CS8129/D [ETC]

5V, 750mA Low Dropout LinearRegulator with Lower RESETbar Threshold ; 5V , 750毫安低压差LinearRegulator与下RESETbar阈值\n
CS8129/D
型号: CS8129/D
厂家: ETC    ETC
描述:

5V, 750mA Low Dropout LinearRegulator with Lower RESETbar Threshold
5V , 750毫安低压差LinearRegulator与下RESETbar阈值\n

文件: 总12页 (文件大小:106K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS8129  
5.0 V, 750 mA Low Dropout  
Linear Regulator with  
Lower RESET Threshold  
The CS8129 is a precision 5.0 V linear regulator capable of sourcing  
750 mA. The RESET threshold voltage has been lowered to 4.2 V so  
that the regulator can be used with 4.0 V microprocessors. The lower  
RESET threshold also permits operation under low battery conditions  
(5.5 V plus a diode). The RESET’s delay time is externally  
programmed using a discrete RC network. During power up, or when  
the output goes out of regulation, RESET remains in the low state for  
the duration of the delay. This function is independent of the input  
voltage and will function correctly as long as the output voltage  
remains at or above 1.0 V. Hysteresis is included in the Delay and the  
RESET comparators to improve noise immunity. A latching discharge  
circuit is used to discharge the delay capacitor when it is triggered by a  
brief fault condition.  
The regulator is protected against a variety of fault conditions: i.e.  
reverse battery, overvoltage, short circuit and thermal runaway  
conditions. The regulator is protected against voltage transients ranging  
from –50 V to +40 V. Short circuit current is limited to 1.2 A (typ).  
The CS8129 is packaged in a 5 lead TO–220 and a 16 lead surface  
mount package.  
http://onsemi.com  
TO–220  
FIVE LEAD  
T SUFFIX  
CASE 314D  
1
5
TO–220  
FIVE LEAD  
TVA SUFFIX  
CASE 314K  
1
TO–220  
FIVE LEAD  
THA SUFFIX  
CASE 314A  
1
5
Features  
5.0 V ±3.0% Regulated Output  
Low Dropout Voltage (0.6 V @ 0.5 A)  
750 mA Output Current Capability  
Reduced RESET Threshold for use with 4.0 V Microprocessors  
Externally Programmed RESET Delay  
Fault Protection  
SO–16L  
DW SUFFIX  
CASE 751G  
16  
1
ORDERING INFORMATION  
Reverse Battery  
60 V, 50 V Peak Transient Voltage  
Short Circuit  
Device  
Package  
Shipping  
TO–220*  
STRAIGHT  
CS8129YT5  
50 Units/Rail  
Thermal Shutdown  
TO–220*  
VERTICAL  
CS8129YTHA5  
50 Units/Rail  
TO–220*  
HORIZONTAL  
CS8129YTVA5  
CS8129YDW16  
50 Units/Rail  
46 Units/Rail  
SO–16L  
SO–16L  
1000 Tape & Reel  
CS8129YDWR16  
*Five lead.  
DEVICE MARKING INFORMATION  
See general marking information in the device marking  
section on page 8 of this data sheet.  
Semiconductor Components Industries, LLC, 2001  
1
Publication Order Number:  
April, 2001 – Rev. 6  
CS8129/D  
CS8129  
PIN CONNECTIONS  
TO–220 5 LEAD  
SO–16L  
1
16  
V
OUT  
V
IN  
NC  
NC  
GND  
GND  
RESET  
NC  
NC  
V
GND  
GND  
GND  
NC  
Pin 1. V  
IN  
2. RESET  
3. GND  
4. Delay  
OUT(SENSE)  
5. V  
OUT  
Delay  
NC  
1
V
IN  
Over Voltage  
Shutdown  
V
OUT  
Regulated Supply  
for Circuit Bias  
Pre–Regulator  
Error  
Amplifier  
Anti–Saturation  
and  
Bandgap  
Reference  
Charge  
Current  
V
OUT  
Current Limit  
(SENSE)  
Generator  
Thermal  
Shutdown  
Latching Discharge  
Delay  
+
S
R
Q
Delay  
Comparator  
RESET  
V
+
DISCHARGE  
GND  
Figure 1. Block Diagram  
ABSOLUTE MAXIMUM RATINGS*  
Rating  
Value  
Unit  
V
Input Operating Range  
Power Dissipation  
–0.5 to 26  
Internally Limited  
–50, 60  
Peak Transient Voltage (46 V Load Dump @ 14 V V  
Output Current  
)
V
IN  
Internally Limited  
4.0  
Electrostatic Discharge (Human Body Model)  
Junction Temperature  
kV  
°C  
°C  
–55 to +150  
–55 to +150  
Storage Temperature Range  
Lead Temperature Soldering:  
Wave Solder (through hole styles only) (Note 1.)  
Reflow (SMD styles only) (Note 2.)  
260 peak  
230 peak  
°C  
1. 10 second maximum.  
2. 60 seconds max above 183°C.  
*The maximum package power dissipation must be observed.  
http://onsemi.com  
2
CS8129  
ELECTRICAL CHARACTERISTICS (–40°C T 125°C, –40 T 150°C, 6.0 V 26 V, 5.0 mA I  
500 mA,  
A
J
IN  
OUT  
R
= 4.7 kto V  
unless otherwise noted.) Note 3.  
OUT  
RESET  
Characteristic  
Test Conditions  
Min  
Typ  
Max  
Unit  
Output Stage (V  
OUT)  
Output Voltage  
4.85  
5.0  
5.15  
0.60  
V
V
Dropout Voltage  
Supply Current  
I
= 500 mA  
0.35  
OUT  
I
= 10 mA  
= 100 mA  
= 500 mA  
2.0  
6.0  
55  
7.0  
12  
100  
mA  
mA  
mA  
OUT  
I
OUT  
I
OUT  
Line Regulation  
6.0 V V 26 V, I  
= 50 mA  
5.0  
10  
50  
50  
mV  
mV  
dB  
A
IN  
OUT  
Load Regulation  
50 mA I 500 mA, V = 14 V  
OUT IN  
Ripple Rejection  
f = 120 Hz, V = 7.0 to 17 V, I  
= 250 mA  
54  
75  
IN  
OUT  
Current Limit  
0.75  
32  
1.20  
Overvoltage Shutdown  
Reverse Polarity Input Voltage DC  
Thermal Shutdown  
40  
V
V
OUT  
–0.6 V, 10 Load  
–15  
150  
–30  
180  
V
Guaranteed by Design  
210  
°C  
RESET and Delay Functions  
Delay Charge Current  
RESET Threshold  
V
= 2.0 V  
5.0  
10  
15  
µA  
DELAY  
V
OUT  
V
OUT  
Increasing, V  
Decreasing, V  
4.05  
4.00  
4.35  
4.20  
4.50  
4.45  
V
V
RT(ON)  
RT(OFF)  
RESET Hysteresis  
Delay Threshold  
V
= V  
– V  
50  
150  
250  
mV  
RH  
RT(ON)  
RT(OFF)  
Charge, V  
Discharge, V  
3.25  
2.85  
3.50  
3.10  
3.75  
3.35  
V
V
DC(HI)  
DC(LO)  
Delay Hysteresis  
200  
400  
0.1  
0
800  
0.4  
10  
mV  
V
RESET Output Voltage Low  
RESET Output Leakage  
Delay Capacitor Discharge Voltage  
Delay Time  
1.0 V < V  
< V  
, 3.0 kto V  
OUT  
RT(L) OUT  
V
OUT  
> V  
Current  
µA  
V
RT(H)  
Discharge Latched “ON”, V  
> V  
0.2  
32  
0.5  
48  
OUT  
RT  
C
= 0.1 µF, Note 4.  
16  
ms  
DELAY  
3. To observe safe operating junction temperatures, low duty cycle pulse testing is used in tests where applicable.  
4. Assuming ideal capacitor.  
C
  V  
Delay Threshold Charge  
Delay  
5
  3.5   10 (typ)  
Delay  
DelayTime +  
+ C  
I
Charge  
http://onsemi.com  
3
CS8129  
PACKAGE LEAD DESCRIPTION  
PACKAGE LEAD #  
TO–220  
5 LEAD  
SO–16L  
LEAD SYMBOL  
FUNCTION  
1
1
5
3
V
Unregulated supply voltage to IC.  
Regulated 5.0 V output.  
Ground Connection.  
IN  
16  
V
OUT  
4, 5, 11, 12,  
13  
GND  
8
6
4
2
Delay  
Timing capacitor for RESET function.  
RESET  
CMOS/TTL compatible output lead. RESET goes low whenever V  
low 6.0% of it’s regulated value.  
drops be-  
OUT  
14  
N/A  
V
Remote sensing of output voltage.  
OUT(SENSE)  
TYPICAL PERFORMANCE CHARACTERISTICS  
55  
120  
Room Temp  
R
LOAD  
= 25  
50  
R
LOAD  
= 6.67 Ω  
100  
80  
45  
40  
35  
30  
25  
125°C  
60  
R
LOAD  
= 10 Ω  
20  
15  
40  
25°C  
10  
5
20  
0
R
= 25 Ω  
LOAD  
–40°C  
R
6
= NO LOAD  
LOAD  
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
7
8
9
10  
V
IN  
(V)  
V
IN  
(V)  
Figure 3. Quiescent Current vs. Input  
Voltage Over Load Resistance  
Figure 2. Quiescent Current vs. Input Voltage  
Over Temperature  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
5.5  
5.0  
Room Temp  
R
= 25 Ω  
LOAD  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
R
= 6.67 Ω  
LOAD  
R
LOAD  
=
125°C  
NO LOAD  
2.0  
1.5  
1.0  
0.5  
0
–40°C  
R
LOAD  
= 10 Ω  
25°C  
0.5  
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
V
IN  
(V)  
V
IN  
(V)  
Figure 4. Output Voltage vs. Input Voltage  
Over Temperature  
Figure 5. VOUT vs. VIN Over RLOAD  
http://onsemi.com  
4
CS8129  
TYPICAL PERFORMANCE CHARACTERISTICS  
100  
80  
100  
80  
V
IN  
= 6–26 V  
TEMP = –40°C  
TEMP = 25°C  
60  
60  
40  
20  
40  
TEMP = 25°C  
20  
TEMP = –40°C  
0
–20  
–40  
–60  
0
–20  
–40  
–60  
V
= 14 V  
IN  
TEMP = 125°C  
TEMP = 125°C  
–80  
–80  
–100  
–100  
0
100  
200  
300  
400  
500  
600  
700  
800  
0
100  
200  
300  
400  
500  
600  
700  
800  
Output Current (mA)  
Output Current (mA)  
Figure 6. Line Regulation vs. Output Current  
Figure 7. Load Regulation vs. Output Current  
900  
800  
700  
100  
90  
80  
V
IN  
= 14 V  
25°C  
70  
60  
600  
500  
400  
300  
25°C  
125°C  
50  
40  
30  
20  
125°C  
–40°C  
200  
100  
–40°C  
10  
0
0
0
100  
200  
300  
400  
500  
600  
700 800  
0
100  
200  
300  
400  
500  
600  
700 800  
Output Current (mA)  
Output Current (mA)  
Figure 9. Quiescent Current vs. Output Current  
Figure 8. Dropout Voltage vs. Output Current  
I
= 250 mA  
OUT  
90  
80  
70  
60  
50  
3
10  
C
= 10 µF, ESR = 1.0  
OUT  
& 0.1 µF, ESR = 0  
2
1
0
10  
C
C
= 47/68 µF  
= 47 µF  
10  
O
Stable Region  
10  
–1  
40  
30  
20  
10  
10  
C
OUT  
= 10 µF, ESR = 1.0 Ω  
O
–2  
10  
C
= 68 µF  
–3  
O
C
OUT  
= 10 µF, ESR = 1.0 Ω  
10  
10  
–4  
0
0
1
2
3
4
5
6
7
8
0
1
2
3
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
Frequency (Hz)  
Output Current (mA)  
Figure 10. Ripple Rejection  
Figure 11. Output Capacitor ESR  
http://onsemi.com  
5
CS8129  
V
OUT  
(1) = No Delay Capacitor  
V
RH  
(2) = With Delay Capacitor  
(3) = Max: RESET Voltage (1.0 V)  
V
RT(ON)  
V
RT(OFF)  
RESET  
(1)  
(3)  
(2)  
V
RL  
t
DELAY  
DELAY  
V
DH  
V
DC(HI)  
V
DC(LO)  
(2)  
V
DIS  
Figure 12. RESET Circuit Waveform  
CIRCUIT DESCRIPTION  
The CS8129 RESET function has hysteresis on both the  
reset and delay comparators, a latching Delay capacitor  
discharge circuit, and operates down to 1.0 V.  
condition. The circuit allows the RESET output transistor to  
go to the OFF (open) state only when the voltage on the  
Delay lead is higher than V  
.
DC(HI)  
The RESET circuit output is an open collector type with  
ON and OFF parameters as specified. The RESET output  
NPN transistor is controlled by the two circuits described  
(see Block Diagram on page 2).  
V
V
OUT  
IN  
C
*
R
RST  
4.7 kΩ  
C
**  
IN  
OUT  
CS8129  
100 nF  
10 µF to  
100 µF  
RESET  
GND  
Low Voltage Inhibit Circuit  
Delay  
This circuit monitors output voltage, and when output  
voltage is below the specified minimum causes the RESET  
output transistor to be in the ON (saturation) state. When the  
output voltage is above the specified level, this circuit permits  
the RESET output transistor to go into the OFF state if  
allowed by the RESET Delay circuit.  
Delay  
0.1 µF  
*C is required if regulator is far from the power source filter.  
IN  
**C  
is required for stability.  
OUT  
Reset Delay Circuit  
Figure 13. Test & Application Circuit  
This circuit provides a programmable (by external  
capacitor) delay on the RESET output lead. The Delay lead  
provides source current to the external delay capacitor only  
when the “Low Voltage Inhibit” circuit indicates that output  
The Delay time for the RESET function is calculated from  
the formula:  
C
  V  
Delay  
Delay Threshold  
Delay time +  
I
voltage is above V . Otherwise, the Delay lead sinks  
RT(ON)  
Charge  
current to ground (used to discharge the delay capacitor).  
The discharge current is latched ON when the output voltage  
5
Delay time + C  
  3.2   10  
Delay(mF)  
is below V  
. The Delay capacitor is fully discharged  
RT(OFF)  
If C  
= 0.1 µF, Delay time (ms) = 32 ms ±50%: i.e.  
Delay  
anytime the output voltage falls out of regulation, even for  
a short period of time. This feature ensures that a controlled  
RESET pulse is generated following detection of an error  
16 ms to 48 ms. The tolerance of the capacitor must be taken  
into account to calculate the total variation in the delay time.  
http://onsemi.com  
6
CS8129  
APPLICATION NOTES  
STABILITY CONSIDERATIONS  
Once the minimum capacitor value with the maximum  
ESR is found, a safety factor should be added to allow for the  
tolerance of the capacitor and any variations in regulator  
performance. Most good quality aluminum electrolytic  
capacitors have a tolerance of ± 20% so the minimum value  
found should be increased by at least 50% to allow for this  
tolerance plus the variation which will occur at low  
temperatures. The ESR of the capacitor should be less than  
50% of the maximum allowable ESR found in step 3 above.  
The output or compensation capacitor helps determine  
three main characteristics of a linear regulator: start–up  
delay, load transient response and loop stability.  
The capacitor value and type should be based on cost,  
availability, size and temperature constraints. A tantalum or  
aluminum electrolytic capacitor is best, since a film or  
ceramic capacitor with almost zero ESR can cause  
instability. The aluminum electrolytic capacitor is the least  
expensive solution, but, if the circuit operates at low  
temperatures (–25°C to –40°C), both the value and ESR of  
the capacitor will vary considerably. The capacitor  
manufacturers data sheet usually provides this information.  
CALCULATING POWER DISSIPATION IN A SINGLE  
OUTPUT LINEAR REGULATOR  
The maximum power dissipation for a single output  
regulator (Figure 14) is:  
The value for the output capacitor C  
shown in Figure  
OUT  
13 should work for most applications, however it is not  
necessarily the optimized solution.  
NJ
Nj
I
P
+ V  
IN(max)  
* V  
OUT(min) OUT(max)  
) V  
I
(1)  
D(max)  
IN(max) Q  
To determine an acceptable value for C  
for a particular  
OUT  
application, start with a tantalum capacitor of the  
recommended value and work towards a less expensive  
alternative part.  
where:  
V
V
is the maximum input voltage,  
is the minimum output voltage,  
is the maximum output current for the  
IN(max)  
OUT(min)  
OUT(max)  
Step 1: Place the completed circuit with a tantalum  
capacitor of the recommended value in an environmental  
chamber at the lowest specified operating temperature and  
monitor the outputs with an oscilloscope. A decade box  
connected in series with the capacitor will simulate the  
higher ESR of an aluminum capacitor. Leave the decade box  
outside the chamber, the small resistance added by the  
longer leads is negligible.  
Step 2: With the input voltage at its maximum value,  
increase the load current slowly from zero to full load while  
observing the output for any oscillations. If no oscillations  
are observed, the capacitor is large enough to ensure a stable  
design under steady state conditions.  
I
application, and  
I is the quiescent current the regulator consumes at  
Q
I
.
OUT(max)  
Once the value of P  
permissible value of R  
is known, the maximum  
D(max)  
can be calculated:  
ΘJA  
150°C * T  
+
A
R
(2)  
QJA  
P
D
The value of R  
can then be compared with those in the  
ΘJA  
package section of the data sheet. Those packages with  
’s less than the calculated value in equation 2 will keep  
R
ΘJA  
the die temperature below 150°C.  
Step 3: Increase the ESR of the capacitor from zero using  
the decade box and vary the load current until oscillations  
appear. Record the values of load current and ESR that cause  
the greatest oscillation. This represents the worst case load  
conditions for the regulator at low temperature.  
Step 4: Maintain the worst case load conditions set in  
step 3 and vary the input voltage until the oscillations  
increase. This point represents the worst case input voltage  
conditions.  
In some cases, none of the packages will be sufficient to  
dissipate the heat generated by the IC, and an external  
heatsink will be required.  
I
IN  
I
OUT  
SMART  
V
IN  
V
OUT  
REGULATOR  
Control  
Features  
Step 5: If the capacitor is adequate, repeat steps 3 and 4  
with the next smaller valued capacitor. A smaller capacitor  
will usually cost less and occupy less board space. If the  
output oscillates within the range of expected operating  
conditions, repeat steps 3 and 4 with the next larger standard  
capacitor value.  
I
Q
Figure 14. Single Output Regulator With Key  
Performance Parameters Labeled  
Step 6: Test the load transient response by switching in  
various loads at several frequencies to simulate its real  
working environment. Vary the ESR to reduce ringing.  
Step 7: Raise the temperature to the highest specified  
operating temperature. Vary the load current as instructed in  
step 5 to test for any oscillations.  
http://onsemi.com  
7
CS8129  
HEAT SINKS  
where:  
A heat sink effectively increases the surface area of the  
package to improve the flow of heat away from the IC and  
into the surrounding air.  
Each material in the heat flow path between the IC and the  
outside environment will have a thermal resistance. Like  
series electrical resistances, these resistances are summed to  
R
R
R
R
= the junction–to–case thermal resistance,  
= the case–to–heatsink thermal resistance, and  
= the heatsink–to–ambient thermal resistance.  
appears in the package section of the data sheet. Like  
ΘJC  
ΘCS  
ΘSA  
ΘJC  
R
, it too is a function of package type. R and R  
ΘCS ΘSA  
ΘJA  
are functions of the package type, heatsink and the interface  
between them. These values appear in heat sink data sheets  
of heat sink manufacturers.  
determine the value of R  
.
ΘJA  
R
QJA  
+ R  
QJC  
) R ) R  
QCS QSA  
(3)  
MARKING DIAGRAMS  
TO–220  
FIVE LEAD  
SO–16L  
16  
CS8129  
AWLYYWW  
CS8129  
AWLYWW  
1
1
A
= Assembly Location  
WL, L = Wafer Lot  
YY, Y = Year  
WW, W = Work Week  
http://onsemi.com  
8
CS8129  
PACKAGE DIMENSIONS  
TO–220  
FIVE LEAD  
T SUFFIX  
CASE 314D–04  
ISSUE E  
SEATING  
–T–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
PLANE  
C
–Q–  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION D DOES NOT INCLUDE  
INTERCONNECT BAR (DAMBAR) PROTRUSION.  
DIMENSION D INCLUDING PROTRUSION SHALL  
NOT EXCEED 10.92 (0.043) MAXIMUM.  
B
E
A
U
INCHES  
DIM MIN MAX  
0.613 14.529 15.570  
MILLIMETERS  
L
MIN MAX  
1 2 3 4 5  
A
B
C
D
E
G
H
J
0.572  
0.390  
0.170  
0.025  
0.048  
K
0.415  
0.180  
0.038  
0.055  
9.906 10.541  
4.318  
0.635  
1.219  
4.572  
0.965  
1.397  
0.067 BSC  
1.702 BSC  
0.087  
0.015  
0.990  
0.320  
0.140  
0.105  
0.112 2.210  
0.025 0.381  
2.845  
0.635  
1.045 25.146 26.543  
J
H
G
K
L
D 5 PL  
0.365 8.128  
0.153 3.556  
0.117 2.667  
9.271  
3.886  
2.972  
Q
U
M
M
T Q  
0.356 (0.014)  
TO–220  
FIVE LEAD  
TVA SUFFIX  
CASE 314K–01  
ISSUE O  
NOTES:  
ąă1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
SEATING  
PLANE  
–T–  
ąă2. CONTROLLING DIMENSION: INCH.  
ąă3. DIMENSION D DOES NOT INCLUDE  
INTERCONNECT BAR (DAMBAR) PROTRUSION.  
DIMENSION D INCLUDING PROTRUSION SHALL  
NOT EXCEED 10.92 (0.043) MAXIMUM.  
C
B
–Q–  
E
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
14.22  
9.78  
MAX  
14.99  
10.54  
4.83  
W
A
B
C
D
E
F
0.560  
0.385  
0.160  
0.027  
0.045  
0.530  
0.590  
0.415  
0.190  
0.037  
0.055  
0.545  
4.06  
0.69  
A
0.94  
1.40  
U
1.14  
13.46  
F
13.84  
L
G
J
0.067 BSC  
1.70 BSC  
K
0.014  
0.785  
0.321  
0.063  
0.146  
0.271  
0.146  
0.460  
0.022  
0.800  
0.337  
0.078  
0.156  
0.321  
0.196  
0.475  
0.36  
19.94  
8.15  
0.56  
20.32  
8.56  
1
2
3
4
5
K
L
M
Q
R
S
U
W
1.60  
3.71  
1.98  
3.96  
6.88  
3.71  
8.15  
4.98  
M
11.68  
12.07  
5 °  
5 °  
J
D
5 PL  
G
M
M
T Q  
0.356 (0.014)  
S
R
http://onsemi.com  
9
CS8129  
TO–220  
FIVE LEAD  
THA SUFFIX  
CASE 314A–03  
ISSUE E  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION D DOES NOT INCLUDE  
INTERCONNECT BAR (DAMBAR) PROTRUSION.  
DIMENSION D INCLUDING PROTRUSION SHALL  
NOT EXCEED 0.043 (1.092) MAXIMUM.  
SEATING  
PLANE  
–T–  
B
C
–P–  
E
Q
OPTIONAL  
CHAMFER  
INCHES  
DIM MIN MAX  
0.613 14.529 15.570  
MILLIMETERS  
MIN MAX  
A
B
C
D
E
F
0.572  
0.390  
0.170  
0.025  
0.048  
0.570  
A
0.415  
0.180  
0.038  
0.055  
9.906 10.541  
U
F
4.318  
0.635  
1.219  
4.572  
0.965  
1.397  
L
K
0.585 14.478 14.859  
1.702 BSC  
0.381 0.635  
0.745 18.542 18.923  
G
J
0.067 BSC  
0.015  
0.730  
0.320  
0.140  
0.210  
0.468  
0.025  
K
L
G
5X J  
0.365  
0.153  
0.260  
8.128  
3.556  
5.334  
9.271  
3.886  
6.604  
Q
S
U
S
5X D  
0.505 11.888 12.827  
M
M
T P  
0.014 (0.356)  
SO–16L  
DW SUFFIX  
CASE 751G–03  
ISSUE B  
A
D
NOTES:  
q
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES  
PER ASME Y14.5M, 1994.  
16  
9
3. DIMENSIONS D AND E DO NOT INLCUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.  
5. DIMENSION B DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS  
OF THE B DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
MILLIMETERS  
1
8
DIM MIN  
MAX  
2.65  
0.25  
0.49  
0.32  
10.45  
7.60  
A
A1  
B
C
D
E
2.35  
0.10  
0.35  
0.23  
10.15  
7.40  
B
16X B  
M
S
S
B
0.25  
T A  
e
1.27 BSC  
H
h
10.05  
0.25  
0.50  
0
10.55  
0.75  
0.90  
7
L
q
_
_
SEATING  
PLANE  
14X  
e
C
T
PACKAGE THERMAL DATA  
Parameter  
TO–220  
FIVE LEAD  
SO–16L  
Unit  
R
R
Typical  
Typical  
2.1  
50  
23  
°C/W  
°C/W  
Θ
Θ
JC  
JA  
105  
http://onsemi.com  
10  
CS8129  
Notes  
http://onsemi.com  
11  
CS8129  
SMART REGULATOR is a registered trademark of Semiconductor Components Industries, LLC (SCILLC).  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
NORTH AMERICA Literature Fulfillment:  
CENTRAL/SOUTH AMERICA:  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)  
Email: ONlit–spanish@hibbertco.com  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
Toll–Free from Mexico: Dial 01–800–288–2872 for Access –  
then Dial 866–297–9322  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 1–303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Toll Free from Hong Kong & Singapore:  
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
001–800–4422–3781  
EUROPE: LDC for ON Semiconductor – European Support  
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)  
Email: ONlit–german@hibbertco.com  
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)  
Email: ONlit–french@hibbertco.com  
Email: ONlit–asia@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2700  
Email: r14525@onsemi.com  
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)  
Email: ONlit@hibbertco.com  
ON Semiconductor Website: http://onsemi.com  
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781  
For additional information, please contact your local  
Sales Representative.  
*Available from Germany, France, Italy, UK, Ireland  
CS8129/D  

相关型号:

CS8129YDW16

5V, 750mA Low Dropout Linear Regulator with Lower RESET Threshold
CHERRY

CS8129YDW16

5.0 V, 750 mA Low Dropout Linear Regulator with Lower RESET Threshold
ONSEMI

CS8129YDW16G

5.0 V, 750 mA Low Dropout Linear Regulator with Lower RESET Threshold
ONSEMI

CS8129YDWR16

5V, 750mA Low Dropout Linear Regulator with Lower RESET Threshold
CHERRY

CS8129YDWR16

5.0 V, 750 mA Low Dropout Linear Regulator with Lower RESET Threshold
ONSEMI

CS8129YDWR16G

5.0 V, 750 mA Low Dropout Linear Regulator with Lower RESET Threshold
ONSEMI

CS8129YT5

5V, 750mA Low Dropout Linear Regulator with Lower RESET Threshold
CHERRY

CS8129YT5

5.0 V, 750 mA Low Dropout Linear Regulator with Lower RESET Threshold
ONSEMI

CS8129YT5G

5.0 V, 750 mA Low Dropout Linear Regulator with Lower RESET Threshold
ONSEMI

CS8129YTHA5

5V, 750mA Low Dropout Linear Regulator with Lower RESET Threshold
CHERRY

CS8129YTHA5

5.0 V, 750 mA Low Dropout Linear Regulator with Lower RESET Threshold
ONSEMI

CS8129YTHA5G

5.0 V, 750 mA Low Dropout Linear Regulator with Lower RESET Threshold
ONSEMI