CS8147YTVA5 [ONSEMI]

10 V/5.0 V Low Dropout Dual Regulator with ENABLE; 10 V / 5.0 V低压降稳压器双用ENABLE
CS8147YTVA5
型号: CS8147YTVA5
厂家: ONSEMI    ONSEMI
描述:

10 V/5.0 V Low Dropout Dual Regulator with ENABLE
10 V / 5.0 V低压降稳压器双用ENABLE

稳压器
文件: 总12页 (文件大小:86K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS8147  
10 V/5.0 V Low Dropout  
Dual Regulator with ENABLE  
The CS8147 is a 10 V/5.0 V dual output linear regulator. The 10V  
±5.0% output sources 500 mA and the 5.0 V ±3% output sources 70  
mA. The secondary output is inherently stable and does not require an  
external capacitor.  
http://onsemi.com  
The on board ENABLE function controls the regulator’s two  
outputs. When ENABLE is high, the regulator is placed in SLEEP  
mode. Both outputs are disabled and the regulator draws only 70 µA of  
quiescent current.  
The regulator is protected against overvoltage conditions. Both  
outputs are protected against short circuit and thermal runaway  
conditions.  
TO–220  
FIVE LEAD  
T SUFFIX  
CASE 314D  
1
5
The CS8147 is packaged in a 5 lead TO–220 with copper tab. The  
copper tab can be connected to a heat sink if necessary.  
TO–220  
FIVE LEAD  
TVA SUFFIX  
CASE 314K  
1
Features  
Two Regulated Outputs  
10 V ±5.0%; 500 mA  
5.0 V ±3.0%; 70 mA  
70 µA SLEEP Mode Current  
Inherently Stable Secondary Output (No Output Capacitor Required)  
Fault Protection  
TO–220  
FIVE LEAD  
THA SUFFIX  
CASE 314A  
1
5
Overvoltage Shutdown  
Reverse Battery  
PIN CONNECTIONS AND  
MARKING DIAGRAM  
60 V Peak Transient  
–50 V Reverse Transient  
Short Circuit  
Thermal Shutdown  
Tab = GND  
Pin 1. ENABLE  
2. V  
IN  
CS8147  
AWLYWW  
3. GND  
4. V  
5. V  
(10 V)  
(5.0 V)  
OUT1  
OUT2  
CMOS Compatible ENABLE Input with Low (I  
) Input  
OUT(max)  
Current  
1
A
= Assembly Location  
WL, L = Wafer Lot  
YY, Y = Year  
WW, W = Work Week  
ORDERING INFORMATION  
Device  
Package  
Shipping  
CS8147YT5  
CS8147YTVA5  
CS8147YTHA5  
*Five lead.  
TO–220*  
50 Units/Rail  
STRAIGHT  
TO–220*  
VERTICAL  
50 Units/Rail  
50 Units/Rail  
TO–220*  
HORIZONTAL  
Semiconductor Components Industries, LLC, 2001  
1
Publication Order Number:  
January, 2001 – Rev. 6  
CS8147/D  
CS8147  
Primary Output  
V
OUT1  
V
IN  
Overvoltage  
Shutdown  
Anti–saturation  
and  
Current Limit  
+
ENABLE  
+
Pre–Regulator  
Secondary Output  
Bandgap  
Reference  
+
V
OUT2  
GND  
Thermal  
Shutdown  
Current Limit  
Figure 1. Block Diagram  
ABSOLUTE MAXIMUM RATINGS*  
Rating  
Value  
Unit  
Input Voltage:  
DC  
–18 to 26  
60  
–50  
V
V
V
Positive Peak Transient Voltage (Note 1.)  
Negative Peak Transient Voltage  
ESD (Human Body Model)  
ENABLE Input  
2.0  
kV  
V
–0.3 to 10  
Internal Power Dissipation  
Junction Temperature Range  
Storage Temperature Range  
Lead Temperature Soldering:  
Internally Limited  
–40 to +150  
–65 to +150  
260 peak  
°C  
°C  
°C  
Wave Solder (through hole styles only) (Note 2.)  
1. 46 V Load Dump @ V = 14 V  
IN  
2. 10 second maximum.  
*The maximum package power dissipation must be observed.  
http://onsemi.com  
2
CS8147  
ELECTRICAL CHARACTERISTICS for VOUT: (V = 14 V, I  
= I  
= 5.0 mA, –40°C < T < 150°C,  
OUT2 J  
IN  
OUT1  
–40°C T 125°C, ENABLE = LOW; unless otherwise specified.)  
A
Characteristic  
Test Conditions  
Min  
Typ  
Max  
Unit  
Primary Output (V  
)
OUT1  
Output Voltage  
13 V V 26 V, I  
500 mA  
9.50  
10.00  
0.5  
45  
10.5  
0.7  
90  
V
V
IN  
OUT1  
Dropout Voltage  
Line Regulation  
Load Regulation  
Quiescent Current  
I
= 500 mA  
OUT1  
11 V V 18 V, I  
= 250 mA  
mV  
mV  
IN  
OUT1  
5.0 mA I  
500 mA  
15  
75  
OUT1  
I
I
1.0 mA, No Load on V  
= 500 mA, No Load on V  
, V = 18 V  
, V = 11 V  
IN  
3.0  
60  
7.0  
120  
mA  
mA  
OUT1  
OUT1  
OUT2  
IN  
OUT2  
Quiescent Current  
Current Limit  
ENABLE = HIGH, V  
, V  
OUT2  
= OFF  
0.55  
70  
0.80  
50  
200  
µA  
A
OUT1  
Long Term Stability  
mV/khr  
V
Overvoltage Shutdown  
V
OUT1  
and V  
32  
36  
40  
OUT2  
Secondary Output (V  
Output Voltage  
Dropout Voltage  
Line Regulation  
Load Regulation  
Current Limit  
)
OUT2  
6.0 V V 26 V, 1.0 mA I  
70 mA  
4.85  
5.00  
1.5  
4.0  
10  
5.15  
2.5  
50  
50  
V
IN  
OUT2  
I
70 mA  
V
OUT2  
11 V 18 V, I  
= 70 µA  
mV  
mV  
mA  
IN  
OUT  
1.0 mA I  
70 mA, V = 14 V  
OUT2  
IN  
150  
ENABLE Function (ENABLE)  
Input ENABLE Threshold  
V
V
0.8  
1.40  
1.40  
2.50  
V
V
OUT2(ON)  
OUT1(OFF)  
Input ENABLE Current  
Input Voltage Range 0 to 5.0 V  
–10  
10  
µA  
PACKAGE PIN DESCRIPTION  
PACKAGE LEAD #  
5 Lead TO–220  
1
LEAD SYMBOL  
FUNCTION  
ENABLE  
CMOS compatible input lead; switches V  
and V  
on  
OUT2  
OUT1  
and off. When ENABLE is low, V  
and V  
are active.  
OUT1  
OUT2  
2
3
4
5
V
Supply voltage, usually direct from battery.  
Ground connection.  
IN  
GND  
V
Regulated output 10 V, 500 mA (typ).  
Secondary output 5.0 V, 70 mA (typ).  
OUT1  
OUT2  
V
http://onsemi.com  
3
CS8147  
TYPICAL PERFORMANCE CHARACTERISTICS  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
2.00  
–40°C  
1.80  
1.60  
1.40  
1.20  
25°C  
125°C  
25°C  
125°C  
1.00  
0.80  
0.60  
0.40  
0.20  
0
–40°C  
V
= 6.00 V  
IN  
0
0
50 100 150 200 250 300 350 400 450 500 550 600  
Output Current (mA)  
0
0
0
10 20 30 40 50 60 70 80 90 100  
Output Current (mA), V (5.0 V)  
OUT2  
Figure 2. Dropout Voltage vs.  
Figure 3. Dropout Voltage vs.  
Output Current (VOUT2  
Output Current (VOUT1  
)
)
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
7.0  
6.0  
25°C  
125°C  
5.0  
4.0  
–40°C  
–40°C  
25°C  
V
IN  
= 14 V  
3.0  
2.0  
1.0  
0
125°C  
V
IN  
= 14 V  
0
50 100 150 200 250 300 350 400 450 500 550 600  
Output Current (mA)  
10 20 30 40 50 60 70 80 90 100  
Output Current (mA), V (5.0 V)  
OUT2  
Figure 4. Quiescent Current vs.  
Figure 5. Quiescent Current vs.  
Output Current (VOUT2  
Output Current (VOUT1  
)
)
5.02  
5.01  
5.00  
4.99  
4.98  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
125°C  
V
IN  
= 11 V – 26 V  
25°C  
–40°C  
–50 –30 –10 10  
30  
50  
70  
90 110 130  
50 100 150 200 250 300 350 400 450 500 550 600  
Output Current (mA), V (10 V)  
Temp (C°)  
OUT1  
PART1 V = 14 V, No Load  
IN  
Figure 7. Line Regulation vs.  
Output Current (VOUT1  
Figure 6. VOUT2 vs. Temperature  
)
http://onsemi.com  
4
CS8147  
30  
26  
22  
18  
14  
10  
6
10  
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
125°C  
25°C  
V
IN  
= 14 V  
V
IN  
= 14 V  
25°C  
–40°C  
–40°C  
2
125°C  
–2  
–6  
–10  
0
50 100 150 200 250 300 350 400 450 500 550 600  
Output Current (mA), V (10 V)  
0
10 20 30 40 50 60 70 80 90 100  
Output Current (mA), V (5.0 V)  
OUT1  
OUT2  
Figure 8. Load Regulation vs.  
Output Current (VOUT1  
Figure 9. Load Regulation vs.  
Output Current (VOUT2  
)
)
350  
300  
–40°C  
25°C  
100.0  
V10 = 500 mA Load  
V5 = 70 mA Load  
250  
200  
20.00  
/div  
0
150  
100  
50  
125°C  
0
–100.0  
–1.000  
0
9.000  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
V
1.000/div (V)  
V
IN  
(V)  
ENABLE  
Figure 10. ENABLE Input Current vs.  
Input Voltage  
Figure 11. Quiescent Current (ICQ) vs.  
VIN Overtemperature  
300  
10.025  
10.020  
10.015  
10.010  
10.005  
10.000  
9.995  
V
V
= 500 mA Load  
= 100 mA Load  
OUT1  
OUT2  
V
O
= 14 V  
= 30 mA  
IN  
I
250  
200  
150  
100  
50  
V
= 500 mA Load  
OUT1  
V
= No Load  
OUT2  
9.990  
9.985  
V
V
= No Load  
OUT1  
OUT2  
9.980  
= No Load  
0
9.975  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
–50 –30 –10 10 30 50  
70  
90 110 130 150  
TEMP (°C)  
V
IN  
(V)  
Figure 12. Quiescent Current (ICQ) vs.  
VIN Over RLOAD  
Figure 13. VOUT1 vs. Temperature  
http://onsemi.com  
5
CS8147  
DEFINITION OF TERMS  
Dropout Voltage – The input–output voltage differential  
Load Regulation – The change in output voltage for a  
change in load current at constant chip temperature.  
Long Term Stability – Output voltage stability under  
accelerated life–test conditions after 1000 hours with  
maximum rated voltage and junction temperature.  
Output Noise Voltage – The rms AC voltage at the  
output, with constant load and no input ripple, measured  
over a specified frequency range.  
at which the circuit ceases to regulate against further  
reduction in input voltage. Measured when the output  
voltage has dropped 100 mV from the nominal value  
obtained at 14 V input, dropout voltage is dependent upon  
load current and junction temperature.  
Current Limit – Peak current that can be delivered to the  
output.  
Input Voltage – The DC voltage applied to the input  
terminals with respect to ground.  
Quiescent Current – The part of the positive input  
current that does not contribute to the positive load current.  
The regulator ground lead current.  
Ripple Rejection – The ratio of the peak–to–peak input  
ripple voltage to the peak–to–peak output ripple voltage.  
Input Output Differential – The voltage difference  
between the unregulated input voltage and the regulated  
output voltage for which the regulator will operate.  
Line Regulation – The change in output voltage for a  
change in the input voltage. The measurement is made under  
conditions of low dissipation or by using pulse techniques  
such that the average chip temperature is not significantly  
affected.  
Temperature Stability of V  
– The percentage  
OUT  
change in output voltage for a thermal variation from room  
temperature to either temperature extreme.  
60 V  
31 V  
26 V  
14V  
V
IN  
14 V  
5.0 V  
2.0 V  
0.8 V  
ENABLE  
10 V  
10 V  
10 V  
10 V  
10 V  
5.0 V  
3.0 V  
0 V  
0 V  
0 V  
0 V  
0 V  
0 V  
V
0 V  
0 V  
OUT1  
5.0 V  
5.0 V  
5.0 V  
5.0 V  
5.0 V  
V
OUT2  
Turn  
On  
Load  
Dump  
Low V  
Line  
Noise, Etc.  
V
Short  
Thermal  
Shutdown  
Turn  
Off  
IN  
OUT  
Circuit  
Figure 14. Typical Circuit Waveform  
C *  
0.1 µF  
1
V
IN  
10V  
V
V
OUT1  
C **  
2
Control  
ENABLE  
10 µF  
5.0V  
Tuner IC  
OUT2  
GND  
* C is required if the regulator is located away from the power source filter.  
1
** C is required for stability.  
2
Figure 15. Test & Applications Circuit  
http://onsemi.com  
6
CS8147  
APPLICATION NOTES  
Since both outputs are controlled by the same ENABLE,  
This point represents the worst case input voltage  
the CS8147 is ideal for applications where a sleep mode is  
required. Using the CS8147, a section of circuitry such as a  
display and nonessential 5.0 V circuits can be shut down  
under microprocessor control to conserve energy.  
The test applications circuit diagram shows an automotive  
radio application where the display is powered by 10 V from  
conditions.  
Step 5: If the capacitor is adequate, repeat steps 3 and 4 with  
the next smaller valued capacitor. A smaller capacitor will  
usually cost less and occupy less board space. If the output  
oscillates within the range of expected operating conditions,  
repeat steps 3 and 4 with the next larger standard capacitor  
value.  
V
OUT1  
and the Tuner IC is powered by 5.0 V from V  
.
OUT2  
Neither output is required unless both the ignition and the  
Radio On/OFF switch are on.  
Step 6: Test the load transient response by switching in  
various loads at several frequencies to simulate its real  
working environment. Vary the ESR to reduce ringing.  
Step 7: Raise the temperature to the highest specified  
operating temperature. Vary the load current as instructed in  
step 5 to test for any oscillations.  
Once the minimum capacitor value with the maximum  
ESR is found for each output, a safety factor should be added  
to allow for the tolerance of the capacitor and any variations  
in regulator performance. Most good quality aluminum  
electrolytic capacitors have a tolerance of ±20% so the  
minimum value found should be increased by at least 50%  
to allow for this tolerance plus the variation which will occur  
at low temperatures. The ESR of the capacitors should be  
less than 50% of the maximum allowable ESR found in step  
3 above.  
Stability Considerations  
The secondary output V  
is inherently stable and does  
OUT2  
not require  
a
compensation capacitor. However  
a
compensation capacitor connected between V  
and  
OUT1  
ground is required for stability in most applications.  
The output or compensation capacitor helps determine  
three main characteristics of a linear regulator: start–up  
delay, load transient response and loop stability.  
The capacitor value and type should be based on cost,  
availability, size and temperature constraints. A tantalum or  
aluminum electrolytic capacitor is best, since a film or  
ceramic capacitor with almost zero ESR can cause  
instability. The aluminum electrolytic capacitor is the least  
expensive solution, but, if the circuit operates at low  
temperatures (–25°C to –40°C), both the value and ESR of  
the capacitor will vary considerably. The capacitor  
manufacturers data sheet usually provides this information.  
The value for the output capacitor C2 shown in the test and  
applications circuit should work for most applications,  
however it is not necessarily the optimized solution.  
To determine acceptable value for C2 for a particular  
application, start with a tantalum capacitor of the  
recommended value and work towards a less expensive  
alternative part.  
Step 1: Place the completed circuit with a tantalum  
capacitor of the recommended value in an environmental  
chamber at the lowest specified operating temperature and  
monitor the outputs with an oscilloscope. A decade box  
connected in series with the capacitor will simulate the  
higher ESR of an aluminum capacitor. Leave the decade box  
outside the chamber, the small resistance added by the  
longer leads is negligible.  
Step 2: With the input voltage at its maximum value,  
increase the load current slowly from zero to full load while  
observing the output for any oscillations. If no oscillations  
are observed, the capacitor is large enough to ensure a stable  
design under steady state conditions.  
Step 3: Increase the ESR of the capacitor from zero using the  
decade box and vary the load current until oscillations  
appear. Record the values of load current and ESR that cause  
the greatest oscillation. This represents the worst case load  
conditions for the regulator at low temperature.  
Calculating Power Dissipation in a  
Dual Output Linear Regulator  
The maximum power dissipation for a dual output  
regulator (Figure 16) is  
NJ
NJ
Nj
I
V
V
* V  
* V  
)
P
+
IN(max)  
IN(max)  
OUT1(min) OUT1(max)  
D(max)  
Nj
(1)  
I
) V  
IQ  
IN(max)  
OUT2(min) OUT2(max)  
where:  
V
V
V
is the maximum input voltage,  
IN(max)  
is the minimum output voltage from V  
is the minimum output voltage from V  
,
,
OUT1(min)  
OUT2(min)  
OUT1  
OUT2  
I
is the maximum output current, for the  
OUT1(max)  
application,  
I
is the maximum output current, for the  
OUT2(max)  
application, and  
I
I
is the quiescent current the regulator consumes at  
Q
.
OUT(max)  
Once the value of P  
is known, the maximum  
D(max)  
permissible value of R  
can be calculated:  
ΘJA  
150°C * T  
+
A
R
QJA  
(2)  
P
D
The value of R  
can be compared with those in the  
ΘJA  
package section of the data sheet. Those packages with  
’s less than the calculated value in equation 2 will keep  
R
ΘJA  
the die temperature below 150°C.  
In some cases, none of the packages will be sufficient to  
dissipate the heat generated by the IC, and an external  
heatsink will be required.  
Step 4: Maintain the worst case load conditions set in step  
3 and vary the input voltage until the oscillations increase.  
http://onsemi.com  
7
CS8147  
Each material in the heat flow path between the IC and the  
outside environment will have a thermal resistance. Like  
series electrical resistances, these resistances are summed to  
I
IN  
I
I
OUT1  
Smart  
Regulator  
V
V
IN  
OUT1  
determine the value of R  
ΘJA  
:
OUT2  
R
+ R  
) R  
) R  
QCS QSA  
(3)  
QJA  
QJC  
Control  
Features  
V
OUT2  
where:  
R
ΘJC  
R
ΘCS  
R
ΘSA  
= the junction–to–case thermal resistance,  
= the case–to–heatsink thermal resistance, and  
= the heatsink–to–ambient thermal resistance.  
I
Q
R
ΘJC  
appears in the package section of the data sheet. Like  
R
, it too is a function of package type. R  
and R  
ΘJA  
ΘCS ΘSA  
Figure 16. Dual Output Regulator With Key  
Performance Parameters Labeled.  
are functions of the package type, heatsink and the interface  
between them. These values appear in heat sink data sheets  
of heat sink manufacturers.  
Heat Sinks  
A heat sink effectively increases the surface area of the  
package to improve the flow of heat away from the IC and  
into the surrounding air.  
http://onsemi.com  
8
CS8147  
PACKAGE DIMENSIONS  
TO–220  
FIVE LEAD  
T SUFFIX  
CASE 314D–04  
ISSUE E  
SEATING  
–T–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
PLANE  
C
–Q–  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION D DOES NOT INCLUDE  
INTERCONNECT BAR (DAMBAR) PROTRUSION.  
DIMENSION D INCLUDING PROTRUSION SHALL  
NOT EXCEED 10.92 (0.043) MAXIMUM.  
B
E
A
U
INCHES  
DIM MIN MAX  
0.613 14.529 15.570  
MILLIMETERS  
L
MIN MAX  
1 2 3 4 5  
A
B
C
D
E
G
H
J
0.572  
0.390  
0.170  
0.025  
0.048  
K
0.415  
0.180  
0.038  
0.055  
9.906 10.541  
4.318  
0.635  
1.219  
4.572  
0.965  
1.397  
0.067 BSC  
1.702 BSC  
0.087  
0.015  
0.990  
0.320  
0.140  
0.105  
0.112 2.210  
0.025 0.381  
2.845  
0.635  
1.045 25.146 26.543  
J
H
G
K
L
D 5 PL  
0.365 8.128  
0.153 3.556  
0.117 2.667  
9.271  
3.886  
2.972  
Q
U
M
M
T Q  
0.356 (0.014)  
TO–220  
FIVE LEAD  
TVA SUFFIX  
CASE 314K–01  
ISSUE O  
NOTES:  
ąă1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
SEATING  
PLANE  
–T–  
ąă2. CONTROLLING DIMENSION: INCH.  
ąă3. DIMENSION D DOES NOT INCLUDE  
INTERCONNECT BAR (DAMBAR) PROTRUSION.  
DIMENSION D INCLUDING PROTRUSION SHALL  
NOT EXCEED 10.92 (0.043) MAXIMUM.  
C
B
–Q–  
E
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
14.22  
9.78  
MAX  
14.99  
10.54  
4.83  
W
A
B
C
D
E
F
0.560  
0.385  
0.160  
0.027  
0.045  
0.530  
0.590  
0.415  
0.190  
0.037  
0.055  
0.545  
4.06  
0.69  
A
0.94  
1.40  
U
1.14  
13.46  
F
13.84  
L
G
J
0.067 BSC  
1.70 BSC  
K
0.014  
0.785  
0.321  
0.063  
0.146  
0.271  
0.146  
0.460  
0.022  
0.800  
0.337  
0.078  
0.156  
0.321  
0.196  
0.475  
0.36  
19.94  
8.15  
0.56  
20.32  
8.56  
1
2
3
4
5
K
L
M
Q
R
S
U
W
1.60  
3.71  
1.98  
3.96  
6.88  
3.71  
8.15  
4.98  
M
11.68  
12.07  
5 °  
5 °  
J
D
5 PL  
G
M
M
T Q  
0.356 (0.014)  
S
R
http://onsemi.com  
9
CS8147  
TO–220  
FIVE LEAD  
THA SUFFIX  
CASE 314A–03  
ISSUE E  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION D DOES NOT INCLUDE  
INTERCONNECT BAR (DAMBAR) PROTRUSION.  
DIMENSION D INCLUDING PROTRUSION SHALL  
NOT EXCEED 0.043 (1.092) MAXIMUM.  
SEATING  
PLANE  
–T–  
B
C
–P–  
E
Q
OPTIONAL  
CHAMFER  
INCHES  
DIM MIN MAX  
0.613 14.529 15.570  
MILLIMETERS  
MIN MAX  
A
B
C
D
E
F
0.572  
0.390  
0.170  
0.025  
0.048  
0.570  
A
0.415  
0.180  
0.038  
0.055  
9.906 10.541  
U
F
4.318  
0.635  
1.219  
4.572  
0.965  
1.397  
L
K
0.585 14.478 14.859  
1.702 BSC  
0.381 0.635  
0.745 18.542 18.923  
G
J
0.067 BSC  
0.015  
0.730  
0.320  
0.140  
0.210  
0.468  
0.025  
K
L
G
5X J  
0.365  
0.153  
0.260  
8.128  
3.556  
5.334  
9.271  
3.886  
6.604  
Q
S
U
S
5X D  
0.505 11.888 12.827  
M
M
T P  
0.014 (0.356)  
PACKAGE THERMAL DATA  
Parameter  
TO–220  
2.4  
Unit  
°C/W  
°C/W  
R
R
Typical  
Typical  
Θ
Θ
JC  
JA  
50  
http://onsemi.com  
10  
CS8147  
Notes  
http://onsemi.com  
11  
CS8147  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without  
further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
NORTH AMERICA Literature Fulfillment:  
CENTRAL/SOUTH AMERICA:  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)  
Email: ONlit–spanish@hibbertco.com  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Toll Free from Hong Kong & Singapore:  
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada  
001–800–4422–3781  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
Email: ONlit–asia@hibbertco.com  
EUROPE: LDC for ON Semiconductor – European Support  
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)  
Email: ONlit–german@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2745  
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)  
Email: ONlit–french@hibbertco.com  
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781  
For additional information, please contact your local  
Sales Representative.  
*Available from Germany, France, Italy, UK, Ireland  
CS8147/D  

相关型号:

CS814A1

MOV Modules
HVPSI

CS814A2

MOV Modules
HVPSI

CS814B1

MOV Modules
HVPSI

CS814B2

MOV Modules
HVPSI

CS814C1

MOV Modules
HVPSI

CS814C2

MOV Modules
HVPSI

CS814D1

MOV Modules
HVPSI

CS814E1

MOV Modules
HVPSI

CS8151

5V, 100mA Low Dropout Linear Regulator with WATCHDOG, RESET, & WAKE UP
CHERRY

CS8151

5.0 V, 100 mA Low Dropout Linear Regulator with Watchdog, RESET, and Wake Up
ONSEMI

CS8151/C

AC-DC Offline Switching Controllers/Regulators
ONSEMI

CS8151/D

5V, 100mA Low Dropout Linear Regulator with WATCHDOG, RESETbar, & WAKE UP
ETC