CS8141YT7 [CHERRY]

5V, 500mA Linear Regulator with ENABLE, , and Watchdog RESET; 5V , 500mA线性稳压器具有使能,以及看门狗复位
CS8141YT7
型号: CS8141YT7
厂家: CHERRY SEMICONDUCTOR CORPORATION    CHERRY SEMICONDUCTOR CORPORATION
描述:

5V, 500mA Linear Regulator with ENABLE, , and Watchdog RESET
5V , 500mA线性稳压器具有使能,以及看门狗复位

线性稳压器IC 调节器 电源电路 输出元件 局域网
文件: 总12页 (文件大小:218K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS8140/1  
5V, 500mA Linear Regulator  
with  
, and Watchdog  
Features  
RESET  
ENABLE,  
Description  
The CS8140 is a 5V Watchdog  
of three conditions: the watchdog sig-  
nal moves outside of its preset limits;  
the output voltage drops out of regula-  
tion by more than 4.5%; or the IC is in  
5V ± 4%, 500mA Output  
Regulator with protection circuitry and  
three logic control functions that allow  
a microprocessor to control its own  
power supply. The CS8140 is designed  
for use in automotive, switch mode  
power supply post regulator, and bat-  
tery powered systems.  
Voltage  
µP Compatible Control  
Functions  
RESET  
its power up sequence. The  
sig-  
Watchdog  
nal is independent of VIN and reliable  
down to VOUT = 1V.  
RESET  
ENABLE  
In conjunction with the Watchdog, the  
ENABLE function controls the regula-  
torÕs power consumption. The CS8140Õs  
output stage and its attendant circuitry  
are enabled by setting the ENABLE  
lead high. The regulator goes into sleep  
mode (IOUT = 250µA) when the  
ENABLE lead goes low and the watch-  
dog signal moves outside its preset  
window limits. This unique combina-  
tion of control functions in the CS8140  
gives the microprocessor control over  
its own power down sequence: i.e. it  
gives the microprocessor the flexibility  
to perform housekeeping functions  
before it powers down.  
Low Dropout Voltage  
(1.25V @ 500mA)  
Basic regulator performance character-  
istics include a low noise, low drift, 5V  
± 4% precision output voltage with low  
dropout voltage (1.25V @ IOUT = 500mA)  
and low quiescent current (7mA @ IOUT  
= 500mA). On board short circuit, ther-  
mal, and overvoltage protection make it  
possible to use this regulator in particu-  
larly harsh operating environments.  
Low Quiescent Current  
(7mA @ 500mA)  
Low Noise, Low Drift  
Low Current SLEEP Mode  
(IQ = 250µA)  
Fault Protection  
Thermal Shutdown  
Short Circuit  
The Watchdog logic function monitors  
an input signal (WDI) from the micro-  
processor or other signal source. When  
the signal frequency moves outside  
externally programmable window lim-  
signal is generated  
). An external capacitor  
(CDELAY) programs the watchdog win-  
dow frequency limits as well as the  
60V Peak Transient  
Voltage  
Package Options  
24 Lead SOIC Wide  
RESET  
RESET  
its, a  
(
The CS8141 has the same features as the  
CS8140, except that the CS8141 only  
responds to input signals (WDI) which  
are below the preset watchdog frequen-  
cy threshold.  
1
NC  
Delay  
WDI  
RESET  
ENABLE  
RESET  
power on reset (POR) and  
delay.  
NC  
V
OUT  
V
IN  
RESET  
The  
function is activated by any  
Sense  
NC  
Gnd  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
Block Diagram  
NC  
NC  
V
IN  
NC  
NC  
Overvoltage  
Overtemperature  
Reference  
& Bias  
NC  
Gnd  
Regulation  
14 Lead PDIP  
7 Lead TO-220  
ENABLE  
WDI  
Control Logic  
ENABLE  
RESET  
Tab (Gnd)  
1
Delay  
RESET  
V
OUT  
WDI  
ENABLE  
Delay  
Short Circuit  
Undervoltage  
*NOTE: shorted together  
on 7 Lead TO-220  
1
2
3
4
5
6
7
VIN  
*
V
V
IN  
OUT  
ENABLE  
RESET  
Gnd  
Delay  
WDI  
Sense  
Sense  
Gnd  
NC  
NC  
NC  
Gnd  
Watchdog  
NC  
NC  
NC  
RESET  
VOUT  
Delay  
1
Cherry Semiconductor Corporation  
2000 South County Trail, East Greenwich, RI 02818  
Tel: (401)885-3600 Fax: (401)885-5786  
Email: info@cherry-semi.com  
Web Site: www.cherry-semi.com  
Rev. 2/23/99  
1
A
¨
Company  
Absolute Maximum Ratings  
Input Voltage  
Operating Range.................................................................................................................................................-0.5 to +26V  
Peak Transient Voltage (46V Load Dump @ 14V VBAT)..............................................................................................60V  
Electrostatic Discharge  
(Human Body Model)...............................................................................................................................................4kV  
WDI Input Signal Range...............................................................................................................................................-0.3 to +7V  
Internal Power Dissipation ..............................................................................................................................Internally limited  
Junction Temperature Range (TJ).......................................................................................................................-40¡C to +150¡C  
Storage Temperature Range................................................................................................................................-65¡C to +150¡C  
Lead Temperature Soldering  
Wave Solder (through hole styles only) .....................................................................................10 sec. max, 260¡C peak  
Reflow (SMD styles only) ......................................................................................60 sec. max above 183¡C, 230¡C peak  
ENABLE .......................................................................................................................................................................-0.3V to VIN  
Electrical Characteristics: 7V ² VIN ² 26V, 5mA ² IOUT ² 500mA, -40ûC ² TJ ² +150ûC, -40ûC ² TA ² 125ûC  
unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Output Stage (VOUT  
)
Output Voltage, VOUT  
7V ² VIN ² 26V  
4.8  
5.0  
5.2  
V
5mA < IOUT < 500mA  
Dropout Voltage (VIN - VOUT  
)
IOUT = 500mA  
1.25  
5
1.50  
25  
V
Line Regulation  
IOUT = 50mA,  
mV  
7V ² VIN ² 26V  
Load Regulation  
VIN = 14V,  
50mA ² IOUT ² 500mA  
5
80  
mV  
m½  
Output Impedance, ROUT  
500mA DC and 10mA AC ,  
200  
100Hz ² f ² 10kHz  
Quiescent Current, (IQ)  
Active Mode  
0 ² IOUT ² 500mA, 7V ² VIN ² 26V  
IOUT = 0mA, VIN = 13V, ENABLE = 0V  
7.00  
0.25  
15.00  
0.50  
mA  
mA  
Sleep Mode  
Ripple Rejection  
7 ² VIN ² 17V, IOUT = 250mA,  
60  
75  
dB  
f = 120Hz  
Current Limit  
700  
150  
30  
1200  
180  
34  
2000  
38  
mA  
¡C  
V
Thermal Shutdown  
Overvoltage Shutdown  
VOUT < 1V  
ENABLE  
Threshold  
HIGH  
LOW  
VOUT ³ 0.5V, (VOUT(ON)  
VOUT < 0.5V, (VOUT(OFF)  
)
)
4.05  
3.95  
4.50  
V
V
3.50  
Threshold Hysteresis  
(HIGH - LOW)  
100  
mV  
2
Electrical Characteristics: continued  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RESET  
Threshold  
HIGH VR(HI)  
VOUT increasing  
4.65  
4.50  
150  
4.90  
4.70  
200  
VOUT - 0.05  
V
LOW VR(LOW)  
VOUT decreasing  
(HIGH - LOW)  
VOUT ³ VR(HI)  
4.90  
250  
25  
V
Threshold Hysteresis(VRH  
)
mV  
µA  
Reset Output Leakage  
= HIGH  
RESET  
Output Voltage  
Low(VL(LOW)  
)
1V ² VOUT ² VR(LOW)  
Rp = 2.7k½*  
VOUT, Power up, Power down  
0.1  
0.6  
0.4  
1.0  
V
V
Low (VRpeak  
)
Delay Times  
tPOR  
CDELAY = 0.1µF  
30.0  
0.5  
47.5  
1.0  
65.0  
1.5  
ms  
ms  
tWDI(  
)
RESET  
Watchdog  
Input Voltage  
HIGH  
2.0  
V
V
LOW  
0.8  
10  
Input Current  
WDI ² VOUT  
DELAY = 0.1µF  
0
µA  
Threshold Frequency  
C
fWDI  
fWDI(UPPER)**  
64  
218  
77  
262  
96  
326  
Hz  
Hz  
LOWER  
* R is connected to  
and V  
.
RESET  
P
OUT  
** CS8140 only  
To observe safe operating junction temperature, low duty cycle pulse testing is used on tests where applicable.  
Package Lead Description  
Package Lead #  
Lead Symbol  
Function  
7 Lead  
TO-220  
24 Lead *  
SOIC Wide  
14 Lead  
PDIP  
1
21  
12  
VIN  
Supply voltage to IC, usually direct from the battery.  
2
23  
13  
ENABLE  
CMOS compatible logical input. VOUT is disabled when  
ENABLE is LOW and WDI is beyond its preset limits.  
3
24  
14  
CMOS compatible output lead.  
VOUT drops below 4.5% of its typical value for more than  
2µs or WDI signal falls outside itÕs window limits.  
goes low whenever  
RESET  
RESET  
4
5
6
12, 20  
11  
1
Gnd  
Ground connection.  
2
3
Delay  
WDI  
Timing capacitor for Watchdog and  
functions.  
RESET  
2
CMOS compatible input lead. The Watchdog function mon-  
itors the falling edge of the incoming digital pulse train. The  
signal is usually generated by the system microprocessor.  
7
4
5
3
4
VOUT  
Regulated output voltage, 5V (typ).  
N/A  
Sense  
Kelvin connection which allows remote sensing of output  
voltage for improved regulation.  
1,6-11,13-19,22  
5-10  
NC  
No connection.  
* The CS8141 uses a fused lead package. Leads 6-8 and 17-19 are fused together through the lead frame. These leads are  
electrically connected to IC ground and should be connected to system ground for a good thermal connection.  
3
Typical Performance Characteristics  
VOUT vs. VIN over RLOAD; T = 25ûC  
VOUT vs. VIN over Temperature; RLOAD = 25½  
5.5  
5.5  
VENABLE = VIN  
V
= V  
IN  
ENABLE  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
Rload = NO LOAD  
TEMP = 125°C  
Rload = 6.67W  
TEMP = -40 °C  
TEMP = 25°C  
Rload = 10W  
2.0  
1.5  
1.0  
0.5  
0.0  
2.0  
1.5  
1.0  
0.5  
0.0  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
V
(V)  
V
IN  
(V)  
IN  
Dropout Voltage vs. Output Current over Temperature  
Load Regulation vs. Output Current over Temperature  
3.5  
1800  
1600  
1400  
-40°C  
0
-3.5  
25°C  
-7.0  
1200  
-10.5  
-14.0  
-17.5  
-40°C  
1000  
125°C  
VIN = 14V  
25°C  
800  
-21.0  
-24.5  
-28.0  
-31.5  
-35.0  
600  
400  
125°C  
200  
0
0
100  
200  
300  
400  
500  
600  
700  
800  
0
100  
200  
300  
400  
500  
600  
700  
800  
IOUT (mA)  
IOUT (mA)  
Line Regulation vs. Output Current over Temperature  
Quiescent Current vs. Output Current over Temperature  
10  
18  
V
= 14V  
IN  
V
IN = 14V  
16  
14  
9
8
-40°C  
12  
10  
8
-40°C  
7
6
6
4
25°C  
125°C  
2
0
25°C  
125°C  
-2  
-4  
-6  
5
4
0
100  
200  
300  
400  
500  
600  
700  
800  
0
100  
200  
300  
400  
500  
600  
700  
800  
I
(mA)  
OUT  
I
(mA)  
OUT  
4
Typical Performance Characteristics: continued  
Quiescent Current vs. VIN over RLOAD; T = 25¡C  
Quiescent Current vs. VIN over Temperature; RLOAD = 25½  
20  
20  
VENABLE = VIN  
V
= V  
IN  
ENABLE  
18  
16  
14  
18  
16  
14  
TEMP = 25°C  
12  
10  
12  
10  
Rload = 6.67  
Rload = 25  
TEMP =- 40°C  
8
6
8
6
Rload = NO LOAD  
TEMP = 125°C  
4
4
2
0
2
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
V
IN  
(V)  
V
IN  
(V)  
Watchdog Frequency Thresholds vs. Temperature  
Watchdog Frequency Threshold vs CDELAY  
7
10  
300  
280  
6
5
4
3
2
10  
10  
10  
10  
10  
260  
Upper Threshold  
240  
220  
200  
180  
160  
140  
120  
C
= 0.1mF  
DELAY  
Upper Threshold  
Lower Threshold  
Lower Threshold  
100  
80  
1
0
10  
10  
60  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
1
2
3
4
5
6
7
T
J
(°C)  
10  
10  
10  
10  
10  
10  
10  
CAPACITANCE (pF)  
Ripple Rejection vs Frequency  
RESET Output Voltage vs Output Current  
90  
2000  
1800  
1600  
1400  
1200  
1000  
800  
I
O
=250mA  
80  
70  
60  
50  
V
IN  
= 5V  
C
= 10mF, ESR=1&0.1mF, ESR=0  
O
40  
30  
20  
10  
600  
C
= 10mF,ESR=1W  
O
400  
200  
0
C
= 10mF, ESR=10W  
O
0
10  
0
1
2
3
4
5
6
7
8
1
5
10  
15  
20  
25  
30  
35  
40  
10  
10  
10  
10  
10  
10  
10  
10  
RESET OUTPUT CURRENT (mA)  
FREQUENCY (Hz)  
5
Definition of Terms  
Dropout Voltage  
Load Regulation  
The change in output voltage for a change in load current  
at constant chip temperature.  
The input-output voltage differential at which the circuit  
ceases to regulate against further reduction in input volt-  
age. Measured when the output voltage has dropped  
100mV from the nominal value obtained at 14V input,  
dropout voltage is dependent upon load current and junc-  
tion temperature.  
Quiescent Current  
The part of the positive input current that does not con-  
tribute to the positive load current. The regulator ground  
lead current.  
Input Voltage  
Ripple Rejection  
The ratio of the peak-to-peak input ripple voltage to the  
peak-to-peak output ripple voltage.  
The DC voltage applied to the input terminals with respect  
to ground.  
Line Regulation  
Current Limit  
Peak current that can be delivered to the output.  
The change in output voltage for a change in the input  
voltage. The measurement is made under conditions of  
low dissipation or by using pulse techniques such that the  
average chip temperature is not significantly affected.  
Circuit Description  
circuitry insures that the output current never exceeds a  
preset limit.  
Voltage Reference and Output Circuitry  
Precision Voltage Reference  
The regulated output voltage depends on the precision  
band gap voltage reference in the IC. By adding an error  
amplifier into the feedback loop , the output voltage is main-  
tained within ±4% over temperature and supply variation.  
> 30V  
V
IN  
V
OUT  
Output Stage  
The composite PNP-NPN output structure (Figure1) pro-  
vides 500mA (min) of output current while maintaining a  
low drop out voltage (1.25V) and drawing little quiescent  
current (7mA).  
I
O
V
IN  
Load  
Dump  
Short  
Circuit  
Thermal  
Shutdown  
Figure 2: Typical Circuit Waveforms for Output Stage Protection.  
Should the junction temperature of the power device  
exceed 180ûC (typ), the power transistor is turned off.  
Thermal shutdown is an effective means to prevent die  
overheating since the power transistor is the principle heat  
source in the IC.  
V
OUT  
Figure 1: Composite Output Stage of the CS8140/1  
Regulator Control Functions  
The NPN pass device prevents deep saturation of the out-  
put stage which in turn improves the ICÕs efficiency by  
preventing excess current from being used and dissipated  
by the IC.  
The CS8140 differs from all other linear regulators in its  
unique combination of control features.  
Watchdog and ENABLE Functions  
V
OUT is controlled by the logic functions ENABLE and  
Output Stage Protection  
Watchdog (Table 1).  
The output stage is protected against overvoltage, short  
circuit and thermal runaway conditions (Figure 2).  
VOUT (V)  
WDI  
If the input voltage rises above 30V (e.g. load dump), the  
output shuts down. This response protects the internal cir-  
cuitry and enables the IC to survive unexpected voltage  
transients.  
ENABLE Slow  
Normal  
Fast  
High  
Low  
H
L
5
0
5
5
5
0
5
0
5
0
Using an emitter sense scheme, the amount of current  
through the NPN pass transistor is monitored. Feedback  
Table 1: VOUT as a Function of ENABLE and Watchdog  
6
Figure 3: Timing Diagrams for Watchdog and ENABLE Functions  
3a: VOUT when Watchdog is held high and ENABLE = HIGH.  
Battery  
Battery  
VIN  
ENABLE  
0V  
0V  
0V  
WDI  
RESET  
VOUT  
POR  
Normal Operation  
WDI held High  
3b: VOUT when Watchdog is held low and ENABLE = HIGH.  
Battery  
Battery  
VIN  
ENABLE  
WDI  
0V  
0V  
RESET  
VOUT  
0V  
POR  
Normal Operation  
WDI held Low  
3c: VOUT when Watchdog is too slow and ENABLE = HIGH.  
Battery  
Battery  
VIN  
ENABLE  
0V  
WDI  
0V  
RESET  
VOUT  
0V  
POR  
Normal Operation  
Slow WDI signal  
3d: VOUT when Watchdog is too fast and ENABLE = HIGH.  
Battery  
Battery  
VIN  
ENABLE  
0V  
WDI  
0V  
RESET  
VOUT  
0V  
POR  
Normal Operation  
Fast WDI signal  
3e: WDI held high after a normal period of operation; ENABLE = LOW.  
Battery  
Battery  
VIN  
ENABLE  
WDI  
0V  
0V  
0V  
RESET  
VOUT  
POR  
Normal Operation  
WDI  
high  
Sleep Mode  
POR  
Normal Operation  
3f: WDI held low or is too slow after a normal period of operation; ENABLE = LOW.  
Battery  
Battery  
VIN  
ENABLE  
0V  
0V  
0V  
WDI  
RESET  
VOUT  
POR  
Normal Operation WDI  
low  
Sleep Mode  
POR  
Normal Operation  
3g: WDI frequency rises above the upper frequency threshold after a normal period of operation; ENABLE = LOW  
(for the CS8140 only).  
Battery  
Battery  
VIN  
ENABLE  
0V  
WDI  
RESET  
VOUT  
0V  
0V  
POR  
Normal Operation  
Sleep Mode  
POR  
Normal Operation  
7
Circuit Description: continued  
As long as ENABLE is high or ENABLE is low and the  
RESET Circuit Waveforms with Delays Indicated  
Watchdog signal is normal, VOUT will be at 5V (typ). If  
ENABLE is low and the Watchdog signal moves outside  
programmable limits, the output transistor turns off and  
the IC goes into SLEEP mode. Only the ENABLE circuitry  
in the IC remains powered up, drawing a quiescent cur-  
rent of 250µA.  
VOUT  
VR  
HI  
VR  
LO  
RESET  
The Watchdog monitors the frequency of an incoming  
WDI signal. If the signal falls outside of the WDI window,  
a frequency programmable pulse train is generated at the  
VR  
LO  
VR  
PEAK  
lead (Figure 3) until the correct Watchdog input  
RESET  
tPOR  
signal reappears at the lead (ENABLE = HIGH).  
The lower and upper window threshold limits of the  
watchdog function are set by the value of CDELAY. The lim-  
its are determined according to the following equations for  
the CS8140:  
4a: Power RESET and Power Down  
VOUT  
tWDILOWER = (1.3 x 105)CDELAY or  
VOUT -4.5%  
(a)  
³2ms  
<2mS  
fWDI(LOWER) = (7.69 x 10-6)CDELAY  
-1  
(b)  
tWDI(UPPER) = (3.82 x 10-4)CDELAY or  
fWDI(UPPER) = (2.62 x 10-5)CDELAY  
-1  
RESET  
5V  
For the CS8141 the lower limit is determined by the equa-  
tions in (a) above.  
tPOR  
The capacitor CDELAY also determines the frequency of the  
signal and the POWER-ON-  
(POR) delay  
RESET  
period.  
RESET  
4b: Undervoltage Triggered RESET  
If an undervoltage condition exists, the voltage on the  
RESET  
RESET  
Function  
lead goes low and the delay capacitor, CDELAY, is  
discharged. remains low until output is in regula-  
The  
function is activated when the Watchdog sig-  
RESET  
RESET  
nal is outside of its preset window (Figure 3), when the  
regulator is in its power up state (Figure 4a) or when VOUT  
drops below VOUT -4.5% for more than 2µs (Figure 4b.)  
tion, the voltage on CDELAY exceeds the upper switching  
threshold and the Watchdog input signal is within its set  
window limits (Figure 4). The delay after the output is in  
regulation is:  
If the Watchdog signal falls outside of the preset voltage  
and frequency window, a frequency programmable pulse  
tPOR(typ) = (4.75 x 105) CDELAY  
train is generated at the  
lead (Figure 3) until the  
RESET  
correct Watchdog input signal reappears at the lead. The  
duration of the pulse is determined by C  
The  
delay circuit is also programmed with the  
RESET  
external cap CDELAY  
RESET  
according to the following equation:  
DELAY  
.
The output of the reset circuit is an open collector NPN.  
is operational down to V = 1V. Both and  
RESET  
RESET  
tWDI(  
) = (1 x104)CDELAY  
OUT  
RESET  
its delay are governed by comparators with hysteresis to  
avoid undesirable oscillations.  
Application Notes  
Assume that the reset delay must be 200ms minimum.  
CS8140 Design Example  
From the CS8140 data sheet the reset delay has a ±37% tol-  
erance due to the regulator.  
The CS8140 with its unique integration of linear regulator  
and control features: , ENABLE and WATCHDOG,  
RESET  
Assume the capacitor tolerance is ±10%.  
provides a single IC solution for a microprocessor power  
supply. The reset delay, reset duration and watchdog fre-  
quency limits are all determined by a single capacitor. For  
a particular microprocessor the overriding requirement is  
usually the reset delay (also known as power on reset).  
The capacitor is chosen to meet this requirement and the  
reset duration and watchdog frequency follow.  
tPOR (min) = (4.75 x 105 x 0.63) x CDELAY x 0.9  
tPOR (min)  
CDELAY (min) =  
2.69 x 105  
CDELAY = (min) = 0.743 µF  
Closest standard value is 0.82µF.  
The reset delay is given by:  
Minimum and maximum delays using 0.82µF are 220ms  
and 586ms.  
tPOR(typ) = (4.75 x 105)CDELAY  
8
Application Notes  
The duration of the reset pulse is given by:  
TWDI(RESET)(typ) = (1 x 104) x CDELAY  
Energy Conservation and Smart Features  
Energy conservation is another benefit of using a regulator  
with integrated microprocessor control features. Using the  
CS8140 or CS8141 as indicated in Figure 8, the micropro-  
cessor can control its own power down sequence. The  
momentary contact switch quickly charges C1 through R1.  
This has a tolerance of ±50% due to the IC, and ±10% due  
to the capacitor.  
The duration of the reset pulse ranges from 3.69ms to  
13.5ms.  
When the voltage across C1 reaches 3.95V ( the enable  
threshold), the output switches on and VOUT rises to 5V.  
After a delay period determined by CDelay, a frequency  
programmable reset pulse train is generated at the reset  
output. The pulse train continues until the correct watch-  
dog signal appears at the WDI lead. C1 is now left to dis-  
charge through the input impedance of the enable lead  
(approximately 150k½) and the enable signal disappears.  
The output voltage remains at 5V as long as the CS8140  
continues to receive the correct watchdog signal.  
The watchdog signal can be expressed as a frequency or  
time. From a programmers point of view, time is more  
useful since they must ensure that a watchdog signal is  
issued consistently several times per second.  
The maximum and minimum watchdog times are given  
by:  
tWDI(LOWER) = (1.3 x 105)CDELAY  
tWDI(UPPER) = (3.82 x 104)CDELAY  
There is a tolerance of ±20% due to the CS8140.  
The microprocessor can power itself down by terminating  
its watchdog signal. When the microprocessor finishes its  
housekeeping or power down software routine, it stops  
sending a watchdog signal. In response, the regulator  
generates a reset signal and goes into a sleep mode where  
VOUT drops to 0V, shutting down the microprocessor.  
With a capacitor tolerance of ±10%:  
tWDI(LOWER) = (1.3 x 105) x 1.20 x 1.1 x CDELAY  
tWDI(UPPER) = (3.82 x 104) x 0.8 x 0.9 x CDELAY  
tWDI(LOWER) = 141ms(max)  
tWDI(UPPER) = 22.5ms (max)  
Stability Considerations  
The output or compensation capacitor C2 in Figure 7 helps  
determine three main characteristics of a linear regulator:  
start-up delay, load transient response and loop stability.  
tWDI(LOWER) = (1.3 x 105) x 0.8 x 0.9 x CDELAY  
tWDI(UPPER) = (3.82 x 104) x 1.2 x 1.1 x CDELAY  
The capacitor value and type should be based on cost,  
availability, size and temperature constraints. A tantalum  
or aluminum electrolytic capacitor is best, since a film or  
ceramic capacitor with almost zero ESR can cause instabili-  
ty. The aluminum electrolytic capacitor is the least expen-  
sive solution, but, if the circuit operates at low tempera-  
tures (-25¡C to -40¡C), both the value and ESR of the  
capacitor will vary considerably. The capacitor manufac-  
turers data sheet usually provide this information.  
tWDI(LOWER) = 76ms(min)  
tWDI(UPPER) = 41ms (min)  
The software must be written so that a watchdog signal  
arrives at least every 76ms but not faster than every 41ms  
(Figure 5).  
PASS  
FAIL  
FAIL  
The value for the output capacitor C2 in Figure 7 should  
work for most applications, however it is not necessarily  
the optimized solution.  
7
9
24  
41  
32  
31  
44  
13  
76  
Hz  
ms  
To determine an acceptable value for C2 for a particular  
application, start with a tantalum capacitor of the recom-  
mended value and work towards a less expensive alterna-  
tive part.  
141  
107  
22.5  
C = 0.1mF ± 10%  
Figure 5: WDI signal for CDelay = 0.82µF using CS8140.  
Step 1: Place the completed circuit with a tantalum capac-  
itor of the recommended value in an environmental cham-  
ber at the lowest specified operating temperature and  
monitor the outputs with an oscilloscope. A decade box  
connected in series with the capacitor will simulate the  
higher ESR of an aluminum capacitor. Leave the decade  
box outside the chamber, the small resistance added by the  
longer leads is negligible.  
The CS8141 is identical to the CS8140 except that the  
CS8141 only has a lower watchdog frequency threshold.  
The designer using this part need only be concerned with  
tWDI(LOWER) as shown in Figure 6.  
FAIL  
Step 2: With the input voltage at its maximum value,  
increase the load current slowly from zero to full load  
while observing the output for any oscillations. If no oscil-  
lations are observed, the capacitor is large enough to  
ensure a stable design under steady state conditions.  
PASS  
7
13  
76  
Hz  
ms  
141  
Figure 6: WDI signal for CDelay = 0.82µF using CS8141.  
9
Application Diagrams  
5V  
V
OUT  
Battery  
Ignition  
V
IN  
C **  
2
C *  
1
10mF*  
0.1mF  
CS8140  
V
cc  
2.7kW  
(optional)  
ENABLE  
DELAY  
RESET  
WDI  
RESET  
WATCHDOG  
PORT  
0.1mF  
Gnd  
R***  
MICROPROCESSOR  
*C1 is required if regulator is located far from the power source filter.  
**C2 required for stability  
***R ² 80k½  
Figure 7. Application Diagram  
9V  
V
OUT  
V
IN  
CS8140/1  
Switch  
R
110K  
1
RESET  
WDI  
ENABLE  
C
0.1mF  
1
C
Gnd  
Delay  
C
0.1mF  
2
V
cc  
10mF  
2.7k  
MICROPROCESSOR  
RESET  
WATCHDOG PORT  
Figure 8. Applications diagram for CS8140. The CS8140 provides a 5V tightly regulated supply and control function to the microprocessor. In this  
application, the microprocessor controls its own power down sequence (see text).  
10  
Application Notes: continued  
Step 3: Increase the ESR of the capacitor from zero using  
I
IN  
the decade box and vary the load current until oscillations  
appear. Record the values of load current and ESR that  
cause the greatest oscillation. This represents the worst  
case load conditions for the regulator at low temperature.  
I
OUT  
V
IN  
Smart  
Regulator  
V
OUT  
Control  
Features  
}
Step 4: Maintain the worst case load conditions set in step  
3 and vary the input voltage until the oscillations increase.  
This point represents the worst case input voltage condi-  
tions.  
I
Q
Step 5: If the capacitor is adequate, repeat steps 3 and 4  
with the next smaller valued capacitor. A smaller capacitor  
will usually cost less and occupy less board space. If the  
output oscillates within the range of expected operating  
conditions, repeat steps 3 and 4 with the next larger stan-  
dard capacitor value.  
Figure 9: Single output regulator with key performance parameters  
labeled.  
Once the value of PD(max) is known, the maximum permis-  
sible value of RQJA can be calculated:  
150¡C - TA  
(2)  
RQJA  
=
Step 6: Test the load transient response by switching in  
various loads at several frequencies to simulate its real  
working environment. Vary the ESR to reduce ringing.  
PD  
The value of RQJA can then be compared with those in  
the package section of the data sheet. Those packages  
with RQJA's less than the calculated value in equation 2 will  
keep the die temperature below 150¡C.  
Step 7: Remove the unit from the environmental chamber  
and heat the IC with a heat gun. Vary the load current as  
instructed in step 5 to test for any oscillations.  
In some cases, none of the packages will be sufficient to  
dissipate the heat generated by the IC, and an external  
heatsink will be required.  
Once the minimum capacitor value with the maximum  
ESR is found, a safety factor should be added to allow for  
the tolerance of the capacitor and any variations in regula-  
tor performance. Most good quality aluminum electrolytic  
capacitors have a tolerance of +/- 20% so the minimum  
value found should be increased by at least 50% to allow  
for this tolerance plus the variation which will occur at  
low temperatures. The ESR of the capacitor should be less  
than 50% of the maximum allowable ESR found in step 3  
above.  
Heatsinks  
A heatsink effectively increases the surface area of the  
package to improve the flow of heat away from the IC and  
into the surrounding air.  
Each material in the heat flow path between the IC and the  
outside environment will have a thermal resistance. Like  
series electrical resistances, these resistances are summed  
Calculating Power Dissipation  
in a Single Output Linear Regulator  
to determine the value of RQJA  
:
R
QJA = RQJC + RQCS + RQSA  
(3)  
The maximum power dissipation for a single output regu-  
lator (Figure 9) is:  
where:  
R
R
R
QJC = the junctionÐtoÐcase thermal resistance,  
QCS = the caseÐtoÐheatsink thermal resistance, and  
QSA = the heatsinkÐtoÐambient thermal resistance.  
PD(max) = VIN(max) - VOUT(min)  
I
OUT(max) + VIN(max) Q  
I
(1)  
{
}
where:  
VIN(max) is the maximum input voltage,  
VOUT(min) is the minimum output voltage,  
R
R
QJC appears in the package section of the data sheet. Like  
QJA, it too is a function of package type. RQCS and RQSA  
IOUT(max) is the maximum output current for the applica-  
tion, and  
are functions of the package type, heatsink and the inter-  
face between them. These values appear in heatsink data  
sheets of heatsink manufacturers.  
IQ is the quiescent current the regulator consumes at  
IOUT(max)  
.
11  
Package Specification  
Thermal  
PACKAGE DIMENSIONS IN mm (INCHES)  
D
PACKAGE THERMAL DATA  
7 L 24L 24L (Fused) 14 L  
Data  
TO-220 CS8140  
CS8141  
PDIP  
Lead Count  
Metric  
English  
Min  
RQJC typ  
1.6  
16  
9
48  
ûC/W  
ûC/W  
Max Min Max  
RQJA typ  
50  
80  
55  
85  
24 Lead SOIC Wide  
14 Lead PDIP  
15.60  
19.69  
15.20 .614 .598  
18.67 .775 .735  
7 Lead TO-220 (T) Straight  
Surface Mount Wide Body (DW); 300 mil wide  
7.60 (.299)  
7.40 (.291)  
10.65 (.419)  
10.00 (.394)  
1.40 (.055)  
1.14 (.045)  
4.83 (.190)  
4.06 (.160)  
10.54 (.415)  
9.78 (.385)  
2.87 (.113)  
2.62 (.103)  
0.51 (.020)  
0.33 (.013)  
1.27 (.050) BSC  
14.99 (.590)  
14.22 (.560)  
6.55 (.258)  
5.94 (.234)  
3.96 (.156)  
3.71 (.146)  
2.49 (.098)  
2.24 (.088)  
2.65 (.104)  
2.35 (.093)  
0.32 (.013)  
0.23 (.009)  
1.27 (.050)  
0.40 (.016)  
14.22 (.560)  
13.72 (.540)  
0.30 (.012)  
0.10 (.004)  
D
REF: JEDEC MS-013  
Plastic DIP (N); 300 mil wide  
0.94 (.037)  
0.58 (.023)  
0.56 (.022)  
0.36 (.014)  
1.40 (.055)  
1.14 (.045)  
0.64 (.025)  
0.38 (.015)  
7.11 (.280)  
6.10 (.240)  
7.75 (.305)  
7.49 (.295)  
2.92 (.115)  
2.29 (.090)  
1.77 (.070)  
1.14 (.045)  
8.26 (.325)  
7.62 (.300)  
2.54 (.100) BSC  
7 Lead TO-220 (TVA) Vertical  
3.68 (.145)  
2.92 (.115)  
1.40 (.055)  
1.14 (.045)  
10.54 (.415)  
9.78 (.385)  
3.96 (.156)  
3.71 (.146)  
2.87 (.113)  
2.62 (.103)  
0.39 (.015)  
MIN.  
.356 (.014)  
.203 (.008)  
14.99 (.590)  
14.22 (.560)  
6.55 (.258)  
5.94 (.234)  
.558 (.022)  
.356 (.014)  
Some 8 and 16 lead  
packages may have  
1/2 lead at the end  
of the package.  
REF: JEDEC MS-001  
D
11.86 (.467)  
All specs are the same.  
2.03 (.080)  
Ordering Information  
2.92 (.115)  
2.29 (.090)  
2.92  
(.115)  
Part Number  
CS8140YT7  
Description  
8.26  
(.325)  
7L TO-220 Straight  
7L TO-220 Vertical  
7L TO-220 Horizontal  
24L SO  
CS8140YTVA7  
CS8140YTHA7  
CS8140YDW24  
CS8140YDWR24  
CS8140YN14  
4.34  
0.56 (.022)  
0.36 (.014)  
1.27  
(.050)  
TYP  
(.171)  
0.81  
(.030)  
7.52 (.296)  
7.62 (.300)  
24L SO (tape & reel)  
14L PDIP  
CS8141YT7  
7L TO-220 Straight  
7L TO-220 Vertical  
7L TO-220 Horizontal  
24L SO (internally fused leads)  
24L SO (internally fused leads)  
(tape & reel)  
4.83 (.190)  
4.06 (.160)  
CS8141YTVA7  
CS8141YTHA7  
CS8141YDWF24  
CS8141YDWFR24  
Ch erry Sem icon du ctor Corporation reserves th e  
righ t to m ake ch an ges to th e specification s with ou t  
n otice. Please con tact Ch erry Sem icon du ctor  
Corporation for th e latest available in form ation .  
CS8141YN14  
14L PDIP  
Rev. 2/23/99  
© 1999 Cherry Semiconductor Corporation  
12  

相关型号:

CS8141YTHA7

5V, 500mA Linear Regulator with ENABLE, , and Watchdog RESET
CHERRY

CS8141YTVA7

5V, 500mA Linear Regulator with ENABLE, , and Watchdog RESET
CHERRY

CS8147

10V/5V Low Dropout Dual Regulator with ENABLE
CHERRY

CS8147

10 V/5.0 V Low Dropout Dual Regulator with ENABLE
ONSEMI

CS8147/D

10 V/5.0 V Low Dropout Dual Regulatorwith ENABLEbar
ETC

CS8147YT5

10V/5V Low Dropout Dual Regulator with ENABLE
CHERRY

CS8147YT5

10 V/5.0 V Low Dropout Dual Regulator with ENABLE
ONSEMI

CS8147YTHA5

10V/5V Low Dropout Dual Regulator with ENABLE
CHERRY

CS8147YTHA5

10 V/5.0 V Low Dropout Dual Regulator with ENABLE
ONSEMI

CS8147YTVA5

10V/5V Low Dropout Dual Regulator with ENABLE
CHERRY

CS8147YTVA5

10 V/5.0 V Low Dropout Dual Regulator with ENABLE
ONSEMI

CS814A1

MOV Modules
HVPSI