CS8141YDW24 [ETC]

Positive Fixed Voltage Regulator ; 正固定电压稳压器\n
CS8141YDW24
型号: CS8141YDW24
厂家: ETC    ETC
描述:

Positive Fixed Voltage Regulator
正固定电压稳压器\n

稳压器
文件: 总20页 (文件大小:167K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS8140, CS8141  
5.0 V, 500 mA Linear  
Regulator with ENABLE,  
RESET, and Watchdog  
The CS8140 and CS8141 are linear regulators suited for  
microprocessor applications in automotive environments.  
These ON Semiconductor parts provide the power for the  
microprocessors along with many of the control functions needed in  
today’s computer based systems. Incorporating all of these features  
saves both cost, and board space.  
http://onsemi.com  
TO–220  
SEVEN LEAD  
T SUFFIX  
CASE 821E  
Packages are available for surface mounting as well as through hole  
mounting.  
1
7
The CS8141 has the same feature set as the CS8140 with the  
exception of the response to the watchdog signals (WDI). The CS8141  
only responds to input signals (WDI) which are below the preset  
watchdog frequency threshold.  
TO–220  
SEVEN LEAD  
TVA SUFFIX  
CASE 821J  
1
TO–220  
Features  
5.0 V ±4.0%, 500 mA Output Voltage  
µP Compatible Control Functions  
Watchdog  
SEVEN LEAD  
THA SUFFIX  
CASE 821H  
1
RESET  
ENABLE  
7
2
D PAK  
Low Dropout Voltage (1.25 V @ 500 mA)  
Low Quiescent Current (7.0 mA @ 500 mA)  
Low Noise, Low Drift  
7–PIN  
DPS SUFFIX  
CASE 936H  
1
7
Low Current SLEEP Mode (I = 250 µA)  
Q
Fault Protection  
SO–24L  
DW SUFFIX  
CASE 751E  
Thermal Shutdown  
Short Circuit  
24  
60 V Peak Transient Voltage  
1
DIP–14  
N SUFFIX  
CASE 646  
14  
1
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 14 of this data sheet.  
DEVICE MARKING INFORMATION  
See general marking information in the device marking  
section on page 14 of this data sheet.  
Semiconductor Components Industries, LLC, 2001  
1
Publication Order Number:  
September, 2001 – Rev. 13  
CS8140/D  
CS8140, CS8141  
PIN CONNECTIONS  
DIP–14  
TO–220  
SO–24L  
SEVEN LEAD  
1
14  
RESET  
ENABLE  
1
24  
NC  
Delay  
WDI  
RESET  
ENABLE  
NC  
Delay  
WDI  
V
OUT  
V
IN  
V
OUT  
V
IN  
Sense  
GND  
GND  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Sense  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
GND  
Tab = GND  
Pin 1. V  
IN  
2. ENABLE  
3. RESET  
4. GND  
1
GND  
5. Delay  
6. WDI  
2
D PAK  
SEVEN PIN  
7. V  
OUT  
1
V
IN  
Overvoltage  
Overtemperature  
Reference & Bias  
Regulation  
ENABLE  
WDI  
Control Logic  
ENABLE  
RESET  
V
OUT  
Delay  
Short Circuit  
Undervoltage  
Internally tied  
on TO–220  
& D PAK  
2
Sense  
GND  
Watchdog  
RESET  
Delay  
Figure 1. Block Diagram  
http://onsemi.com  
2
CS8140, CS8141  
MAXIMUM RATINGS*  
Rating  
Value  
–0.5 to 26  
60  
Unit  
V
Input Operating Range  
Peak Transient Voltage (46 V Load Dump @ 14 V V  
Electrostatic Discharge (Human Body Model)  
)
V
BAT  
4.0  
kV  
WDI Input Signal Range  
Internal Power Dissipation  
–0.3 to 7.0  
Internally Limited  
–40 to +150  
V
Junction Temperature Range (T )  
°C  
°C  
J
Storage Temperature Range  
ENABLE  
–65 to +150  
–0.3 to V  
V
IN  
Package Thermal Resistance, TO–220 Seven Lead  
Junction–to–Case, R  
Junction–to–Ambient, R  
1.6  
50  
°C/W  
°C/W  
θ
JC  
θ
JA  
2
Package Thermal Resistance, D PAK 7–Pin  
Junction–to–Case, R  
1.5  
10–50†  
°C/W  
°C/W  
θ
JC  
Junction–to–Ambient, R  
θ
JA  
Package Thermal Resistance, SO–24L  
Junction–to–Case, R  
16  
80  
°C/W  
°C/W  
θ
JC  
Junction–to–Ambient, R  
θ
JA  
Package Thermal Resistance, DIP–14  
Junction–to–Case, R  
48  
85  
°C/W  
°C/W  
θ
JC  
Junction–to–Ambient, R  
θ
JA  
Lead Temperature Soldering:  
Wave Solder (through hole styles only) (Note 1)  
Reflow (SMD styles only) (Note 2)  
260 peak  
230 peak  
°C  
*The maximum package power dissipation must be observed.  
†Depending on thermal properties of substrate R  
1. 10 second maximum.  
= R  
+ R  
.
CA  
θ
θ
θ
JA  
JC  
2. 60 seconds max above 183°C.  
ELECTRICAL CHARACTERISTICS (7.0 V 26 V, 5.0 mA I  
500 mA, –40°C T 150°C,  
IN  
OUT  
J
–40°C T 125°C, unless otherwise noted.) Note 3.  
A
Characteristic  
Test Conditions  
Min  
Typ  
Max  
Unit  
Output Stage (V  
)
OUT  
Output Voltage, V  
7.0 V V 26 V, 5.0 mA < I < 500 mA  
OUT  
4.8  
5.0  
1.25  
5.0  
5.2  
1.50  
25  
V
OUT  
IN  
Dropout Voltage (V – V  
)
I = 500 mA  
OUT  
V
IN  
OUT  
Line Regulation  
Load Regulation  
I
= 50 mA, 7.0 V V 26 V,  
mV  
mV  
mΩ  
OUT  
IN  
V
IN  
= 14 V, 50 mA I  
500 mA  
5.0  
80  
OUT  
Output Impedance, R  
500 mA DC and 10 mA AC,  
200  
OUT  
100 Hz f 10 kHz  
Quiescent Current, (I )  
Q
Active Mode  
Sleep Mode  
0 I  
500 mA, 7.0 V V 26 V  
7.0  
0.25  
15  
0.50  
mA  
mA  
OUT  
IN  
I
= 0 mA, V = 13 V, ENABLE = 0 V  
OUT  
IN  
Ripple Rejection  
7.0 V V 17 V, I  
= 250 mA,  
60  
75  
dB  
IN  
OUT  
f = 120 Hz  
Current Limit  
700  
150  
30  
1200  
180  
34  
2000  
mA  
°C  
V
Thermal Shutdown  
Overvoltage Shutdown  
V
OUT  
< 1.0 V  
38  
3. To observe safe operating junction temperatures, low duty cycle pulse testing is used in tests where applicable.  
http://onsemi.com  
3
CS8140, CS8141  
ELECTRICAL CHARACTERISTICS (continued) (7.0 V 26 V, 5.0 mA I  
500 mA, –40°C T 150°C,  
J
IN  
OUT  
–40°C T 125°C, unless otherwise noted.) Note 4.  
A
Characteristic  
ENABLE  
Test Conditions  
Min  
Typ  
Max  
Unit  
Threshold  
HIGH  
LOW  
V
OUT  
V
OUT  
0.5 V, (V  
< 0.5 V, (V  
)
3.5  
4.05  
3.95  
4.50  
V
V
OUT(ON)  
)
OUT(OFF)  
Threshold Hysteresis  
(HIGH – LOW)  
100  
mV  
RESET  
Threshold HIGH V  
V
V
Increasing  
4.65  
4.50  
150  
4.90  
4.70  
200  
V – 0.05  
OUT  
V
V
R(HI)  
OUT  
Threshold LOW V  
Decreasing  
4.90  
250  
25  
R(LOW)  
OUT  
Threshold Hysteresis (V  
)
(HIGH – LOW)  
V V  
OUT  
mV  
µA  
RH  
RESET Output Leakage  
RESET = HIGH  
R(HI)  
Output Voltage Low (V  
Output Voltage Low (V  
)
1.0 V V  
V  
, R = 2.7 kΩ, Note 5.  
0.1  
0.6  
0.4  
1.0  
65  
V
V
L(LOW)  
OUT  
R(LOW)  
P
)
V , Power up, Power down  
OUT  
Rpeak  
Delay Times t  
Delay Times t  
Watchdog  
C
C
= 0.1 µF  
= 0.1 µF  
30  
0.5  
47.5  
1.0  
ms  
ms  
POR  
WDI(RESET)  
DELAY  
DELAY  
1.5  
Input Voltage High  
Input Voltage Low  
Input Current  
2.0  
V
0.8  
10  
V
WDI V  
0
µA  
Hz  
Hz  
OUT  
Threshold Frequency f  
C
C
= 0.1 µF  
64  
218  
77  
262  
96  
WDI(LOWER)  
WDI(UPPER)  
DELAY  
DELAY  
Threshold Frequency f  
(Note 6.)  
= 0.1 µF  
326  
4. To observe safe operating junction temperatures, low duty cycle pulse testing is used in tests where applicable.  
5. R is connected to RESET and V  
P
OUT.  
6. CS8140 only.  
PACKAGE LEAD DESCRIPTION  
PACKAGE LEAD #  
LEAD SYMBOL  
LEAD SYMBOL  
2
TO–220  
D PAK  
SO–24L  
21  
DIP–14  
12  
FUNCTION  
Supply voltage to IC, usually direct from the battery.  
CMOS compatible logical input. V is disabled when  
1
2
1
2
V
IN  
23  
13  
ENABLE  
OUT  
ENABLE is LOW and WDI is beyond its preset limits.  
3
3
24  
14  
RESET  
CMOS compatible output lead. RESET goes low whenever  
V
OUT  
drops below 4.5% of it’s typical value for more than  
2.0 µs or WDI signal falls outside it’s window limits.  
4
5
6
4
5
6
12, 20  
8, 11  
GND  
Delay  
WDI  
Ground Connection.  
2
3
1
2
Timing capacitor for Watchdog and RESET functions.  
CMOS compatible input lead. The Watchdog function monitors  
the falling edge of the incoming digital pulse train. The signal is  
usually generated by the system microprocessor.  
7
7
4
3
V
Regulated output voltage, 5.0 V (typ).  
No connection.  
OUT  
1, 6–11,  
13–19, 22  
5–7, 9, 10  
NC  
5
4
Sense  
Kelvin connection which allows remote sensing of output volt-  
age for improved regulation.  
http://onsemi.com  
4
CS8140, CS8141  
TYPICAL PERFORMANCE CHARACTERISTICS  
5.5  
5.0  
5.5  
V
= V  
IN  
V
= V  
IN  
ENABLE  
ENABLE  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
R
= NO LOAD  
4.5  
4.0  
3.5  
LOAD  
TEMP = 125°C  
R
= 6.67 Ω  
LOAD  
TEMP = –40°C  
3.0  
2.5  
TEMP = 25°C  
R
LOAD  
10 Ω  
2.0  
1.5  
1.0  
0.5  
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
V
IN  
(V)  
V
IN  
(V)  
Figure 3. VOUT vs. VIN Over Temperature; RLOAD = 25 Ω  
Figure 2. VOUT vs. VIN over RLOAD; T = 25°C  
1800  
1600  
1400  
3.5  
–40°C  
0
25°C  
–3.5  
–7  
V
IN  
= 14 V  
1200  
1000  
–10.5  
–14  
–40°C  
125°C  
–17.5  
800  
600  
–21  
25°C  
125°C  
–24.5  
400  
200  
–28  
–31.5  
–35  
0
0
100  
200  
300  
I
400  
500  
600  
700  
800  
0
100  
200  
300  
400  
(mV)  
500  
600  
700  
800  
I
(mA)  
OUT  
OUT  
Figure 5. Load Regulation vs. Output  
Current Over Temperature  
Figure 4. Dropout Voltage vs. Output  
Current Over Temperature  
18  
16  
10  
9
V
IN  
= 14 V  
V
IN  
= 14 V  
14  
12  
–40°C  
10  
8
–40°C  
8
6
7
6
4
25°C  
125°C  
2
0
25°C  
–2  
–4  
5
4
125°C  
–6  
0
100  
200  
300  
400  
500  
600  
700  
800  
0
100  
200  
300  
400  
(mA)  
500  
600  
700  
800  
I
(mA)  
I
OUT  
OUT  
Figure 6. Line Regulation vs. Output  
Current Over Temperature  
Figure 7. Quiescent Current vs. Output  
Current Over Temperature  
http://onsemi.com  
5
CS8140, CS8141  
TYPICAL PERFORMANCE CHARACTERISTICS  
20  
18  
16  
20  
V
= V  
IN  
ENABLE  
V
= V  
IN  
ENABLE  
18  
16  
TEMP = 25°C  
14  
12  
10  
8
14  
12  
10  
8
R
= 6.67  
LOAD  
TEMP = –40°C  
R
= 25  
LOAD  
6
6
R
= NO LOAD  
LOAD  
TEMP = 125°C  
4
2
0
4
2
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
V
IN  
(V)  
V
IN  
(V)  
Figure 8. Quiescent Current vs. VIN Over RLOAD  
;
Figure 9. Quiescent Current vs. VIN Over  
T = 25°C  
Temperature; RLOAD = 25 Ω  
7
300  
280  
260  
240  
220  
10  
6
5
4
Upper Threshold  
10  
10  
C
= 0.1 µF  
Upper Threshold  
DELAY  
200  
180  
160  
140  
10  
3
10  
Lower Threshold  
2
10  
10  
10  
120  
100  
80  
Lower Threshold  
1
0
60  
–40  
1
2
3
4
5
6
0
10  
10  
–3020–10  
20 30 40 50 60 70 80 90 100 110120130140 150  
10  
10  
10  
10  
10  
10  
Capacitance (pF)  
T (°C)  
J
Figure 10. Watchdog Frequency Thresholds  
vs. Temperature  
Figure 11. Watchdog Frequency Threshold vs.  
CDELAY  
90  
2000  
I
= 250 mA  
O
1800  
1600  
1400  
1200  
80  
70  
60  
50  
C
= 10 µF, ESR = 1.0  
O
V
IN  
= 5.0 V  
& 0.1 µF, ESR = 0  
1000  
800  
40  
30  
20  
C
OUT  
= 10 µF, ESR = 1.0 Ω  
600  
400  
200  
0
C
OUT  
= 10 µF, ESR = 1.0 Ω  
10  
0
0
1
2
3
4
5
6
7
8
1
5
10  
15  
20  
25  
30  
35  
40  
10  
10  
10  
10  
10  
10  
10  
10  
10  
Frequency (Hz)  
RESET Output Current (mA)  
Figure 12. Ripple Rejection vs. Frequency  
Figure 13. RESET Output Voltage vs.  
Output Current  
http://onsemi.com  
6
CS8140, CS8141  
DEFINITION OF TERMS  
Dropout Voltage: The input–output voltage differential  
such that the average chip temperature is not significantly  
affected.  
Load Regulation: The change in output voltage for a  
change in load current at constant chip temperature.  
Quiescent Current: The part of the positive input current  
that does not contribute to the positive load current. The  
regulator ground lead current.  
Ripple Rejection: The ratio of the peak–to–peak input  
ripple voltage to the peak–to–peak output ripple voltage.  
Current Limit: Peak current that can be delivered to the  
output.  
at which the circuit ceases to regulate against further  
reduction in input voltage. Measured when the output  
voltage has dropped 100 mV from the nominal value  
obtained at 14 V input, dropout voltage is dependent upon  
load current and junction temperature.  
Input Voltage: The DC voltage applied to the input  
terminals with respect to ground.  
Line Regulation: The change in output voltage for a  
change in the input voltage. The measurement is made under  
conditions of low dissipation or by using pulse techniques  
CIRCUIT DESCRIPTION  
VOLTAGE REFERENCE AND OUTPUT CIRCUITRY  
The CS8140 is a 5.0 V Watchdog Regulator with protection  
circuitry and three logic control functions that allow a  
microprocessor to control its own power supply. The CS8140  
is designed for use in automotive, switch mode power supply  
post regulator, and battery powered systems.  
Precision Voltage Reference  
The regulated output voltage depends on the precision  
band gap voltage reference in the IC. By adding an error  
amplifier into the feedback loop, the output voltage is  
maintained within ±4.0% over temperature and supply  
variation.  
Basic regulator performance characteristics include a low  
noise, low drift, 5.0 V ±4.0% precision output voltage with  
low dropout voltage (1.25 V @ I  
= 500 mA) and low  
OUT  
quiescent current (7.0 mA @ I  
= 500 mA). On board  
OUT  
Output Stage  
short circuit, thermal, and overvoltage protection make it  
possible to use this regulator in particularly harsh operating  
environments.  
The Watchdog logic function monitors an input signal  
(WDI) from the microprocessor or other signal source.  
When the signal frequency moves outside externally  
programmable window limits, a RESET signal is generated  
The composite PNP–NPN output structure (Figure 14)  
provides 500 mA (min) of output current while maintaining  
a low drop out voltage (1.25 V) and drawing little quiescent  
current (7.0 mA).  
V
IN  
(RESET). An external capacitor (C  
) programs the  
DELAY  
watchdog window frequency limits as well as the power on  
reset (POR) and RESET delay.  
The RESET function is activated by any of three  
conditions: the watchdog signal moves outside of its preset  
limits; the output voltage drops out of regulation by more  
than 4.5%; or the IC is in its power up sequence. The RESET  
V
OUT  
Figure 14. Composite Output Stage of the CS8140/1  
signal is independent of V and reliable down to V  
=
IN  
OUT  
1.0 V.  
The NPN pass device prevents deep saturation of the  
output stage which in turn improves the IC’s efficiency by  
preventing excess current from being used and dissipated by  
the IC.  
In conjunction with the Watchdog, the ENABLE function  
controls the regulator’s power consumption. The CS8140’s  
output stage and its attendant circuitry are enabled by setting  
the ENABLE lead high. The regulator goes into sleep mode  
when the ENABLE lead goes low and the watchdog signal  
moves outside its preset window limits. This unique  
combination of control functions in the CS8140 gives the  
microprocessor control over its own power down sequence:  
i.e. it gives the microprocessor the flexibility to perform  
housekeeping functions before it powers down.  
Output Stage Protection  
The output stage is protected against overvoltage, short  
circuit and thermal runaway conditions (Figure 15).  
If the input voltage rises above 30 V (e.g. load dump), the  
output shuts down. This response protects the internal  
circuitry and enables the IC to survive unexpected voltage  
transients.  
The CS8141 has the same features as the CS8140, except  
that the CS8141 only responds to input signals (WDI) which  
are below the preset watchdog frequency threshold.  
Using an emitter sense scheme, the amount of current  
through the NPN pass transistor is monitored. Feedback  
http://onsemi.com  
7
CS8140, CS8141  
circuitry insures that the output current never exceeds a  
preset limit.  
The lower and upper window threshold limits of the  
watchdog function are set by the value of C . The limits  
DELAY  
are determined according to the following equations for the  
CS8140:  
> 30 V  
5)  
+ (1.3   10  
(a)  
t
f
t
f
C
or  
DELAY  
DELAY  
WDI(LOWER)  
WDI(LOWER)  
WDI(UPPER)  
WDI(UPPER)  
DELAY  
V
IN  
–6  
+ (7.69   10 )C  
–1  
or  
V
OUT  
–4  
+ (3.82   10 )C  
(b)  
–5  
+ (2.62   10 )C  
–1  
DELAY  
I
O
For the CS8141 the lower limit is determined by the  
equations in (a) above.  
Short  
Circuit  
Thermal  
Shutdown  
Load  
Dump  
The capacitor C  
also determines the frequency of  
DELAY  
Figure 15. Typical Circuit Waveforms for  
Output Stage Protection  
the RESET signal and the POWER–ON–RESET (POR)  
delay period.  
RESET Function  
The RESET function is activated when the Watchdog  
signal is outside of its preset window (Figure 16), when the  
Should the junction temperature of the power device  
exceed 180°C (typ), the power transistor is turned off.  
Thermal shutdown is an effective means to prevent die  
overheating since the power transistor is the principle heat  
source in the IC.  
regulator is in its power up state (Figure 17) or when V  
OUT  
drops below V  
–4.5% for more than 2.0 µs (Figure 18)  
OUT  
If the Watchdog signal falls outside of the preset voltage  
and frequency window, a frequency programmable pulse  
train is generated at the RESET lead (Figure 16) until the  
correct Watchdog input signal reappears at the lead. The  
REGULATOR CONTROL FUNCTIONS  
The CS8140 differs from all other linear regulators in its  
unique combination of control features.  
duration of the RESET pulse is determined by C  
according to the following equation:  
DELAY  
Watchdog and ENABLE Function  
V
OUT  
is controlled by the logic functions ENABLE and  
4)  
+ (1.0   10  
t
C
DELAY  
WDI(RESET)  
Watchdog (Table 1).  
Table 1. VOUT as a Function of ENABLE and Watchdog  
RESET CIRCUIT WAVEFORMS WITH DELAYS  
INDICATED  
V
OUT  
(V)  
If an undervoltage condition exists, the voltage on the  
WDI  
RESET lead goes low and the delay capacitor, C  
, is  
DELAY  
Slow  
Normal  
Fast  
High  
Low  
ENABLE  
discharged. RESET remains low until output is in  
regulation, the voltage on C exceeds the upper  
H
L
5
0
5
5
5
0
5
0
5
0
DELAY  
switching threshold and the Watchdog input signal is within  
its set window limits (Figures 17 and 18). The delay after the  
output is in regulation is:  
As long as ENABLE is high or ENABLE is low and the  
Watchdog signal is normal, V will be at 5.0 V (typ). If  
OUT  
5)  
ENABLE is low and the Watchdog signal moves outside  
programmable limits, the output transistor turns off and the  
IC goes into SLEEP mode. Only the ENABLE circuitry in  
the IC remains powered up, drawing a quiescent current of  
250 µA.  
The Watchdog monitors the frequency of an incoming  
WDI signal. If the signal falls outside of the WDI window,  
a frequency programmable pulse train is generated at the  
RESET lead (Figure 16) until the correct Watchdog input  
signal reappears at the lead (ENABLE = HIGH).  
t
+ (4.75   10  
C
POR(typ)  
DELAY  
The RESET delay circuit is also programmed with the  
external cap C  
.
DELAY  
The output of the reset circuit is an open collector NPN.  
RESET is operational down to V = 1.0 V. Both RESET  
OUT  
and its delay are governed by comparators with hysteresis to  
avoid undesirable oscillations.  
http://onsemi.com  
8
CS8140, CS8141  
Batt  
Batt  
V
IN  
ENABLE  
WDI 0 V  
VOUT When Watchdog is Held  
High and ENABLE = HIGH  
RESET  
0 V  
V
OUT  
0 V  
POR Normal Operation  
WDI held High  
Batt  
Batt  
V
IN  
ENABLE  
WDI 0 V  
VOUT When Watchdog is Held Low  
and ENABLE = HIGH  
RESET  
0 V  
0 V  
V
OUT  
Normal Operation  
POR  
WDI held Low  
Batt  
Batt  
V
IN  
ENABLE  
WDI 0 V  
V
OUT When Watchdog is too Slow  
and ENABLE = HIGH  
RESET  
0 V  
0 V  
V
OUT  
POR Normal Operation  
Slow WDI signal  
Batt  
Batt  
V
IN  
ENABLE  
V
OUT When Watchdog is too Fast and  
ENABLE = HIGH  
WDI 0 V  
RESET  
0 V  
0 V  
V
OUT  
POR Normal Operation  
Fast WDI signal  
Batt  
Batt  
V
IN  
ENABLE  
WDI Held High After a Normal Period  
of Operation; ENABLE = LOW  
WDI 0 V  
RESET  
0 V  
0 V  
V
OUT  
WDI  
high  
POR Normal Operation  
Sleep Mode POR Normal Operation  
Batt  
Batt  
V
IN  
ENABLE  
WDI 0 V  
WDI Held Low or is too Slow after  
a Normal Period of Operation;  
ENABLE = LOW  
RESET  
0 V  
0 V  
V
OUT  
Normal  
Operation  
WDI  
low  
POR  
Sleep Mode POR Normal Operation  
Batt  
Batt  
V
IN  
WDI Frequency Rises Above the  
Upper Frequency Threshold After a  
Normal Period of Operation;  
ENABLE  
WDI 0 V  
ENABLE = LOW (for CS8140 only)  
RESET  
0 V  
0 V  
V
OUT  
Normal  
Operation  
Normal Operation  
Sleep Mode  
POR  
POR  
Figure 16. Timing Diagrams for Watchdog and ENABLE Functions  
http://onsemi.com  
9
CS8140, CS8141  
V
OUT  
V
OUT  
V
R(HI)  
V
OUT  
–4.5%  
V
R(LO)  
< 2.0 µs 2.0 µs  
RESET  
RESET  
5.0 V  
V
R(LO)  
V
R(PEAK)  
t
POR  
t
POR  
Figure 17. Power RESET and Power Down  
Figure 18. Undervoltage Triggered RESET  
APPLICATION NOTES  
CS8140 DESIGN EXAMPLE  
5
+ (1.3   10 )C  
DELAY  
t
t
WDI(LOWER)  
The CS8140 with its unique integration of linear regulator  
and control features: RESET, ENABLE and WATCHDOG,  
provides a single IC solution for a microprocessor power  
supply. The reset delay, reset duration and watchdog  
frequency limits are all determined by a single capacitor. For  
a particular microprocessor the overriding requirement is  
usually the reset delay (also known as power on reset). The  
capacitor is chosen to meet this requirement and the reset  
duration and watchdog frequency follow.  
4
+ (3.82   10 )C  
WDI(UPPER)  
DELAY  
There is a tolerance of ±20% due to the CS8140.  
With a capacitor tolerance of ±10%:  
5
+ (1.3   10 )   1.2   1.1   C  
Delay  
t
WDI(LOWER)  
4
t
+ (3.82   10 )   0.8   0.9   C  
WDI(UPPER)  
Delay  
t
t
+ 141 ms (max)  
+ 22.5 ms (max)  
5
+ (1.3   10 )   0.8   0.9   C  
WDI(LOWER)  
The reset delay is given by:  
5)  
WDI(UPPER)  
t
+ (4.75   10  
C
POR(typ)  
DELAY  
Assume that the reset delay must be 200 ms minimum.  
From the CS8140 data sheet the reset delay has a ±37%  
tolerance due to the regulator.  
t
WDI(LOWER)  
DELAY  
4
+ (3.82   10 )   1.2   1.1   C  
DELAY  
t
WDI(UPPER)  
Assume the capacitor tolerance is ±10%.  
t
+ 76 ms (min)  
+ 41 ms (min)  
WDI(LOWER)  
5
t
(min) + (4.75   10   0.63)   C  
  0.9  
POR  
DELAY  
t
WDI(UPPER)  
t
(min)  
POR  
C
(min) +  
DELAY  
The software must be written so that a watchdog signal  
5
2.69   10  
arrives at least every 76 ms but not faster than every 41 ms  
(Figure 19).  
C
(min) + 0.743 mF  
DELAY  
Closest standard value is 0.82 µF.  
Minimum and maximum delays using 0.82 µF are 220 ms  
and 586 ms.  
PASS  
FAIL  
FAIL  
The duration of the reset pulse is given by:  
4)  
Hz  
ms  
7
9
13  
76  
24  
41  
32  
44  
T
(typ) + (1.0   10   C  
WDI(RESET)  
DELAY  
141 107  
31 22.5  
This has a tolerance of ±50% due to the IC, and ±10% due  
to the capacitor.  
C = 0.1 µF ±10%  
The duration of the reset pulse ranges from 3.69 ms to  
13.5 ms.  
Figure 19. WDI Signal for CDelay = 0.82 µF using  
CS8140  
The watchdog signal can be expressed as a frequency or  
time. From a programmers point of view, time is more useful  
since they must ensure that a watchdog signal is issued  
consistently several times per second.  
The maximum and minimum watchdog times are given  
by:  
The CS8141 is identical to the CS8140 except that the  
CS8141 only has a lower watchdog frequency threshold.  
The designer using this part need only be concerned with  
t
as shown in Figure 20.  
WDI(LOWER)  
http://onsemi.com  
10  
CS8140, CS8141  
When the voltage across C1 reaches 3.95 V ( the enable  
threshold), the output switches on and V  
rises to 5.0 V.  
, a frequency  
OUT  
FAIL  
After a delay period determined by C  
Delay  
PASS  
programmable reset pulse train is generated at the reset  
output. The pulse train continues until the correct watchdog  
signal appears at the WDI lead. C1 is now left to discharge  
through the input impedance of the enable lead  
(approximately 150 k) and the enable signal disappears.  
The output voltage remains at 5.0 V as long as the CS8140  
continues to receive the correct watchdog signal.  
Hz  
ms  
7
13  
76  
141  
Figure 20. WDI Signal for CDelay = 0.82 µF using  
CS8141  
The microprocessor can power itself down by terminating  
its watchdog signal. When the microprocessor finishes its  
housekeeping or power down software routine, it stops  
sending a watchdog signal. In response, the regulator  
generates a reset signal and goes into a sleep mode where  
ENERGY CONSERVATION AND SMART FEATURES  
Energy conservation is another benefit of using a  
regulator with integrated microprocessor control features.  
Using the CS8140 or CS8141 as indicated in Figure 21, the  
microprocessor can control its own power down sequence.  
The momentary contact switch quickly charges C1 through  
R1.  
V
OUT  
drops to 0 V, shutting down the microprocessor.  
9.0 V  
V
OUT  
V
IN  
CS8140/1  
Switch  
R
110 K  
RESET  
WDI  
1
ENABLE  
C
C
1
0.1 µF  
GND  
DELAY  
C
2
0.1 µF  
V
CC  
10 µF  
2.7 kΩ  
Microprocessor  
RESET  
WATCHDOG PORT  
Figure 21. Application Diagram for CS8140. The CS8140 Provides a 5.0 V Tightly Regulated  
Supply and Control Function to the Microprocessor. In this Application, the Microprocessor  
Controls its own Power Down Sequence (see text).  
http://onsemi.com  
11  
CS8140, CS8141  
V
OUT  
Battery  
Ignition  
V
IN  
C *  
2
10 µF*  
C *  
1
0.1 µF  
2.7 kΩ  
CS8140  
V
CC  
(optional)  
RESET  
ENABLE  
DELAY  
RESET  
WDI  
WATCHDOG  
PORT  
0.1 µF  
GND  
R***  
Microprocessor  
*C1 is required if regulator is located far from the power source filter.  
**C2 is required for stability.  
***R 80 k.  
Figure 22. Application Diagram  
STABILITY CONSIDERATIONS  
Step 4: Maintain the worst case load conditions set in  
step 3 and vary the input voltage until the oscillations  
increase. This point represents the worst case input voltage  
conditions.  
Step 5: If the capacitor is adequate, repeat steps 3 and 4  
with the next smaller valued capacitor. A smaller capacitor  
will usually cost less and occupy less board space. If the  
output oscillates within the range of expected operating  
conditions, repeat steps 3 and 4 with the next larger standard  
capacitor value.  
Step 6: Test the load transient response by switching in  
various loads at several frequencies to simulate its real  
working environment. Vary the ESR to reduce ringing.  
Step 7: Increase the temperature to the highest specified  
operating temperature. Vary the load current as instructed in  
step 5 to test for any oscillations.  
Once the minimum capacitor value with the maximum  
ESR is found, a safety factor should be added to allow for the  
tolerance of the capacitor and any variations in regulator  
performance. Most good quality aluminum electrolytic  
capacitors have a tolerance of ± 20% so the minimum value  
found should be increased by at least 50% to allow for this  
tolerance plus the variation which will occur at low  
temperatures. The ESR of the capacitor should be less than  
50% of the maximum allowable ESR found in step 3 above.  
The output or compensation capacitor C in Figure 22  
2
helps determine three main characteristics of a linear  
regulator: start–up delay, load transient response and loop  
stability.  
The capacitor value and type should be based on cost,  
availability, size and temperature constraints. A tantalum or  
aluminum electrolytic capacitor is best, since a film or  
ceramic capacitor with almost zero ESR can cause  
instability. The aluminum electrolytic capacitor is the least  
expensive solution, but, if the circuit operates at low  
temperatures (–25°C to –40°C), both the value and ESR of  
the capacitor will vary considerably. The capacitor  
manufacturers data sheet usually provides this information.  
The value for the output capacitor C shown in Figure 22  
2
should work for most applications, however it is not  
necessarily the optimized solution.  
To determine an acceptable value for C for a particular  
2
application, start with a tantalum capacitor of the  
recommended value and work towards a less expensive  
alternative part.  
Step 1: Place the completed circuit with a tantalum  
capacitor of the recommended value in an environmental  
chamber at the lowest specified operating temperature and  
monitor the outputs with an oscilloscope. A decade box  
connected in series with the capacitor will simulate the  
higher ESR of an aluminum capacitor. Leave the decade box  
outside the chamber, the small resistance added by the  
longer leads is negligible.  
Step 2: With the input voltage at its maximum value,  
increase the load current slowly from zero to full load while  
observing the output for any oscillations. If no oscillations  
are observed, the capacitor is large enough to ensure a stable  
design under steady state conditions.  
CALCULATING POWER DISSIPATION IN A SINGLE  
OUTPUT LINEAR REGULATOR  
The maximum power dissipation for a single output  
regulator (Figure 23) is:  
NJ
Nj
I
P
+ V  
IN(max)  
* V  
OUT(min) OUT(max)  
) V  
I
(1)  
D(max)  
IN(max) Q  
where:  
V
V
I
is the maximum input voltage,  
is the minimum output voltage,  
is the maximum output current for the  
IN(max)  
OUT(min)  
OUT(max)  
Step 3: Increase the ESR of the capacitor from zero using  
the decade box and vary the load current until oscillations  
appear. Record the values of load current and ESR that cause  
the greatest oscillation. This represents the worst case load  
conditions for the regulator at low temperature.  
application, and  
I is the quiescent current the regulator consumes at  
Q
I
.
OUT(max)  
http://onsemi.com  
12  
CS8140, CS8141  
I
IN  
I
OUT  
In some cases, none of the packages will be sufficient to  
dissipate the heat generated by the IC, and an external  
heatsink will be required.  
SMART  
REGULATOR  
V
IN  
V
OUT  
Control  
Features  
HEAT SINKS  
A heat sink effectively increases the surface area of the  
package to improve the flow of heat away from the IC and  
into the surrounding air.  
I
Q
Each material in the heat flow path between the IC and the  
outside environment will have a thermal resistance. Like  
series electrical resistances, these resistances are summed to  
Figure 23. Single Output Regulator With Key  
Performance Parameters Labeled  
determine the value of R  
.
ΘJA  
) R  
R
QJA  
+ R  
QJC  
) R  
QCS QSA  
(3)  
Once the value of P  
is known, the maximum  
D(max)  
where:  
permissible value of R  
can be calculated:  
ΘJA  
R
R
R
R
= the junction–to–case thermal resistance,  
= the case–to–heatsink thermal resistance, and  
= the heatsink–to–ambient thermal resistance.  
ΘJC  
ΘCS  
ΘSA  
ΘJC  
150°C * T  
+
A
R
(2)  
QJA  
P
D
The value of R  
can then be compared with those in the  
package section of the data sheet. Those packages with  
’s less than the calculated value in equation 2 will keep  
ΘJA  
appears in the package section of the data sheet. Like  
and R  
R
, it too is a function of package type. R  
ΘJA  
ΘCS  
ΘSA  
R
ΘJA  
are functions of the package type, heatsink and the interface  
between them. These values appear in heat sink data sheets  
of heat sink manufacturers.  
the die temperature below 150°C.  
http://onsemi.com  
13  
CS8140, CS8141  
MARKING DIAGRAMS  
2
D PAK  
TO–220  
SEVEN PIN  
SO–24L  
DIP–14  
SEVEN LEAD  
14  
1
24  
CS814x  
AWLYYWW  
CS814x  
CS814x  
AWLYWW  
AWLYYWW  
CS814x  
AWLYWW  
1
1
1
x
A
= 0 or 1  
= Assembly Location  
WL, L = Wafer Lot  
YY, Y = Year  
WW, W = Work Week  
DEVICE ORDERING INFORMATION  
Device  
Package  
Shipping  
50 Units/Rail  
50 Units/Rail  
50 Units/Rail  
50 Units/Rail  
750 Tape & Reel  
31 Units/Rail  
1000 Tape & Reel  
25 Units/Rail  
50 Units/Rail  
50 Units/Rail  
50 Units/Rail  
50 Units/Rail  
750 Tape & Reel  
31 Units/Rail  
1000 Tape & Reel  
25 Units/Rail  
CS8140YT7  
TO–220 Seven Lead, Straight  
TO–220 Seven Lead, Vertical  
TO–220 Seven Lead, Horizontal  
CS8140YTVA7  
CS8140YTHA7  
CS8140YDPS7  
CS8140YDPSR7  
CS8140YDW24  
CS8140YDWR24  
CS8140YN14  
2
D PAK, 7–Pin  
2
D PAK, 7–PIN  
SO–24L  
SO–24L  
DIP–14  
CS8141YT7  
TO–220 Seven Lead, Straight  
TO–220 Seven Lead, Vertical  
TO–220 Seven Lead, Horizontal  
CS8141YTVA7  
CS8141YTHA7  
CS8141YDPS7  
CS8141YDPSR7  
CS8141YDW24  
CS8141YDWR24  
CS8141YN14  
2
D PAK, 7–Pin  
2
D PAK, 7–PIN  
SO–24L  
SO–24L  
DIP–14  
http://onsemi.com  
14  
CS8140, CS8141  
PACKAGE DIMENSIONS  
TO–220  
SEVEN LEAD  
T SUFFIX  
CASE 821E–04  
ISSUE C  
NOTES:  
ąă1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
Q
A
ąă2. CONTROLLING DIMENSION: INCH.  
ąă3. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE PROTRUSION SHALL  
BE 0.003 (0.076) TOTAL IN EXCESS OF THE D  
DIMENSION AT MAXIMUM MATERIAL CONDITION.  
G
B
INCHES  
DIM MIN MAX  
MILLIMETERS  
D
MIN  
15.24  
9.80  
4.32  
0.71  
1.15  
2.24  
0.46  
26.11  
9.02  
5
MAX  
15.49  
10.23  
4.56  
L
A
B
C
D
G
H
J
0.600  
0.386  
0.170  
0.028  
0.045  
0.088  
0.018  
1.028  
0.355  
5
0.610  
0.403  
0.180  
0.037  
0.055  
0.102  
0.026  
1.042  
0.365  
U
0.94  
1.39  
K
2.59  
0.66  
OPTIONAL  
CHAMFER  
K
L
26.47  
9.27  
M
M
Q
U
V
NOM  
NOM  
_
_
M
0.142  
0.490  
0.045  
0.148  
0.501  
0.055  
3.61  
12.45  
1.15  
3.75  
12.72  
1.39  
C
H
SEATING  
PLANE  
M
V
M
J
TO–220  
SEVEN LEAD  
TVA SUFFIX  
CASE 821J–02  
ISSUE A  
NOTES:  
ąă1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–T–  
ąă2. CONTROLLING DIMENSION: INCH.  
ąă3. DIMENSION D DOES NOT INCLUDE  
INTERCONNECT BAR (DAMBAR) PROTRUSION.  
DIMENSION D INCLUDING PROTRUSION SHALL  
NOT EXCEED 10.92 (0.043) MAXIMUM.  
C
B
–Q–  
E
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
14.22  
9.77  
MAX  
14.99  
10.54  
4.82  
A
B
C
D
E
F
0.560  
0.385  
0.160  
0.023  
0.045  
0.540  
0.590  
0.415  
0.190  
0.037  
0.055  
0.555  
W
4.06  
0.58  
A
0.94  
1.40  
U
1.14  
13.72  
H
F
14.10  
L
G
H
J
0.050 BSC  
1.27 BSC  
0.570  
0.014  
0.785  
0.322  
0.073  
0.090  
0.146  
0.289  
0.164  
0.460  
0.595  
0.022  
0.800  
0.337  
0.088  
0.115  
0.156  
0.304  
0.179  
0.475  
14.48  
0.36  
19.94  
8.18  
1.85  
2.28  
3.70  
7.34  
4.17  
11.68  
15.11  
0.56  
20.32  
8.56  
2.24  
2.91  
3.95  
7.72  
4.55  
12.07  
K
K
L
M
M
N
Q
R
S
U
W
N
S
D
7 PL  
3 °  
3 °  
M
M
T Q  
0.356 (0.014)  
G
R
J
http://onsemi.com  
15  
CS8140, CS8141  
TO–220  
SEVEN LEAD  
THA SUFFIX  
CASE 821H–02  
ISSUE A  
NOTES:  
ąă1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–T–  
ąă2. CONTROLLING DIMENSION: INCH.  
ąă3. DIMENSION D DOES NOT INCLUDE  
INTERCONNECT BAR (DAMBAR) PROTRUSION.  
DIMENSION D INCLUDING PROTRUSION SHALL  
NOT EXCEED 10.92 (0.043) MAXIMUM.  
1. LEADS MAINTAIN A RIGHT ANGLE WITH  
RESPECT TO THE PACKAGE BODY TO WITH  
$0.020".  
C
B
E
–Q–  
W
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
14.22  
9.77  
MAX  
14.99  
10.54  
4.82  
A
A
B
C
D
E
F
0.560  
0.385  
0.160  
0.023  
0.045  
0.568  
0.590  
0.415  
0.190  
0.037  
0.055  
0.583  
U
F
4.06  
0.58  
L
K
0.94  
1.40  
1.14  
14.43  
14.81  
G
J
0.050 BSC  
1.27 BSC  
M
0.015  
0.728  
0.322  
0.101  
0.090  
0.146  
0.150  
0.460  
0.022  
0.743  
0.337  
0.116  
0.115  
0.156  
0.200  
0.475  
0.38  
18.49  
8.18  
0.56  
18.87  
8.56  
K
L
M
N
Q
S
U
W
2.57  
2.28  
2.95  
2.91  
3.70  
3.81  
3.95  
5.08  
D
7 PL  
J
N
11.68  
12.07  
M
M
T Q  
0.356 (0.014)  
G
3 °  
3 °  
S
D2PAK  
7–PIN  
DPS SUFFIX  
CASE 936H–01  
ISSUE O  
SEATING  
PLANE  
–T–  
NOTES:  
1. DIMENSIONS AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. TAB CONTOUR OPTIONAL WITHIN DIMENSIONS  
B AND M.  
4. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
FLASH OR GATE PROTRUSIONS. MOLD FLASH  
AND GATE PROTRUSIONS NOT TO EXCEED  
0.025 (0.635) MAX.  
B
U
C
M
E
8
V
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
8.28  
10.05  
4.31  
0.66  
1.14  
1.41  
MAX  
8.53  
10.31  
4.57  
0.91  
1.40  
1.98  
A
A
B
C
D
E
F
0.326  
0.396  
0.170  
0.026  
0.045  
0.058  
0.336  
0.406  
0.180  
0.036  
0.055  
0.078  
1 2 3 4 5 6 7  
K
F
G
H
J
0.050 BSC  
1.27 BSC  
0.100  
0.110  
0.025  
0.214  
0.066  
0.004  
2.54  
0.46  
5.18  
1.40  
0.00  
2.79  
0.64  
5.44  
1.68  
0.10  
0.018  
0.204  
0.055  
0.000  
G
K
M
N
U
V
H
D
7 PL  
J
0.256 REF  
0.305 REF  
6.50 REF  
7.75 REF  
M
M
T B  
0.13 (0.005)  
N
http://onsemi.com  
16  
CS8140, CS8141  
SO–24L  
DW SUFFIX  
CASE 751E–04  
ISSUE E  
–A–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
24  
13  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
–B– 12X P  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
M
M
B
0.010 (0.25)  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN  
EXCESS OF D DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
1
12  
24X D  
J
MILLIMETERS  
INCHES  
MIN  
0.601  
M
S
S
0.010 (0.25)  
T A  
B
DIM MIN  
MAX  
MAX  
0.612  
0.299  
0.104  
0.019  
0.035  
A
B
C
D
F
15.25  
7.40  
2.35  
0.35  
0.41  
15.54  
7.60 0.292  
2.65 0.093  
0.49 0.014  
0.90 0.016  
F
R X 45  
_
G
J
1.27 BSC  
0.050 BSC  
0.23  
0.13  
0
0.32 0.009  
0.29 0.005  
0.013  
0.011  
8
C
K
K
M
P
R
–T–  
SEATING  
PLANE  
8
10.55  
0
0.395  
_
_
_
_
M
10.05  
0.25  
0.415  
0.029  
0.75 0.010  
22X G  
DIP–14  
N SUFFIX  
CASE 646–04  
ISSUE M  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION L TO CENTER OF LEADS WHEN  
FORMED PARALLEL.  
14  
1
8
7
B
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.  
5. ROUNDED CORNERS OPTIONAL.  
INCHES  
DIM MIN MAX  
MILLIMETERS  
A
MIN  
18.16  
6.10  
4.06  
0.38  
1.02  
MAX  
18.80  
6.60  
4.57  
0.51  
1.52  
A
B
C
D
F
0.715  
0.240  
0.160  
0.015  
0.040  
0.740  
0.260  
0.180  
0.020  
0.060  
F
L
N
C
G
H
J
0.100 BSC  
2.54 BSC  
0.052  
0.008  
0.115  
0.290  
---  
0.072  
0.012  
0.135  
0.310  
10  
1.32  
0.20  
2.92  
7.37  
---  
1.83  
0.30  
3.43  
7.87  
10  
–T–  
SEATING  
PLANE  
K
L
J
K
M
N
_
_
0.020  
0.040  
0.51  
1.02  
D 14 PL  
H
G
M
M
0.13 (0.005)  
http://onsemi.com  
17  
CS8140, CS8141  
Notes  
http://onsemi.com  
18  
CS8140, CS8141  
Notes  
http://onsemi.com  
19  
CS8140, CS8141  
SMART REGULATOR is a registered trademark of Semiconductor Components Industries, LLC (SCILLC).  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
Literature Fulfillment:  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
For additional information, please contact your local  
Sales Representative.  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
CS8140/D  

相关型号:

CS8141YDWF24

5V, 500mA Linear Regulator with ENABLE, , and Watchdog RESET
CHERRY

CS8141YDWFR24

5V, 500mA Linear Regulator with ENABLE, , and Watchdog RESET
CHERRY

CS8141YDWR24

Positive Fixed Voltage Regulator
ETC

CS8141YN14

5V, 500mA Linear Regulator with ENABLE, , and Watchdog RESET
CHERRY

CS8141YT7

5V, 500mA Linear Regulator with ENABLE, , and Watchdog RESET
CHERRY

CS8141YTHA7

5V, 500mA Linear Regulator with ENABLE, , and Watchdog RESET
CHERRY

CS8141YTVA7

5V, 500mA Linear Regulator with ENABLE, , and Watchdog RESET
CHERRY

CS8147

10V/5V Low Dropout Dual Regulator with ENABLE
CHERRY

CS8147

10 V/5.0 V Low Dropout Dual Regulator with ENABLE
ONSEMI

CS8147/D

10 V/5.0 V Low Dropout Dual Regulatorwith ENABLEbar
ETC

CS8147YT5

10V/5V Low Dropout Dual Regulator with ENABLE
CHERRY

CS8147YT5

10 V/5.0 V Low Dropout Dual Regulator with ENABLE
ONSEMI