
0.1  
Po=0.5W  
0.05  
0.05  
Av=-1V/V  
0.02  
0.01  
0.02  
0.01  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k 20k  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k 20k  
Figure 8  
Figure 7  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT POWER  
10  
10  
5
5
20kHz  
20kHz  
2
1
2
1
1kHz  
1kHz  
0.5  
0.5  
%
%
0.2  
0.1  
0.2  
0.1  
VDD=3.3V  
RL=3Ω  
BTL  
VDD=3.3V  
RL=4Ω  
BTL  
20Hz  
0.05  
0.05  
20Hz  
0.02  
0.01  
0.02  
0.01  
1m  
2m  
5m  
10m  
20m  
50m  
100m  
200m  
500m  
1
1m  
2m  
5m  
10m  
20m  
50m  
100m  
200m  
500m  
1
W
W
Figure 9  
Figure 10  
Ver: 1.1  
May 23, 2003  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
7
Global Mixed-mode Technology Inc.  
G1420  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT FREQUENCY  
10  
10  
5
5
VDD=3.3V  
RL=4Ω  
BTL  
VDD=3.3V  
RL=4Ω  
BTL  
Av=-4V/V  
2
1
2
1
Po=0.7W  
Av=-2V/V  
Av=-2V/V  
Po=0.65W  
0.5  
0.5  
%
%
Po=0.1W  
0.2  
0.1  
0.2  
0.1  
Po=0.35W  
Av=-1V/V  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k  
20k  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k  
20k  
Figure 11  
Figure 12  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT FREQUENCY  
10  
10  
VDD=3.3V  
5
5
VDD=3.3V  
RL=8Ω  
RL=8Ω  
20kHz  
2
2
BTL  
Av=-4V/V  
BTL  
Po=0.4W  
1
1
0.5  
0.5  
Av=-2V/V  
%
%
1kHz  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
Av=-1V/V  
20Hz  
0.02  
0.01  
0.02  
0.01  
1m  
2m  
5m  
10m  
20m  
50m  
100m  
200m  
500m  
1
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k 20k  
W
Figure 13  
Figure 14  
Ver: 1.1  
May 23, 2003  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
8
Global Mixed-mode Technology Inc.  
G1420  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT POWER  
10  
10  
VDD=5V  
VDD=3.3V  
5
5
RL=4Ω  
RL=8Ω  
2
2
1
SE  
BTL  
Av=-2V/V  
Po=0.4W  
1
20kHz  
0.5  
0.5  
%
%
Po=0.1W  
0.2  
0.1  
0.2  
0.1  
1kHz  
0.05  
0.05  
Po=0.25W  
100Hz  
0.02  
0.01  
0.02  
0.01  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k 20k  
1m  
2m  
5m  
10m  
20m  
50m  
100m  
200m  
500m  
1
W
Figure 15  
Figure 16  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT FREQUENCY  
10  
10  
VDD=5V  
5
5
VDD=5V  
RL=4Ω  
RL=4Ω  
2
2
Av=-4V/V  
SE  
Po=0.5W  
SE  
Av=-2V/V  
Po=0.4W  
1
1
0.5  
0.5  
%
%
Av=-2V/V  
0.2  
0.1  
0.2  
0.1  
Po=0.1W  
0.05  
0.05  
Av=-1V/V  
Po=0.25W  
0.02  
0.01  
0.02  
0.01  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k 20k  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k 20k  
Figure 18  
Figure 17  
Ver: 1.1  
May 23, 2003  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
9
Global Mixed-mode Technology Inc.  
G1420  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT FREQUENCY  
10  
10  
VDD=5V  
5
5
VDD=5V  
RL=8Ω  
RL=8Ω  
2
2
SE  
SE  
Po=0.25W  
1
1
20kHz  
0.5  
0.5  
Av=-2V/V  
%
%
0.2  
0.1  
0.2  
0.1  
Av=-4V/V  
1kHz  
0.05  
0.05  
100Hz  
0.02  
0.01  
0.02  
0.01  
Av=-1V/V  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k 20k  
1m  
2m  
5m  
10m  
20m  
50m  
100m  
200m  
500m  
1
W
Figure 19  
Figure 20  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT POWER  
10  
10  
5
5
VDD=5V  
VDD=5V  
2
RL=8Ω  
RL=32Ω  
2
SE  
Av=-2  
1
SE  
0.5  
1
20kHz  
1kHz  
0.2  
0.1  
0.5  
Po=0.05W  
%
%
0.2  
0.1  
0.05  
20Hz  
0.02  
0.01  
Po=0.1W  
0.05  
0.005  
Po=0.25W  
0.02  
0.01  
0.002  
0.001  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k 20k  
1m  
2m  
5m  
10m  
20m  
50m  
100m 200m  
W
Figure 21  
Figure 22  
Ver: 1.1  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
May 23, 2003  
10  
Global Mixed-mode Technology Inc.  
G1420  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT FREQUENCY  
10  
10  
5
5
VDD=5V  
VDD=5V  
2
RL=32Ω  
2
RL=32Ω  
1
1
SE  
Po=75mW  
SE  
0.5  
0.5  
Av=-4V/V  
Po=25mW  
0.2  
0.2  
0.1  
0.1  
%
%
Av=-2V/V  
0.05  
0.05  
Po=50mW  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
Av=-1V/V  
Po=75mW  
0.002  
0.001  
0.002  
0.001  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k 20k  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k 20k  
Figure 23  
Figure 24  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT FREQUENCY  
10  
10  
VDD=3.3V  
5
5
VDD=3.3V  
RL=4Ω,SE  
RL=4Ω  
Av=-2  
2
2
SE  
Po=0.2W  
20kHz  
Av=-4V/V  
1
1
0.5  
0.5  
%
%
Av=-2V/V  
0.2  
0.1  
0.2  
1kHz  
0.1  
0.05  
0.05  
100Hz  
0.02  
0.01  
0.02  
Av=-1V/V  
0.01  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k 20k  
1m  
2m  
5m  
10m  
20m  
50m  
100m  
200m  
500m  
1
W
Figure 25  
Figure 26  
Ver: 1.1  
May 23, 2003  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
11  
Global Mixed-mode Technology Inc.  
G1420  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT POWER  
ꢀ  
10ꢀ  
ꢀ  
ꢀ  
10  
5
VDD=3.3V  
5
VDD=3.3V  
RL=4Ω  
SE  
RL=8Ω,SE  
2
1
2
Av=-2  
Po=50mW  
Av=-2  
1
20kHz  
0.5  
0.5  
%
%
0.2  
0.1  
0.2  
0.1  
Po=100mW  
1kHz  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
Po=150mW  
100Hz  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k 20k  
1m  
2m  
5m  
10m  
W
20m  
50m  
100m 200m  
Figure 27  
Figure 28  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT FREQUENCY  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT FREQUENCY  
10  
10  
5
5
VDD=3.3V  
VDD=3.3V  
RL=8Ω  
RL=8Ω  
2
2
SE  
SE  
Po=100mW  
1
1
Av=-4V/V  
Av=-1V/V  
Po=25mW  
0.5  
0.5  
%
%
0.2  
0.1  
0.2  
0.1  
Po=50mW  
Av=-2V/V  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
Po=100mW  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k 20k  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k 20k  
Figure 29  
Figure 30  
Ver: 1.1  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
May 23, 2003  
12  
Global Mixed-mode Technology Inc.  
G1420  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT POWER  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT FREQUENCY  
10  
10  
5
5
VDD=3.3V  
VDD=3.3V  
2
RL=32Ω  
RL=32Ω  
2
1kHz  
1
SE  
Po=30mW  
SE  
Av=-4V/V  
0.5  
1
0.2  
0.5  
20kHz  
Av=-2V/V  
0.1  
%
%
0.2  
0.1  
0.05  
0.02  
0.01  
20Hz  
0.05  
0.005  
Av=-1V/V  
0.02  
0.01  
0.002  
0.001  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k 20k  
1m  
2m  
5m  
10m  
W
20m  
50m  
100m  
Figure 31  
Figure 32  
TOTAL HARMONIC DISTORTION PLUS NOISE  
vs OUTPUT FREQUENCY  
OUTPUT NOISE VOLTAGE  
vs FREQUENCY  
10  
100u  
90u  
80u  
5
VDD=5V  
RL=4Ω  
VDD=3.3V  
BW=22Hz to 20kHz  
70u  
60u  
2
RL=32Ω  
1
SE  
50u  
40u  
0.5  
Po=10m  
0.2  
Vo BTL  
0.1  
%
V
30u  
20u  
0.05  
Po=20mW  
0.02  
0.01  
Vo SE  
0.005  
Po=30mW  
0.002  
0.001  
10u  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k 20k  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k 20k  
Figure 33  
Figure 34  
Ver: 1.1  
May 23, 2003  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
13  
Global Mixed-mode Technology Inc.  
G1420  
OUTPUT NOISE VOLTAGE  
vs FREQUENCY  
SUPPLY RIPPLE REJECTION RATIO  
vs FREQUENCY  
100u  
90u  
80u  
+0  
ꢁ  
ꢁ  
VDD=3.3V  
RL=4Ω  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
BW=22Hz to 20kHz  
Vo BTL  
70u  
VDD=5V  
RL=4Ω  
CB=4.7uF  
60u  
50u  
40u  
d
B
V
30u  
BTL  
20u  
Vo SE  
SE  
10u  
-100  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k  
20k  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k  
20k  
Figure 35  
Figure 36  
SUPPLY RIPPLE REJECTION RATIO  
vs FREQUENCY  
CROSSTALK vs FREQUENCY  
-20  
-25  
+0  
ꢁ  
ꢁ  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-30  
VDD=3.3V  
RL=4Ω  
CB=4.7uF  
VDD=5V  
-35  
Po=1.5W  
-40  
RL=4Ω  
-45  
BTL  
-50  
-55  
d
d
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
B
B
BTL  
L to R  
R to L  
SE  
-100  
-100  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k  
20k  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k  
20k  
Figure 37  
Figure 38  
Ver: 1.1  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
May 23, 2003  
14  
Global Mixed-mode Technology Inc.  
G1420  
CROSSTALK vs FREQUENCY  
CROSSTALK vs FREQUENCY  
-30  
-35  
-40  
-20  
-25  
VDD=3.3V  
Po=0.75W  
RL=4Ω  
BTL  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
VDD=5V  
Po=75mW  
RL=32Ω  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
-95  
SE  
d
B
d
B
R to L  
L to R  
R to L  
L to R  
-100  
-100  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k  
20k  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k  
20k  
Figure 39  
Figure 40  
CROSSTALK vs FREQUENCY  
-30  
-35  
VDD=3.3V  
-40  
Po=35mW  
-45  
RL=32Ω  
SE  
-50  
-55  
-60  
d
B
-65  
-70  
-75  
-80  
-85  
-90  
-95  
R to L  
L to R  
-100  
20  
50  
100  
200  
500  
Hz  
1k  
2k  
5k  
10k  
20k  
Figure 41  
Ver: 1.1  
May 23, 2003  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
15  
Global Mixed-mode Technology Inc.  
G1420  
CLOSED LOOP RESPONSE  
Figure 42  
CLOSED LOOP RESPONSE  
Figure 43  
Ver: 1.1  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
May 23, 2003  
16  
Global Mixed-mode Technology Inc.  
G1420  
CLOSED LOOP RESPONSE  
Figure 44  
CLOSED LOOP RESPONSE  
Figure 45  
Ver: 1.1  
May 23,  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
17  
Global Mixed-mode Technology Inc.  
G1420  
SUPPLY CURRENT vs SUPPLY VOLTAGE  
OUTPUT POWER vs SUPPLY VOLTAGE  
2.5  
2
10  
9
8
7
6
5
4
3
2
1
0
THD+N=1%  
BTL  
Stereo BTL  
Stereo SE  
Each Channel  
RL=4Ω  
1.5  
1
RL=3  
Ω
RL=8Ω  
0.5  
0
3
4
5
6
2.5  
3.5  
4.5  
5.5  
6.5  
SUPPLY VOLTAGE(V)  
SUPPLY VOLTAGE(V)  
Figure 46  
Figure 47  
OUTPUT POWER vs LOAD RESISTANCE  
OUTPUT POWER vs SUPPLY VOLTAGE  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
THD+N=1%  
SE  
THD+N=1%  
BTL  
Each Channel  
Each Channel  
RL=8Ω  
VDD=5V  
RL=4Ω  
RL=32Ω  
VDD=3.3V  
2.5  
3.5  
4.5  
5.5  
6.5  
0
4
8
12  
16  
20  
24  
28  
32  
Supply Voltage(V)  
Load Resistance(Ω)  
Figure 48  
Figure 49  
Ver: 1.1  
May 23, 2003  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
18  
Global Mixed-mode Technology Inc.  
G1420  
OUTPUT POWER vs LOAD RESISTANCE  
POWER DISSIPATION vs OUTPUT POWER  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.8  
1.6  
1.4  
1.2  
1
THD+N=1%  
SE  
RL=3Ω  
Each Channel  
VDD=5V  
RL=4Ω  
0.8  
0.6  
0.4  
0.2  
0
VDD=5V  
RL=8Ω  
BTL  
Each Channel  
VDD=3.3V  
0
4
8
12  
16  
20  
24  
28  
32  
0
0.5  
1
1.5  
2
2.5  
Load Resistance(Ω)  
Po-Output Power(W)  
Figure 50  
Figure 51  
POWER DISSIPATION vs OUTPUT POWER  
POWER DISSIPATION vs OUTPUT POWER  
0.35  
0.3  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
RL=3Ω  
RL=4Ω  
RL=4Ω  
RL=8Ω  
0.25  
0.2  
0.15  
0.1  
VDD=5V  
SE  
Each Channel  
VDD=3.3V  
BTL  
Each Channel  
RL=8Ω  
RL=32Ω  
0.05  
0
0
0.25  
0.5  
0.75  
1
0
0.2  
0.4  
0.6  
0.8  
Output Power(W)  
Output Power(W)  
Figure 52  
Figure 53  
Ver: 1.1  
May 23, 2003  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
19  
Global Mixed-mode Technology Inc.  
G1420  
POWER DISSIPATION vs OUTPUT POWER  
Recommended PCB Layout  
0.16  
0.14  
0.12  
0.1  
RL=4Ω  
VDD=3.3V  
SE  
Each Channel  
0.08  
0.06  
0.04  
0.02  
0
RL=8Ω  
RL=32Ω  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
OUTPUT POWER(W)  
Figure 54  
Ver: 1.1  
May 23, 2003  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
20  
Global Mixed-mode Technology Inc.  
Block Diagram  
G1420  
20k  
21  
20  
RLINEIN  
RHPIN  
_
+
22  
15  
ROUT+  
ROUT-  
RIGHT  
MUX  
RBYPASS  
19  
RVDD  
18  
MUTEIN  
HP/LINE  
SE/BTL  
TJ  
16  
14  
2
11  
BIAS CIRCUITS  
MUTEOUT  
SHUTDOWN  
9
8
MODES CONTROL  
CIRCUITS  
LVDD  
7
6
LBYPASS  
+
LOUT-  
LOUT+  
10  
3
LHPIN  
5
4
_
LEFT  
MUX  
LLINEIN  
20k  
Parameter Measurement Information  
11  
8
MUTEIN  
HP/LINE  
SE/BTL  
SHUTDOWN  
16  
14  
LVDD  
7
RL 4/8/32ohm  
6
LBYPASS  
CB  
LOUT-  
LOUT+  
10  
3
+
4.7µF  
5
4
LHPIN  
LLINEIN  
CI  
LEFT  
MUX  
_
AC source  
RI  
RF  
BTL Mode Test Circuit  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.1  
May 23, 2003  
21  
Global Mixed-mode Technology Inc.  
G1420  
(Continued)  
Parameter Measurement Information  
11  
8
MUTEIN  
HP/LINE  
SE/BTL  
16  
14  
SHUTDOWN  
VDD  
LVDD  
7
6
LBYPASS  
CB  
LOUT-  
LOUT+  
10  
3
+
4.7µF  
5
4
LHPIN  
LLINEIN  
CI  
LEFT  
MUX  
_
AC source  
RI  
RL 32ohm  
RF  
SE Mode Test Circuit  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.1  
May 23, 2003  
22  
Global Mixed-mode Technology Inc.  
Application Circuits  
G1420  
GND/HS  
TJ  
GND/HS  
NC  
24  
23  
1
2
LOUT+  
ROUT+  
3
4
22  
21  
CIR  
CIL  
AUDIO SOURCE  
LLINEIN  
RLINEIN  
CFR  
AUDIO SOURCE  
RFL  
RFL  
CFL  
RIR  
RIL  
LHPIN  
RHPIN  
LVDD  
5
6
20  
7
LBYPASS  
RVDD  
NC  
RBYPASS  
G1420  
19  
8
18  
17  
R
CSR  
SHUTDWON  
100K  
COUTR  
MUTE OUT  
LOUT-  
HP/LINE  
ROUT-  
9
16  
15  
10  
R
1
3
MUTE IN  
GND/HS  
SE/BTL  
1K  
11  
12  
14  
13  
100K  
4
2
GND/HS  
PHONOJACK  
COUTR  
1K  
Logical Truth Table  
INPUTS  
HP/LINE  
OUTPUT  
Shutdown Mute Out  
AMPLIFIER STATES  
Mute In  
Input  
L/R Out+  
L/R Out-  
Mode  
Mute  
Mute  
Mute  
SE/BTL  
X
Low  
High  
X
X
X
----  
High  
High  
High  
----  
----  
----  
High  
High  
X
X
X
----  
VDD/2  
VDD/2  
BTL  
Output  
BTL  
----  
VDD/2  
----  
BTL  
Low  
Low  
High  
High  
Low  
High  
Low  
High  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
L/R Line  
L/R HP  
L/R Line  
L/R HP  
BTL  
BTL  
SE  
Output  
BTL  
Output  
SE  
Output  
----  
----  
Output  
SE  
SE  
Output  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.1  
May 23, 2003  
23  
Global Mixed-mode Technology Inc.  
G1420  
Application Information  
Input MUX Operation  
There are two input signal paths – HP & Line. With the  
prompt setting, G1420 allows the setting of different  
gains for BTL and SE modes. Generally, speakers  
typically require approximately a factor of 10 more  
gain for similar volume listening levels as compared  
with headphones.  
-3 dB  
SE Gain(HP)  
BTL Gain(LINE)  
To achieve headphones and speakers listening parity,  
(RF(LINE/RI(LINE)) is suggested to be 5 times of (RF(HP)  
=
-(RF(HP)/RI(HP)  
)
fc  
=
-2(RF(LINE)/RI(LINE)  
)
Figure 2  
/
R
I(HP)). The ratio of (RF(HP)/RI(HP)) can be determined by  
Bridged-Tied Load Mode Operation  
the applications. When the optimum distortion per-  
formance into the headphones (clear sound) is impor-  
tant, gain of –1 ((RF(HP) / RI(HP)) = 1) is suggested.  
G1420 has two linear amplifiers to drive both ends of  
the speaker load in Bridged-Tied Load (BTL) mode  
operation. Figure 3 shows the BTL configuration. The  
differential driving to the speaker load means that  
when one side is slewing up, the other side is slewing  
down, and vice versa. This configuration in effect will  
double the voltage swing on the load as compared to a  
ground reference load. In BTL mode, the peak-to-peak  
voltage VO(PP) on the load will be two times than a  
ground reference configuration. The voltage on the  
load is doubled, this will also yield 4 times output  
power on the load at the same power supply rail and  
loading. Another benefit of using differential driving  
configuration is that BTL operation cancels the dc off-  
sets, which eliminates the dc coupling capacitor that is  
needed to cancelled dc offsets in the ground reference  
configuration. Low-frequency performance is then lim-  
ited only by the input network and speaker responses.  
Cost and PCB space can be minimized by eliminating  
the dc coupling capacitors.  
Single Ended Mode Operation  
G1420 can drive clean, low distortion SE output power  
into headphone loads (generally 16or 32) as in  
Figure 1. Please refer to Electrical Characteristics to  
see the performances. A coupling capacitor is needed  
to block the dc offset voltage, allowing pure ac signals  
into headphone loads. Choosing the coupling capaci-  
tor will also determine the 3 dB point of the high-pass  
filter network, as Figure 2.  
fC=1/(2πRLCC)  
For example, a 68uF capacitor with 32headphone  
load would attenuate low frequency performance be-  
low 73Hz. So the coupling capacitor should be well  
chosen to achieve the excellent bass performance  
when in SE mode operation.  
VDD  
VDD  
Vo(PP)  
Vo(PP)  
RL  
2xVo(PP)  
-Vo(PP)  
VDD  
CC  
Vo(PP)  
RL  
Figure 1  
Figure 3  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.1  
May 23, 2003  
24  
Global Mixed-mode Technology Inc.  
G1420  
MUTE and SHUTDOWN Mode Operations  
G1420 implements the mute and shutdown mode  
operations to reduce supply current, IDD, to the ab-  
solute minimum level during nonuse periods for  
battery-power conservation. When the shutdown pin  
(pin 8) is pulled high, all linear amplifiers will be de-  
activated to mute the amplifier outputs. And G1420  
enters an extra low current consumption state, IDD is  
smaller than 5µA. If pulling mute-in pin (pin 11) high,  
it will force the activated linear amplifier to supply  
the VDD/2 dc voltage on the output to mute the AC  
performance. In mute mode operation, the current  
consumption will be a little different between BTL,  
SE. (SE < BTL) Typically, the supply current is  
about 2.5mA in BTL mute operation. Shutdown and  
Mute-In pins should never be left unconnected, this  
floating condition will cause the amplifier operations  
unpredictable.  
VDD  
100 k  
50 k  
Bypass  
100 k  
Figure 4  
Junction Temperature Measurement  
Optimizing DEPOP Operation  
Characterizing a PCB layout with respect to thermal  
impedance is very difficult, as it is usually impossi-  
ble to know the junction temperature of the IC.  
G1420 TJ (pin 2) sources a current inversely pro-  
portional to the junction temperature. Typically TJ  
sources–120µA for a 5V supply at 25°C. And the  
slope is approximately 0.22µA/°C. As the resistors  
have a tolerance of ±20%, these values should be  
Circuitry has been implemented in G1420 to mini-  
mize the amount of popping heard at power-up and  
when coming out of shutdown mode. Popping oc-  
curs whenever a voltage step is applied to the  
speaker and making the differential voltage gener-  
ated at the two ends of the speaker. To avoid the  
popping heard, the bypass capacitor should be  
chosen promptly, 1/(CBx100k) 1/(CI*(RI+RF)).  
Where 100kis the output impedance of the  
mid-rail generator, CB is the mid-rail bypass capaci-  
tor, CI is the input coupling capacitor, RI is the input  
impedance, RF is the gain setting impedance which  
is on the feedback path. CB is the most important  
capacitor. Besides it is used to reduce the popping,  
CB can also determine the rate at which the amplifier  
starts up during startup or recovery from shutdown  
mode.  
calibrated on each device. When the temperature  
sensing function is not used, TJ pin can be left  
floating or tied to VDD to reduce the current con-  
sumption.  
Temperature sensing circuit is shown on Figure 5.  
VDD  
R
De-popping circuitry of G1420 is shown on Figure 4.  
The PNP transistor limits the voltage drop across  
the 50kby slewing the internal node slowly when  
power is applied. At start-up, the voltage at  
BYPASS capacitor is 0. The PNP is ON to pull the  
mid-point of the bias circuit down. So the capacitor  
sees a lower effective voltage, and thus the charg-  
ing is slower. This appears as a linear ramp (while  
the PNP transistor is conducting), followed by the  
expected exponential ramp of an R-C circuit.  
R
5R  
TJ  
Figure 5  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.1  
May 23, 2003  
25  
Global Mixed-mode Technology Inc.  
Package Information  
G1420  
D
24  
L
1.88  
1.88  
3.85  
E
E1  
2.8  
0.71  
1
Note 5  
A2  
A1  
e
b
NOTE:  
1. Package body sizes exclude mold flash protrusions or gate burrs  
2. Tolerance 0.1mm unless otherwise specified  
3. Coplanarity : 0.1mm  
4. Controlling dimension is millimeter. Converted inch dimensions are not necessarily exact.  
5. Die pad exposure size is according to lead frame design.  
6. Follow JEDEC MO-153  
DIMENSION IN MM  
DIMENSION IN INCH  
SYMBOL  
MIN.  
-----  
0.00  
0.80  
0.19  
0.09  
7.70  
6.20  
4.30  
-----  
0.45  
-----  
0º  
NOM.  
MAX.  
1.15  
0.10  
1.05  
0.30  
0.20  
7.90  
6.60  
4.50  
-----  
MIN.  
-----  
NOM.  
MAX.  
0.045  
0.004  
0.041  
0.012  
0.008  
0.311  
2.260  
0.177  
-----  
A
A1  
A2  
b
-----  
-----  
1.00  
-----  
-----  
-----  
-----  
0.039  
-----  
-----  
0.000  
0.031  
0.007  
0.004  
0.303  
0.244  
0.169  
-----  
C
D
7.80  
6.40  
4.40  
0.65  
0.60  
-----  
0.307  
0.252  
0.173  
0.026  
0.024  
-----  
E
E1  
e
L
y
θ
0.75  
0.10  
8º  
0.018  
-----  
0º  
0.030  
0.004  
8º  
-----  
-----  
Taping Specification  
Feed Direction  
Typical TSSOP Package Orientation  
GMT Inc. does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and GMT Inc. reserves the right at any time without notice to change said circuitry and specifications.  
TEL: 886-3-5788833  
http://www.gmt.com.tw  
Ver: 1.1  
May 23, 2003  
26  

相关型号:

G1420F31U

2W Stereo Audio Amplifier
GMT

G1420F31UF

2W Stereo Audio Amplifier
GMT

G1421

2W Stereo Audio Amplifier with No Headphone Coupling Capacitor Function
GMT

G1421F

2W Stereo Audio Amplifier with No Headphone Coupling Capacitor Function
GMT

G1422

2W Stereo Audio Amplifier
GMT

G1422F2U

2W Stereo Audio Amplifier
GMT

G1422F2UF

2W Stereo Audio Amplifier
GMT

G1423

Heyco Rubber Grommets
ETC

G1426

2.2W Stereo Audio Amplifier
GMT

G1426D5T

2.2W Stereo Audio Amplifier
GMT

G1426D5U

2.2W Stereo Audio Amplifier
GMT

G1426D5UF

Audio Amplifier, 1 Func, PDSO20
GMT