CS8129YT5 [ONSEMI]

5.0 V, 750 mA Low Dropout Linear Regulator with Lower RESET Threshold; 5.0 V 750 mA低压差线性稳压器,低复位阈值
CS8129YT5
型号: CS8129YT5
厂家: ONSEMI    ONSEMI
描述:

5.0 V, 750 mA Low Dropout Linear Regulator with Lower RESET Threshold
5.0 V 750 mA低压差线性稳压器,低复位阈值

稳压器
文件: 总11页 (文件大小:114K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS8129  
5.0 V, 750 mA Low Dropout  
Linear Regulator with  
Lower RESET Threshold  
The CS8129 is a precision 5.0 V linear regulator capable of sourcing  
750 mA. The RESET threshold voltage has been lowered to 4.2 V so  
that the regulator can be used with 4.0 V microprocessors. The lower  
RESET threshold also permits operation under low battery conditions  
(5.5 V plus a diode). The RESET’s delay time is externally  
programmed using a discrete RC network. During powerup, or when  
the output goes out of regulation, RESET remains in the low state for  
the duration of the delay. This function is independent of the input  
voltage and will function correctly as long as the output voltage  
remains at or above 1.0 V. Hysteresis is included in the Delay and the  
RESET comparators to improve noise immunity. A latching discharge  
circuit is used to discharge the delay capacitor when it is triggered by a  
brief fault condition.  
The regulator is protected against a variety of fault conditions: i.e.  
reverse battery, overvoltage, short circuit and thermal runaway  
conditions. The regulator is protected against voltage transients ranging  
from −50 V to +40 V. Short circuit current is limited to 1.2 A (typ).  
The CS8129 is packaged in a 5 lead TO−220 and a 16 lead surface  
mount package.  
http://onsemi.com  
TO−220  
FIVE LEAD  
T SUFFIX  
CASE 314D  
1
5
TO−220  
FIVE LEAD  
TVA SUFFIX  
CASE 314K  
1
TO−220  
FIVE LEAD  
THA SUFFIX  
CASE 314A  
1
Features  
5
5.0 V 3.0% Regulated Output  
Low Dropout Voltage (0.6 V @ 0.5 A)  
750 mA Output Current Capability  
Reduced RESET Threshold for Use with 4.0 V Microprocessors  
Externally Programmed RESET Delay  
Fault Protection  
SO−16WB  
DW SUFFIX  
CASE 751G  
16  
1
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
Reverse Battery  
dimensions section on page 8 of this data sheet.  
60 V, 50 V Peak Transient Voltage  
Short Circuit  
Thermal Shutdown  
DEVICE MARKING INFORMATION  
Pb−Free Packages are Available*  
See general marking information in the device marking  
section on page 8 of this data sheet.  
*For additional information on our Pb−Free strategy and soldering details, please  
download the ON Semiconductor Soldering and Mounting Techniques  
Reference Manual, SOLDERRM/D.  
©
Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
June, 2006 − Rev. 8  
CS8129/D  
CS8129  
PIN CONNECTIONS  
TO−220 5−LEAD  
SO−16 WB  
1
16  
Pin 1. V  
V
IN  
V
IN  
OUT  
NC  
NC  
2. RESET  
3. GND  
NC  
V
OUT(SENSE)  
GND  
GND  
RESET  
NC  
Delay  
GND  
GND  
GND  
NC  
4. Delay  
5. V  
OUT  
NC  
1
V
IN  
Over Voltage  
Shutdown  
V
OUT  
Regulated Supply  
for Circuit Bias  
Pre−Regulator  
Error  
Amplifier  
Anti−Saturation  
and  
Current Limit  
Bandgap  
Reference  
Charge  
Current  
V
OUT  
(SENSE)  
Generator  
Thermal  
Shutdown  
Latching Discharge  
Delay  
+
S
R
Q
Delay  
Comparator  
RESET  
V
+
DISCHARGE  
GND  
Figure 1. Block Diagram  
ABSOLUTE MAXIMUM RATINGS  
Rating  
Value  
Unit  
V
Input Operating Range  
Power Dissipation  
−0.5 to 26  
Internally Limited  
−50, 60  
Peak Transient Voltage (46 V Load Dump @ 14 V V  
Output Current  
)
IN  
V
Internally Limited  
4.0  
Electrostatic Discharge (Human Body Model)  
Junction Temperature  
kV  
°C  
°C  
−55 to +150  
−55 to +150  
Storage Temperature Range  
Lead Temperature Soldering: Wave Solder (through hole styles only) (Note 1)  
Reflow (SMD styles only) (Note 2)  
260 peak  
230 peak  
°C  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. 10 second maximum.  
2. 60 seconds max above 183°C.  
http://onsemi.com  
2
 
CS8129  
ELECTRICAL CHARACTERISTICS (−40°C T 125°C, −40 T 150°C, 6.0 V 26 V, 5.0 mA I  
500 mA,  
A
J
IN  
OUT  
R
= 4.7 kW to V  
unless otherwise noted.) (Note 3)  
RESET  
OUT  
Characteristic  
Test Conditions  
Min  
Typ  
Max  
Unit  
OUTPUT STAGE (V  
Output Voltage  
OUT)  
4.85  
5.0  
5.15  
0.60  
V
V
Dropout Voltage  
Supply Current  
I
= 500 mA  
0.35  
OUT  
I
= 10 mA  
= 100 mA  
= 500 mA  
2.0  
6.0  
55  
7.0  
12  
100  
mA  
mA  
mA  
OUT  
I
OUT  
I
OUT  
Line Regulation  
Load Regulation  
Ripple Rejection  
Current Limit  
6.0 V V 26 V, I  
= 50 mA  
OUT  
5.0  
10  
50  
50  
mV  
mV  
dB  
A
IN  
50 mA I  
500 mA, V = 14 V  
IN  
OUT  
f = 120 Hz, V = 7.0 to 17 V, I  
= 250 mA  
54  
75  
IN  
OUT  
0.75  
32  
1.20  
Overvoltage Shutdown  
Reverse Polarity Input Voltage DC  
Thermal Shutdown  
40  
V
V
−0.6 V, 10 W Load  
−15  
150  
−30  
180  
V
OUT  
Guaranteed by Design  
210  
°C  
RESET AND DELAY FUNCTIONS  
Delay Charge Current  
V
= 2.0 V  
5.0  
10  
15  
mA  
DELAY  
RESET Threshold  
V
V
Increasing, V  
Decreasing, V  
4.05  
4.00  
4.35  
4.20  
4.50  
4.45  
V
V
OUT  
OUT  
RT(ON)  
RT(OFF)  
RESET Hysteresis  
Delay Threshold  
V
= V  
− V  
RT(ON)  
50  
150  
250  
mV  
RH  
RT(OFF)  
Charge, V  
Discharge, V  
3.25  
2.85  
3.50  
3.10  
3.75  
3.35  
V
V
DC(HI)  
DC(LO)  
Delay Hysteresis  
200  
400  
0.1  
0
800  
0.4  
10  
mV  
V
RESET Output Voltage Low  
RESET Output Leakage  
Delay Capacitor Discharge Voltage  
Delay Time  
1.0 V < V  
< V  
, 3.0 kW to V  
RT(L) OUT  
OUT  
V
> V  
Current  
mA  
V
OUT  
RT(H)  
Discharge Latched “ON”, V  
> V  
0.2  
32  
0.5  
48  
OUT  
RT  
C
DELAY  
= 0.1 mF, (Note 4)  
16  
ms  
3. To observe safe operating junction temperatures, low duty cycle pulse testing is used in tests where applicable.  
4. Assuming ideal capacitor.  
C
  V  
Delay Threshold Charge  
Delay  
5
+ C   3.5   10 (typ)  
Delay  
Delay Time +  
I
Charge  
PACKAGE LEAD DESCRIPTION  
PACKAGE LEAD #  
TO−220  
5 LEAD  
SO−16WB  
LEAD SYMBOL  
FUNCTION  
1
1
5
3
4
2
V
Unregulated supply voltage to IC.  
Regulated 5.0 V output.  
Ground Connection.  
IN  
16  
V
OUT  
4, 5, 11, 12, 13  
GND  
Delay  
8
6
Timing capacitor for RESET function.  
RESET  
CMOS/TTL compatible output lead. RESET goes low whenever V  
below 6.0% of it’s regulated value.  
drops  
OUT  
14  
N/A  
V
Remote sensing of output voltage.  
OUT(SENSE)  
http://onsemi.com  
3
 
CS8129  
TYPICAL PERFORMANCE CHARACTERISTICS  
55  
50  
120  
Room Temp  
R
LOAD  
= 25 W  
R
LOAD  
= 6.67 W  
100  
80  
45  
40  
35  
30  
25  
125°C  
60  
R
LOAD  
= 10 W  
20  
15  
40  
25°C  
10  
5
20  
0
R
= 25 W  
LOAD  
−40°C  
R
6
= NO LOAD  
LOAD  
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
7
8
9
10  
V
(V)  
V
(V)  
IN  
IN  
Figure 3. Quiescent Current vs. Input  
Voltage Over Load Resistance  
Figure 2. Quiescent Current vs. Input Voltage  
Over Temperature  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
5.5  
5.0  
Room Temp  
R
= 25 W  
LOAD  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
R
= 6.67 W  
LOAD  
R
LOAD  
=
125°C  
NO LOAD  
2.0  
1.5  
1.0  
0.5  
0
−40°C  
R
LOAD  
= 10 W  
25°C  
0.5  
0
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
V
(V)  
V
(V)  
IN  
IN  
Figure 4. Output Voltage vs. Input Voltage  
Over Temperature  
Figure 5. VOUT vs. VIN Over RLOAD  
100  
80  
100  
80  
V
= 6−26 V  
IN  
TEMP = −40°C  
TEMP = 25°C  
60  
60  
40  
20  
40  
20  
TEMP = 25°C  
TEMP = −40°C  
0
−20  
−40  
−60  
0
−20  
−40  
−60  
V
= 14 V  
IN  
TEMP = 125°C  
TEMP = 125°C  
−80  
−80  
−100  
−100  
0
100  
200  
300  
400  
500  
600  
700 800  
0
100  
200  
300  
400  
500  
600  
700  
800  
Output Current (mA)  
Output Current (mA)  
Figure 6. Line Regulation vs. Output Current  
Figure 7. Load Regulation vs. Output Current  
http://onsemi.com  
4
CS8129  
900  
800  
100  
90  
V
= 14 V  
IN  
80  
700  
25°C  
70  
60  
600  
500  
400  
300  
25°C  
125°C  
50  
40  
30  
20  
125°C  
−40°C  
200  
100  
−40°C  
10  
0
0
0
100  
200  
300  
400  
500  
600  
700 800  
0
100  
200  
300  
400  
500  
600  
700 800  
Output Current (mA)  
Output Current (mA)  
Figure 8. Dropout Voltage vs. Output Current  
Figure 9. Quiescent Current vs. Output Current  
I
= 250 mA  
OUT  
90  
80  
70  
60  
50  
3
10  
C
= 10 mF, ESR = 1.0  
OUT  
& 0.1 mF, ESR = 0  
2
1
0
10  
C
C
= 47/68 mF  
= 47 mF  
10  
O
Stable Region  
10  
−1  
40  
30  
20  
10  
C
OUT  
= 10 mF, ESR = 1.0 W  
O
−2  
10  
C
= 68 mF  
−3  
O
C
OUT  
= 10 mF, ESR = 1.0 W  
10  
10  
10  
0
−4  
0
1
2
3
4
5
6
7
8
0
1
2
3
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
Frequency (Hz)  
Output Current (mA)  
Figure 10. Ripple Rejection  
Figure 11. Output Capacitor ESR  
V
OUT  
V
RH  
(1) = No Delay Capacitor  
(2) = With Delay Capacitor  
V
RT(ON)  
V
RT(OFF)  
(3) = Max: RESET Voltage (1.0 V)  
RESET  
(1)  
(3)  
(2)  
V
RL  
t
DELAY  
DELAY  
V
DH  
V
DC(HI)  
V
DC(LO)  
(2)  
V
DIS  
Figure 12. RESET Circuit Waveform  
http://onsemi.com  
5
CS8129  
CIRCUIT DESCRIPTION  
The CS8129 RESET function has hysteresis on both the  
reset and delay comparators, a latching Delay capacitor  
discharge circuit, and operates down to 1.0 V.  
condition. The circuit allows the RESET output transistor to  
go to the OFF (open) state only when the voltage on the  
Delay lead is higher than V  
.
DC(HI)  
The RESET circuit output is an open collector type with  
ON and OFF parameters as specified. The RESET output  
NPN transistor is controlled by the two circuits described  
(see Block Diagram on page 2).  
V
V
OUT  
IN  
C
*
R
RST  
4.7 kW  
C
**  
IN  
OUT  
CS8129  
100 nF  
10 mF to  
100 mF  
RESET  
GND  
Low Voltage Inhibit Circuit  
Delay  
This circuit monitors output voltage, and when output  
voltage is below the specified minimum causes the RESET  
output transistor to be in the ON (saturation) state. When the  
output voltage is above the specified level, this circuit permits  
the RESET output transistor to go into the OFF state if  
allowed by the RESET Delay circuit.  
Delay  
0.1 mF  
*C is required if regulator is far from the power source filter.  
IN  
**C  
is required for stability.  
OUT  
Reset Delay Circuit  
Figure 13. Test & Application Circuit  
This circuit provides a programmable (by external  
capacitor) delay on the RESET output lead. The Delay lead  
provides source current to the external delay capacitor only  
when the “Low Voltage Inhibit” circuit indicates that output  
The Delay time for the RESET function is calculated from  
the formula:  
C
  V  
I
Delay  
Delay Threshold  
Charge  
voltage is above V . Otherwise, the Delay lead sinks  
RT(ON)  
Delay time +  
current to ground (used to discharge the delay capacitor).  
The discharge current is latched ON when the output voltage  
5
Delay time + C  
  3.2   10  
Delay(mF)  
is below V . The Delay capacitor is fully discharged  
RT(OFF)  
If C  
= 0.1 mF, Delay time (ms) = 32 ms 50%: i.e.  
Delay  
anytime the output voltage falls out of regulation, even for  
a short period of time. This feature ensures that a controlled  
RESET pulse is generated following detection of an error  
16 ms to 48 ms. The tolerance of the capacitor must be taken  
into account to calculate the total variation in the delay time.  
APPLICATION NOTES  
STABILITY CONSIDERATIONS  
connected in series with the capacitor will simulate the  
higher ESR of an aluminum capacitor. Leave the decade box  
outside the chamber, the small resistance added by the  
longer leads is negligible.  
The output or compensation capacitor helps determine  
three main characteristics of a linear regulator: start−up  
delay, load transient response and loop stability.  
The capacitor value and type should be based on cost,  
availability, size and temperature constraints. A tantalum or  
aluminum electrolytic capacitor is best, since a film or  
ceramic capacitor with almost zero ESR can cause  
instability. The aluminum electrolytic capacitor is the least  
expensive solution, but, if the circuit operates at low  
temperatures (−25°C to −40°C), both the value and ESR of  
the capacitor will vary considerably. The capacitor  
manufacturers data sheet usually provides this information.  
Step 2: With the input voltage at its maximum value,  
increase the load current slowly from zero to full load while  
observing the output for any oscillations. If no oscillations  
are observed, the capacitor is large enough to ensure a stable  
design under steady state conditions.  
Step 3: Increase the ESR of the capacitor from zero using  
the decade box and vary the load current until oscillations  
appear. Record the values of load current and ESR that cause  
the greatest oscillation. This represents the worst case load  
conditions for the regulator at low temperature.  
Step 4: Maintain the worst case load conditions set in  
step 3 and vary the input voltage until the oscillations  
increase. This point represents the worst case input voltage  
conditions.  
Step 5: If the capacitor is adequate, repeat steps 3 and 4  
with the next smaller valued capacitor. A smaller capacitor  
will usually cost less and occupy less board space. If the  
output oscillates within the range of expected operating  
conditions, repeat steps 3 and 4 with the next larger standard  
capacitor value.  
The value for the output capacitor C  
shown in Figure  
OUT  
13 should work for most applications, however it is not  
necessarily the optimized solution.  
To determine an acceptable value for C  
for a particular  
OUT  
application, start with a tantalum capacitor of the  
recommended value and work towards a less expensive  
alternative part.  
Step 1: Place the completed circuit with a tantalum  
capacitor of the recommended value in an environmental  
chamber at the lowest specified operating temperature and  
monitor the outputs with an oscilloscope. A decade box  
http://onsemi.com  
6
 
CS8129  
I
I
OUT  
Step 6: Test the load transient response by switching in  
IN  
SMART  
V
V
OUT  
various loads at several frequencies to simulate its real  
working environment. Vary the ESR to reduce ringing.  
Step 7: Raise the temperature to the highest specified  
operating temperature. Vary the load current as instructed in  
step 5 to test for any oscillations.  
IN  
REGULATOR®  
Control  
Features  
I
Q
Once the minimum capacitor value with the maximum  
ESR is found, a safety factor should be added to allow for the  
tolerance of the capacitor and any variations in regulator  
performance. Most good quality aluminum electrolytic  
capacitors have a tolerance of 20% so the minimum value  
found should be increased by at least 50% to allow for this  
tolerance plus the variation which will occur at low  
temperatures. The ESR of the capacitor should be less than  
50% of the maximum allowable ESR found in step 3 above.  
Figure 14. Single Output Regulator With Key  
Performance Parameters Labeled  
HEAT SINKS  
A heat sink effectively increases the surface area of the  
package to improve the flow of heat away from the IC and  
into the surrounding air.  
CALCULATING POWER DISSIPATION IN A SINGLE  
OUTPUT LINEAR REGULATOR  
Each material in the heat flow path between the IC and the  
outside environment will have a thermal resistance. Like  
series electrical resistances, these resistances are summed to  
The maximum power dissipation for a single output  
regulator (Figure 14) is:  
NJ
Nj
I
P
+ V  
IN(max)  
* V  
OUT(min) OUT(max)  
) V  
I
determine the value of R  
.
(1)  
D(max)  
IN(max) Q  
qJA  
) R  
R
qJA  
+ R  
qJC  
) R  
qCS qSA  
(3)  
where:  
V
V
I
is the maximum input voltage,  
is the minimum output voltage,  
is the maximum output current for the  
IN(max)  
OUT(min)  
OUT(max)  
where:  
R
qJC  
R
qCS  
R
qSA  
R
qJC  
= the junction−to−case thermal resistance,  
= the case−to−heatsink thermal resistance, and  
= the heatsink−to−ambient thermal resistance.  
application, and  
I is the quiescent current the regulator consumes at  
Q
appears in the package section of the data sheet. Like  
and R are  
I
.
OUT(max)  
R , it too is a function of package type. R  
qJA  
qCS  
qSA  
Once the value of P  
permissible value of R  
is known, the maximum  
D(max)  
functions of the package type, heatsink and the interface  
between them. These values appear in heat sink data sheets  
of heat sink manufacturers.  
can be calculated:  
qJA  
150°C * T  
A
R
qJA  
+
(2)  
P
D
The value of R  
can then be compared with those in the  
qJA  
package section of the data sheet. Those packages with  
’s less than the calculated value in equation 2 will keep  
R
qJA  
the die temperature below 150°C.  
In some cases, none of the packages will be sufficient to  
dissipate the heat generated by the IC, and an external  
heatsink will be required.  
http://onsemi.com  
7
 
CS8129  
MARKING DIAGRAMS  
SO−16 WB  
TO−220 5−LEAD  
16  
CS8129  
AWLYYWWG  
CS  
8129  
CS  
8129  
AWLYWWG  
CS8129  
AWLYWWG  
AWLYWWG  
1
1
1
1
A
WL  
= Assembly Location  
= Wafer Lot  
YY, Y  
WW  
G
= Year  
= Work Week  
= Pb−Free Package  
ORDERING INFORMATION  
Device  
Package  
Shipping  
CS8129YT5  
TO−220*  
STRAIGHT  
CS8129YT5G  
TO−220*  
STRAIGHT  
(Pb−Free)  
CS8129YTHA5  
TO−220*  
HORIZONTAL  
50 Units / Rail  
CS8129YTHA5G  
TO−220*  
HORIZONTAL  
(Pb−Free)  
CS8129YTVA5  
TO−220*  
VERTICAL  
CS8129YTVA5G  
TO−220*  
VERTICAL  
(Pb−Free)  
CS8129YDW16  
SO−16WB  
47 Units / Rail  
CS8129YDW16G  
SO−16WB  
(Pb−Free)  
CS8129YDWR16  
CS8129YDWR16G  
SO−16WB  
1000 / Tape & Reel  
SO−16WB  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
http://onsemi.com  
8
CS8129  
PACKAGE DIMENSIONS  
TO−220  
CASE 314D−04  
ISSUE F  
SEATING  
−T−  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
PLANE  
B
C
E
−Q−  
DETAIL A−A  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION D DOES NOT INCLUDE  
INTERCONNECT BAR (DAMBAR) PROTRUSION.  
DIMENSION D INCLUDING PROTRUSION SHALL  
NOT EXCEED 10.92 (0.043) MAXIMUM.  
B1  
A
U
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN MAX  
L
1 2 3 4 5  
A
0.572  
0.390  
B1 0.375  
0.613 14.529 15.570  
0.415 9.906 10.541  
0.415 9.525 10.541  
K
B
C
D
E
G
H
J
0.170  
0.025  
0.048  
0.180 4.318  
0.038 0.635  
0.055 1.219  
4.572  
0.965  
1.397  
0.067 BSC  
1.702 BSC  
J
H
0.087  
0.015  
0.977  
0.320  
0.140  
0.105  
0.112 2.210 2.845  
0.025 0.381 0.635  
1.045 24.810 26.543  
G
D 5 PL  
K
L
0.365 8.128  
0.153 3.556  
0.117 2.667  
9.271  
3.886  
2.972  
M
M
0.356 (0.014)  
T Q  
Q
U
B
B1  
DETAIL A−A  
http://onsemi.com  
9
CS8129  
PACKAGE DIMENSIONS  
TO−220  
TVA SUFFIX  
CASE 314K−01  
ISSUE O  
NOTES:  
ꢀꢁ1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
SEATING  
PLANE  
−T−  
ꢀꢁ2. CONTROLLING DIMENSION: INCH.  
ꢀꢁ3. DIMENSION D DOES NOT INCLUDE  
INTERCONNECT BAR (DAMBAR) PROTRUSION.  
DIMENSION D INCLUDING PROTRUSION SHALL  
NOT EXCEED 10.92 (0.043) MAXIMUM.  
C
B
E
−Q−  
INCHES  
DIM MIN MAX  
0.590 14.22  
MILLIMETERS  
MIN  
MAX  
14.99  
10.54  
4.83  
W
A
B
C
D
E
F
0.560  
0.385  
0.160  
0.027  
0.045  
0.530  
0.415  
0.190  
0.037  
0.055  
9.78  
4.06  
0.69  
1.14  
A
0.94  
1.40  
U
F
0.545 13.46  
13.84  
L
G
J
0.067 BSC  
1.70 BSC  
K
0.014  
0.785  
0.321  
0.063  
0.146  
0.271  
0.146  
0.460  
0.022  
0.36  
0.800 19.94  
0.56  
20.32  
8.56  
1
2
3
4
5
K
L
0.337  
0.078  
0.156  
0.321  
0.196  
0.475  
8.15  
1.60  
3.71  
6.88  
3.71  
11.68  
M
Q
R
S
U
W
1.98  
3.96  
8.15  
4.98  
M
12.07  
5 °  
5 °  
J
D
5 PL  
G
M
M
T Q  
0.356 (0.014)  
S
R
TO−220  
THA SUFFIX  
CASE 314A−03  
ISSUE E  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
SEATING  
PLANE  
−T−  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION D DOES NOT INCLUDE  
INTERCONNECT BAR (DAMBAR) PROTRUSION.  
DIMENSION D INCLUDING PROTRUSION SHALL  
NOT EXCEED 0.043 (1.092) MAXIMUM.  
B
C
−P−  
E
Q
OPTIONAL  
CHAMFER  
INCHES  
DIM MIN MAX  
0.613 14.529 15.570  
MILLIMETERS  
MIN MAX  
A
B
C
D
E
F
0.572  
0.390  
0.170  
0.025  
0.048  
0.570  
A
0.415  
0.180  
0.038  
0.055  
9.906 10.541  
U
F
4.318  
0.635  
1.219  
4.572  
0.965  
1.397  
L
K
0.585 14.478 14.859  
1.702 BSC  
0.381 0.635  
0.745 18.542 18.923  
G
J
0.067 BSC  
0.015  
0.730  
0.320  
0.140  
0.210  
0.468  
0.025  
K
L
G
5X J  
0.365  
0.153  
0.260  
8.128  
3.556  
5.334  
9.271  
3.886  
6.604  
Q
S
U
S
5X D  
0.505 11.888 12.827  
M
M
T P  
0.014 (0.356)  
http://onsemi.com  
10  
CS8129  
PACKAGE DIMENSIONS  
SO−16 WB  
CASE 751G−03  
ISSUE C  
NOTES:  
1. DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES  
PER ASME Y14.5M, 1994.  
3. DIMENSIONS D AND E DO NOT INLCUDE  
MOLD PROTRUSION.  
A
D
q
16  
9
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.  
5. DIMENSION B DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.13 TOTAL IN  
EXCESS OF THE B DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
MILLIMETERS  
DIM MIN  
2.35  
A1 0.10  
MAX  
2.65  
0.25  
0.49  
0.32  
A
1
8
B
C
D
E
e
H
h
L
q
0.35  
0.23  
10.15 10.45  
7.40 7.60  
1.27 BSC  
10.05 10.55  
B
16X B  
M
S
S
B
0.25  
T A  
0.25  
0.50  
0
0.75  
0.90  
7
_
_
SEATING  
PLANE  
14X  
e
C
T
PACKAGE THERMAL DATA  
Parameter  
TO−220  
FIVE LEAD  
SO−16WB  
23  
Unit  
R
R
Typical  
Typical  
2.1  
50  
°C/W  
°C/W  
q
JC  
JA  
105  
q
SMART REGULATOR is a registered trademark of Semiconductor Components Industries, LLC (SCILLC).  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81−3−5773−3850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada  
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
CS8129/D  

相关型号:

CS8129YT5G

5.0 V, 750 mA Low Dropout Linear Regulator with Lower RESET Threshold
ONSEMI

CS8129YTHA5

5V, 750mA Low Dropout Linear Regulator with Lower RESET Threshold
CHERRY

CS8129YTHA5

5.0 V, 750 mA Low Dropout Linear Regulator with Lower RESET Threshold
ONSEMI

CS8129YTHA5G

5.0 V, 750 mA Low Dropout Linear Regulator with Lower RESET Threshold
ONSEMI

CS8129YTVA5

5V, 750mA Low Dropout Linear Regulator with Lower RESET Threshold
CHERRY

CS8129YTVA5

5.0 V, 750 mA Low Dropout Linear Regulator with Lower RESET Threshold
ONSEMI

CS8129YTVA5G

5.0 V, 750 mA Low Dropout Linear Regulator with Lower RESET Threshold
ONSEMI

CS812A1

MOV Modules
HVPSI

CS812A2

MOV Modules
HVPSI

CS812B1

MOV Modules
HVPSI

CS812B2

MOV Modules
HVPSI

CS812C1

MOV Modules
HVPSI