CS8147 [CHERRY]

10V/5V Low Dropout Dual Regulator with ENABLE; 10V / 5V低压降稳压器双带使能
CS8147
型号: CS8147
厂家: CHERRY SEMICONDUCTOR CORPORATION    CHERRY SEMICONDUCTOR CORPORATION
描述:

10V/5V Low Dropout Dual Regulator with ENABLE
10V / 5V低压降稳压器双带使能

稳压器
文件: 总8页 (文件大小:177K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS8147  
10V/5V Low Dropout Dual Regulator  
ENABLE  
with  
Description  
Features  
The CS8147 is a 10V/5V dual out-  
put linear regulator. The 10V ±.5%  
output sources 500mA and the 5V  
±3% output sources 70mA. The  
secondary output is inherently sta-  
ble and does not require an external  
capacitor.  
regulator draws only 70µA of qui-  
escent current.  
Two Regulated Outputs  
10V ± 5%; 500 mA  
5V ± 3%; 70 mA  
The regulator is protected against  
overvoltage conditions. Both out-  
puts are protected against short  
circuit and thermal runaway  
conditions.  
70µA SLEEP Mode Current  
Inherently Stable  
Secondary Output  
(No Output Capacitor  
Required)  
ENABLE  
The on board  
controls the regulatorÕs two out-  
ENABLE  
function  
The CS8147 is packaged in a 5 lead  
TO-220 with copper tab. The cop-  
per tab can be connected to a heat  
sink if necessary.  
puts. When  
is high, the  
regulator is placed in SLEEP mode.  
Both outputs are disabled and the  
Fault Protection  
Overvoltage Shutdown  
Reverse Battery  
60V Peak Transient  
-50V Reverse Transient  
Short Circuit  
Absolute Maximum Ratings  
Input Voltage (VIN)  
DC .............................................................................................-18V to 26V  
Positive Peak Transient Voltage  
(46V Load Dump @ VIN = 14V) .......................................................60V  
Thermal Shutdown  
Negative Peak Transient Voltage ......................................................-50V  
ESD (Human Body Model) ...........................................................................2kV  
CMOS Compatible  
Input with Low  
ENABLE  
ENABLE  
Input...................................................................................-0.3 to 10V  
(IOUT(max)) Input Current.  
Internal Power Dissipation..................................................Internally Limited  
Junction Temperature Range...................................................-40¡C to +150¡C  
Storage Temperature Range ....................................................-65¡C to +150¡C  
Lead Temperature Soldering  
Package Options  
Wave Solder (through hole styles only)..........10 sec. max, 260¡C peak  
5 Lead TO-220  
Block Diagram  
Tab (Gnd)  
Primary Output  
VOUT1  
VIN  
Over Voltage  
Shutdown  
Anti-saturation  
and  
Current Limit  
+
-
-
ENABLE  
Pre-Regulator  
+
Secondary Output  
ENABLE  
2 VIN  
3 Gnd  
4 VOUT1 (10V)  
5 VOUT2 (5V)  
1
Bandgap  
-
Reference  
1
+
VOUT2  
Gnd  
Thermal  
Shutdown  
Current Limit  
Cherry Semiconductor Corporation  
2000 South County Trail, East Greenwich, RI 02818  
Tel: (401)885-3600 Fax: (401)885-5786  
Email: info@cherry-semi.com  
Web Site: www.cherry-semi.com  
Rev. 4/5/99  
A
¨
Company  
1
Electrical Characteristics for VOUT: VIN = 14V, IOUT1 = IOUT2 = 5mA, -40¡C < TJ < 150¡C, -40¡C ² TA ² 125ûC,  
= LOW; unless otherwise specified.  
ENABLE  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Primary Output (VOUT1  
)
Output Voltage  
13V ² VIN ² 26V, IOUT1 ² 500mA,  
IOUT1 = 500mA  
9.50  
10.00  
0.5  
45  
10.50  
0.7  
90  
V
V
Dropout Voltage  
Line Regulation  
11V ² VIN ² 18V, IOUT1 = 250mA  
5mA ² IOUT1 ² 500mA  
mV  
mV  
Load Regulation  
Quiescent Current  
15  
75  
IOUT1 ² 1mA, No Load on VOUT2, VIN = 18V  
IOUT1 = 500mA, No Load on VOUT2, VIN = 11V  
3
60  
7
120  
mA  
mA  
ENABLE  
= HIGH  
VOUT1,VOUT2 = OFF  
Quiescent Current  
70  
200  
µA  
Current Limit  
0.55  
32  
0.80  
50  
A
mV/khr  
V
Long Term Stability  
Over Voltage Shutdown  
VOUT1 and VOUT2  
36  
40  
Secondary Output (VOUT2  
)
Output Voltage  
6V ² VIN ² 26V, 1mA ² IOUT2 ² 70mA  
IOUT2 ² 70mA  
4.85  
5.00  
1.5  
4
5.15  
2.5  
50  
V
Dropout Voltage  
Line Regulation  
Load Regulation  
Current Limit  
V
11 ² VIN ² 18V, IOUT = 70µA  
1mA ² IOUT2 ² 70mA, VIN = 14V  
mV  
mV  
mA  
10  
50  
150  
ENABLE  
ENABLE  
Threshold  
Function (  
ENABLE  
)
Input  
VOUT2(ON)  
VOUT1(OFF)  
1.40  
1.40  
2.50  
10  
V
V
.8  
ENABLE  
Input  
Current  
Input Voltage Range 0 to 5V  
-10  
µA  
Package Lead Description  
LEAD SYMBOL  
PACKAGE LEAD #  
FUNCTION  
5 Lead TO-220  
ENABLE  
1
CMOS compatible input lead; switches VOUT1 and VOUT2 on  
ENABLE  
and off. When  
is low, VOUT1 and VOUT2 are active.  
2
3
4
5
VIN  
Supply voltage, usually direct from battery.  
Ground connection.  
Gnd  
VOUT1  
VOUT2  
Regulated output 10V, 500mA (typ)  
Secondary output 5V, 70mA (typ).  
2
Typical Performance Characteristics  
Dropout Voltage vs. Output Current (VOUT1  
Dropout Voltage vs. Output Current (VOUT2  
)
)
600  
550  
500  
450  
400  
2.00  
-40°C  
1.80  
1.60  
25°C  
1.40  
1.20  
125°C  
350  
300  
250  
200  
150  
100  
50  
125°C  
25°C  
1.00  
0.80  
-40°C  
0.60  
0.40  
V
IN  
= 6.00V  
0.20  
0
0
10 20 30 40 50 60 70 80 90 100  
Output Current (mA) V (5V)  
0
0
50 100 150 200 250 300 350 400 450 500 550 600  
Output Current (mA)  
OUT2  
Quiescent Current vs. Output Current (VOUT1  
)
Quiescent Current vs. Output Current (VOUT2)  
100  
7
6
5
4
3
90  
80  
70  
25°C  
125°C  
-40°C  
25°C  
60  
50  
-40°C  
V
= 14V  
IN  
40  
30  
125°C  
2
1
0
20  
V
= 14V  
IN  
10  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
50 100 150 200 250 300 350 400 450 500 550 600  
Output Current (mA)  
Output Current (mA), V  
(5V)  
OUT2  
VOUT2 vs. Temperature  
Line Regulation vs. Output Current (VOUT1  
)
120  
110  
100  
90  
5.02  
5.01  
5.00  
4.99  
4.98  
125°C  
25°C  
V
IN  
= 11V - 26V  
80  
-40°C  
70  
60  
50  
40  
30  
20  
10  
0
-50 -40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140  
Temp (C°)  
0
50 100 150 200 250 300 350 400 450 500 550 600  
Output Current (mA), V (10V)  
PART1 V =14V, RLOAD=0  
IN  
OUT  
1
3
Typical Performance Characteristics  
Load Regulation vs. Output Current (VOUT1  
)
Load Regulation vs. Output Current (VOUT2  
)
10  
9
30  
26  
V
IN  
= 14V  
22  
8
7
6
V
= 14V  
125°C  
IN  
18  
14  
25°C  
25°C  
-40°C  
5
4
10  
6
-40°C  
3
2
2
-2  
-6  
125°C  
1
0
-10  
0
10 20 30 40 50 60 70 80 90 100  
Output Current (mA), V (5V)  
0
50 100 150 200 250 300 350 400 450 500 550 600  
Output Current (mA), V (10V)  
OUT  
2
OUT  
1
Quiescent Current (ICQ) vs. VIN over Temperature  
350  
ENABLE Input Current vs. Input Voltage  
-40ûC  
V10 = 500mA Load  
V5 = 70mA Load  
100.0  
300  
25ûC  
250  
200  
20.00  
/div  
0
150  
100  
125ûC  
50  
0
-100.0  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
0
-1.000  
9.000  
VIN (V)  
V
1.000/div (V)  
ENABLE  
VOUT1 vs. Temperature  
Quiescent Current (ICQ) vs. VIN over RLOAD  
300  
250  
200  
150  
100  
10.025  
10.020  
10.015  
10.010  
VOUT1 = 500mA Load  
VOUT2 = 100mA Load  
V
O
= 14V  
IN  
= 30mA  
I
10.005  
10.000  
9.995  
9.990  
9.985  
9.980  
9.975  
V10 = 500mA Load  
V5 = No Load  
50  
0
VOUT1= No Load  
VOUT2 = No Load  
0 1  
2
3 4 5 6  
7 8 9 10 11 12 13 14 15  
-50 -30 -10 10 30 50 70 90 110 130 150  
VIN (V)  
TEMP (°C)  
4
Definition of Terms  
Dropout Voltage: The input-output voltage differential at which  
Load Regulation: The change in output voltage for a change in  
the circuit ceases to regulate against further reduction  
in input voltage. Measured when the output voltage  
has dropped 100mV from the nominal value obtained  
at 14V input, dropout voltage is dependent upon load  
current and junction temperature.  
load current at constant chip temperature.  
Long Term Stability: Output voltage stability under accelerated  
life-test conditions after 1000 hours with maximum  
rated voltage and junction temperature.  
Output Noise Voltage: The rms AC voltage at the output, with  
constant load and no input ripple, measured over a  
specified frequency range.  
Current Limit: Peak current that can be delivered to the output.  
Input Voltage: The DC voltage applied to the input terminals  
with respect to ground.  
Quiescent Current: The part of the positive input current that  
does not contribute to the positive load current. The  
regulator ground lead current.  
Input Output Differential: The voltage difference between the  
unregulated input voltage and the regulated output  
voltage for which the regulator will operate.  
Ripple Rejection: The ratio of the peak-to-peak input ripple  
Line Regulation: The change in output voltage for a change in  
the input voltage. The measurement is made under  
conditions of low dissipation or by using pulse tech-  
niques such that the average chip temperature is not  
significantly affected.  
voltage to the peak-to-peak output ripple voltage.  
Temperature Stability of VOUT: The percentage change in out-  
put voltage for a thermal variation from room tempera-  
ture to either temperature extreme.  
Typical Circuit Waveform  
60V  
26V  
14V  
31V  
VIN  
14V  
5V  
2.0V  
0.8V  
ENABLE  
10V  
5V  
10V  
5V  
10V  
10V  
5V  
10V  
5V  
5V  
0V  
0V  
0V  
0V  
0V  
VOUT1  
0V  
0V  
5V  
VOUT2  
3V  
0V  
System  
Condition  
Turn  
On  
Load  
Dump  
Line Noise, Etc.  
VOUT  
Short  
Thermal  
Shutdown  
Turn  
Off  
Low VIN  
Circuit  
Test & Applications Circuit  
C *  
1
DISPLAY  
0.1 mF  
V
IN  
10V  
V
OUT1  
C **  
2
10mF  
CS8147  
Control  
ENABLE  
5V  
V
OUT2  
Tuner IC  
Gnd  
* C1 is required if the regulator is located away from the power source filter.  
**C2 is required for stability.  
5
Applications  
Step 5: If the capacitor is adequate, repeat steps 3 and 4  
ENABLE  
Since both outputs are controlled by the same  
,
with the next smaller valued capacitor. A smaller capacitor  
will usually cost less and occupy less board space. If the  
output oscillates within the range of expected operating  
conditions, repeat steps 3 and 4 with the next larger stan-  
dard capacitor value.  
the CS8147 is ideal for applications where a sleep mode is  
required. Using the CS8147, a section of circuitry such as a  
display and nonessential 5V circuits can be shut down  
under microprocessor control to conserve energy.  
The test applications circuit diagram shows an automotive  
radio application where the display is powered by 10V  
from VOUT1 and the Tuner IC is powered by 5V from  
VOUT2. Neither output is required unless both the ignition  
and the Radio On/OFF switch are on.  
Step 6: Test the load transient response by switching in  
various loads at several frequencies to simulate its real  
working environment. Vary the ESR to reduce ringing.  
Step 7: Raise the temperature to the highest specified oper-  
ating temperature. Vary the load current as instructed in  
step 5 to test for any oscillations.  
Stability Considerations  
Once the minimum capacitor value with the maximum  
ESR is found for each output, a safety factor should be  
added to allow for the tolerance of the capacitor and any  
variations in regulator performance. Most good quality  
aluminum electrolytic capacitors have a tolerance of ±20%  
so the minimum value found should be increased by at  
least 50% to allow for this tolerance plus the variation  
which will occur at low temperatures. The ESR of the  
capacitors should be less than 50% of the maximum allow-  
able ESR found in step 3 above.  
The secondary output VOUT2 is inherently stable and does  
not require a compensation capacitor. However a compen-  
sation capacitor connected between VOUT1 and ground is  
required for stability in most applications.  
The output or compensation capacitor helps determine  
three main characteristics of a linear regulator: start-up  
delay, load transient response and loop stability.  
The capacitor value and type should be based on cost,  
availability, size and temperature constraints. A tantalum  
or aluminum electrolytic capacitor is best, since a film or  
ceramic capacitor with almost zero ESR can cause instabili-  
ty. The aluminum electrolytic capacitor is the least expen-  
sive solution, but, if the circuit operates at low tempera-  
tures (-25¡C to -40¡C), both the value and ESR of the capac-  
itor will vary considerably. The capacitor manufacturers  
data sheet usually provides this information.  
Calculating Power Dissipation  
in a Dual Output Linear Regulator  
The maximum power dissipation for a dual output regula-  
tor (Figure 1) is  
The value for the output capacitor C2 shown in the test  
and applications circuit should work for most applications,  
however it is not necessarily the optimized solution.  
PD(max) = {VIN(max) Ð VOUT1(min)}IOUT1(max)  
+
{VIN(max) Ð VOUT2(min)}IOUT2(max) + VIN(max)IQ  
(1)  
To determine acceptable value for C2 for a particular  
application, start with a tantalum capacitor of the recom-  
mended value and work towards a less expensive alterna-  
tive part.  
Where:  
VIN(max) is the maximum input voltage,  
VOUT1(min) is the minimum output voltage from VOUT1  
,
Step 1: Place the completed circuit with a tantalum capaci-  
tor of the recommended value in an environmental cham-  
ber at the lowest specified operating temperature and  
monitor the outputs with an oscilloscope. A decade box  
connected in series with the capacitor will simulate the  
higher ESR of an aluminum capacitor. Leave the decade  
box outside the chamber, the small resistance added by the  
longer leads is negligible.  
V
OUT2(min) is the minimum output voltage from VOUT2  
,
IOUT1(max) is the maximum output current, for the appli-  
cation,  
IOUT2(max) is the maximum output current, for the appli-  
cation, and  
IQ is the quiescent current the regulator consumes at  
IOUT(max)  
.
Step 2: With the input voltage at its maximum value,  
increase the load current slowly from zero to full load  
while observing the output for any oscillations. If no oscil-  
lations are observed, the capacitor is large enough to  
ensure a stable design under steady state conditions.  
Once the value of PD(max) is known, the maximum permissi-  
ble value of RQJA can be calculated:  
Step 3: Increase the ESR of the capacitor from zero using  
the decade box and vary the load current until oscillations  
appear. Record the values of load current and ESR that  
cause the greatest oscillation. This represents the worst  
case load conditions for the regulator at low temperature.  
150¡C - TA  
RQJA  
=
(2)  
PD  
The value of RQJA can then be compared with those in  
the package section of the data sheet. Those packages with  
R
QJA's less than the calculated value in equation 2 will keep  
Step 4: Maintain the worst case load conditions set in step  
3 and vary the input voltage until the oscillations increase.  
This point represents the worst case input voltage condi-  
tions.  
the die temperature below 150¡C.  
In some cases, none of the packages will be sufficient to  
dissipate the heat generated by the IC, and an external  
heatsink will be required.  
6
Application Notes: continued  
I
IN  
I
I
OUT  
1
V
IN  
Smart  
Regulator  
V
V
OUT  
1
2
OUT  
2
OUT  
Control  
Features  
}
I
Q
Figure 1: Dual output regulator with key performance parameters  
labeled.  
Heat Sinks  
A heat sink effectively increases the surface area of the  
package to improve the flow of heat away from the IC and  
into the surrounding air.  
Each material in the heat flow path between the IC and the  
outside environment will have a thermal resistance. Like  
series electrical resistances, these resistances are summed  
to determine the value of RQJA  
:
RQJA = RQJC + RQCS + RQSA  
(3)  
where:  
R
QJC = the junctionÐtoÐcase thermal resistance,  
R
QCS = the caseÐtoÐheatsink thermal resistance, and  
R
QSA = the heatsinkÐtoÐambient thermal resistance.  
R
R
QJC appears in the package section of the data sheet. Like  
QJA, it too is a function of package type. RQCS and RQSA  
are functions of the package type, heatsink and the inter-  
face between them. These values appear in heat sink data  
sheets of heat sink manufacturers.  
7
Package Specification  
PACKAGE DIMENSIONS IN MM (INCHES)  
PACKAGE THERMAL DATA  
5 Lead TO-220  
Thermal Data  
5 Lead TO-220 (T) Straight  
RQ  
RQ  
typ  
typ  
2.4  
50  
ûC/W  
ûC/W  
JC  
JA  
5 Lead TO-220 (TVA) Vertical  
1.40 (.055)  
1.14 (.045)  
4.83 (.190)  
4.83 (.190)  
4.06 (.160)  
10.54 (.415)  
4.06 (.160)  
9.78 (.385)  
3.96 (.156)  
2.87 (.113)  
2.62 (.103)  
3.71 (.146)  
3.96 (.156)  
3.71 (.146)  
10.54 (.415)  
9.78 (.385)  
6.55 (.258)  
5.94 (.234)  
1.40 (.055)  
1.14 (.045)  
14.99 (.590)  
14.22 (.560)  
6.55 (.258)  
5.94 (.234)  
2.87 (.113)  
2.62 (.103)  
14.99 (.590)  
14.22 (.560)  
14.22 (.560)  
13.72 (.540)  
1.78 (.070)  
2.92 (.115)  
2.29 (.090)  
8.64 (.340)  
7.87 (.310)  
1.02 (.040)  
0.76 (.030)  
4.34 (.171)  
7.51 (.296)  
0.56 (.022)  
0.36 (.014)  
1.68  
(.066) typ  
0.56 (.022)  
0.36 (.014)  
1.70 (.067)  
1.83(.072)  
1.57(.062)  
1.02(.040)  
0.63(.025)  
6.80 (.268)  
6.93(.273)  
6.68(.263)  
2.92 (.115)  
2.29 (.090)  
.94 (.037)  
.69 (.027)  
5 Lead TO-220 (THA) Horizontal  
4.83 (.190)  
4.06 (.160)  
10.54 (.415)  
9.78 (.385)  
1.40 (.055)  
1.14 (.045)  
3.96 (.156)  
3.71 (.146)  
2.87 (.113)  
2.62 (.103)  
14.99 (.590)  
14.22 (.560)  
6.55 (.258)  
5.94 (.234)  
2.77 (.109)  
6.83 (.269)  
1.68  
2.92 (.115)  
2.29 (.090)  
0.56 (.022)  
(.066)  
TYP  
0.81(.032)  
0.36 (.014)  
6.60 (.260)  
5.84 (.230)  
1.70 (.067)  
6.81(.268)  
Ordering Information  
Description  
Part Number  
CS8147YT5  
CS8147YTVA5  
CS8147YTHA5  
Ch erry Sem icon du ctor Corporation reserves th e  
righ t to m ake ch an ges to th e specification s with ou t  
n otice. Please con tact Ch erry Sem icon du ctor  
Corporation for th e latest available in form ation .  
5 Lead TO-220 Straight  
5 Lead TO-220 Vertical  
5 Lead TO-220 Horizontal  
Rev. 4/5/99  
© 1999 Cherry Semiconductor Corporation  
8

相关型号:

CS8147/D

10 V/5.0 V Low Dropout Dual Regulatorwith ENABLEbar
ETC

CS8147YT5

10V/5V Low Dropout Dual Regulator with ENABLE
CHERRY

CS8147YT5

10 V/5.0 V Low Dropout Dual Regulator with ENABLE
ONSEMI

CS8147YTHA5

10V/5V Low Dropout Dual Regulator with ENABLE
CHERRY

CS8147YTHA5

10 V/5.0 V Low Dropout Dual Regulator with ENABLE
ONSEMI

CS8147YTVA5

10V/5V Low Dropout Dual Regulator with ENABLE
CHERRY

CS8147YTVA5

10 V/5.0 V Low Dropout Dual Regulator with ENABLE
ONSEMI

CS814A1

MOV Modules
HVPSI

CS814A2

MOV Modules
HVPSI

CS814B1

MOV Modules
HVPSI

CS814B2

MOV Modules
HVPSI

CS814C1

MOV Modules
HVPSI