CS8129YDWR16 [CHERRY]

5V, 750mA Low Dropout Linear Regulator with Lower RESET Threshold; 5V , 750毫安低压差线性稳压器,具有低复位阈值
CS8129YDWR16
型号: CS8129YDWR16
厂家: CHERRY SEMICONDUCTOR CORPORATION    CHERRY SEMICONDUCTOR CORPORATION
描述:

5V, 750mA Low Dropout Linear Regulator with Lower RESET Threshold
5V , 750毫安低压差线性稳压器,具有低复位阈值

稳压器
文件: 总8页 (文件大小:191K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS8129  
5V, 750mA Low Dropout Linear  
Regulator with Lower RESET Threshold  
Description  
Features  
5V +/- 3% Regulated  
The CS8129 is a precision 5V linear reg-  
ulator capable of sourcing 750mA.  
RESET  
RESET  
the Delay and the  
comparators  
Output  
to improve noise immunity. A latching  
discharge circuit is used to discharge  
the delay capacitor when it is triggered  
by a brief fault condition.  
The  
threshold voltage has been  
lowered to 4.2V so that the regulator  
can be used with 4V microprocessors.  
Low Dropout Voltage  
(0.6V @ 0.5A)  
RESET  
The lower  
mits operation under low battery condi-  
RESET  
threshold also per-  
750mA Output Current  
The regulator is protected against a  
variety of fault conditions: i.e. reverse  
battery, overvoltage, short circuit and  
thermal runaway conditions. The regu-  
lator is protected against voltage tran-  
sients ranging from -50V to +40V. Short  
circuit current is limited to 1.2A (typ).  
Capability  
tions (5.5V plus a diode). The  
Õs  
delay time is externally programmed  
using a discrete RC network. During  
Reduced RESET Threshold  
for use with 4V Micro-  
processors  
power up, or when the output goes out  
RESET  
of regulation,  
remains in the  
low state for the duration of the delay.  
This function is independent of the  
input voltage and will function correct-  
ly as long as the output voltage remains  
at or above 1V. Hysteresis is included in  
Externally Programmed  
The CS8129 is packaged in a 5 lead  
TOÐ220 and a 16 lead surface mount  
package.  
RESET Delay  
Fault Protection  
Reverse Battery  
60V, -50V Peak Transient  
Voltage  
Block Diagram  
Short Circuit  
Thermal Shutdown  
Package Options  
V
V
IN  
Over Voltage  
Shutdown  
16 Lead SOIC Wide  
OUT  
1
VIN  
NC  
NC  
VOUT  
Regulated Supply  
for Circuit Bias  
Pre-  
NC  
Error  
Regulator  
VOUT(SENSE)  
Gnd  
Amplifier  
Bandgap  
Reference  
-
Anti-Saturation  
and  
Current Limit  
Gnd  
Gnd  
+
Gnd  
Charge  
V
Current  
Thermal  
Shutdown  
OUT  
SENSE  
Gnd  
RESET  
NC  
Generator  
NC  
NC  
Delay  
Latching Discharge  
Delay  
-
5 Lead TO-220  
Q
S
R
+
-
+
VDISCHARGE  
1
2
3
4
VIN  
RESET  
Delay Comparator  
+
-
RESET  
Gnd  
Gnd  
Delay  
VOUT  
5
1
Cherry Semiconductor Corporation  
2000 South County Trail, East Greenwich, RI 02818  
Tel: (401)885-3600 Fax: (401)885-5786  
Email: info@cherry-semi.com  
Web Site: www.cherry-semi.com  
Rev. 3/31/99  
A
¨
Company  
1
Absolute Maximum Ratings  
Input Operating Range..................................................................................................................................................-0.5 to 26V  
Power Dissipation.............................................................................................................................................Internally Limited  
Peak Transient Voltage (46V Load Dump @ 14V VIN) ...............................................................................................-50V, 60V  
Output Current .................................................................................................................................................Internally Limited  
ESD Susceptibility (Human Body Model)..............................................................................................................................4kV  
Junction Temperature.............................................................................................................................................-55¡C to 150¡C  
Storage Temperature...............................................................................................................................................-55¡C to 150¡C  
Lead Temperature Soldering  
Wave Solder (through hole styles only) .....................................................................................10 sec. max, 260¡C peak  
Reflow (SMD styles only) ......................................................................................60 sec. max above 183¡C, 230¡C peak  
Electrical Characteristics: -40ûC ² TA ² + 125ûC, -40ûC ² TJ ² +150ûC, 6V ² VIN ² 26V, 5mA ² IOUT ² 500mA, R RESET = 4.7k½ to VOUT  
unless otherwise noted*  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Output Stage (VOUT  
Output Voltage  
Dropout Voltage  
Supply Current  
)
4.85  
5.00  
0.35  
5.15  
0.60  
V
V
IOUT = 500mA  
IOUT ² 10mA  
IOUT ² 100mA  
IOUT ² 500mA  
2
6
55  
7
12  
100  
mA  
Line Regulation  
Load Regulation  
Ripple Rejection  
6V ² VIN ² 26V, IOUT = 50mA  
5
50  
50  
mV  
mV  
dB  
50mA ² IOUT ² 500mA, VIN = 14V  
10  
75  
f = 120Hz, VIN = 7 to 17V,  
IOUT = 250mA  
54  
Current Limit  
0.75  
32  
1.20  
A
V
V
Overvoltage Shutdown  
40  
Reverse Polarity Input  
Voltage DC  
VOUT ³ -0.6V, 10½ Load  
Guaranteed by Design  
-15  
-30  
Thermal Shutdown  
150  
180  
210  
¡C  
and Delay Functions  
RESET  
Delay Charge Current  
VDELAY = 2V  
5
10  
15  
µA  
Threshold  
Hysteresis  
VOUT Increasing, VRT(ON)  
VOUT Decreasing, VRT(OFF)  
4.05  
4.00  
4.35  
4.20  
4.50  
4.45  
V
V
RESET  
RESET  
VRH=VRT(ON) - VRT(OFF)  
50  
150  
250  
mV  
Delay Threshold  
Charge, VDC(HI)  
Discharge, VDC(LO)  
3.25  
2.85  
3.50  
3.10  
3.75  
3.35  
V
V
Delay Hysteresis  
200  
400  
0.1  
0
800  
0.4  
10  
mV  
V
Output Voltage Low1V < VOUT < VRT(L) , 3k½ to VOUT  
RESET  
RESET  
Output Leakage  
VOUT > VRT(H)  
Current  
µA  
Delay Capacitor  
Discharge Voltage  
Discharge Latched ÒONÓ,  
VOUT > VRT  
0.2  
32  
0.5  
48  
V
Delay Time  
CDELAY = 0.1µF (Note 1)  
16  
ms  
* To observe safe operating junction temperatures, low duty cycle pulse testing is used in tests where applicable.  
Delay x VDelay Threshold Charge  
C
Delay Time =  
= CDelay x 3.5 x 105 (typ)  
I Charge  
Note 1: assuming ideal capacitor  
2
Package Lead Description  
LEAD SYMBOL  
PACKAGE LEAD #  
16L SOIC Wide 5L TO-220  
FUNCTION  
1
1
5
3
4
2
VIN  
Unregulated supply voltage to IC.  
16  
VOUT  
Gnd  
Regulated 5V output.  
Ground connection.  
Timing capacitor for  
4, 5, 11, 12, 13  
8
6
Delay  
RESET  
function.  
RESET  
CMOS/TTL compatible output lead.  
er VOUT drops below 6% of it's regulated value.  
goes low whenev-  
RESET  
14  
N/A  
VOUT(SENSE)  
Remote sensing of output voltage.  
Typical Performance Characteristics  
Quiescent Current vs Input Voltage over Temperature  
Quiescent Current vs Input Voltage over Load Resistance  
55.0  
120.0  
Rload = 25W  
Room Temp.  
50.0  
45.0  
40.0  
35.0  
30.0  
Rload = 6.67W  
100.0  
80.0  
25ûC  
60.0  
125ûC  
25.0  
20.0  
15.0  
10.0  
5.0  
Rload = 10W  
40.0  
20.0  
0.0  
Rload = 25W  
-40ûC  
Rload = NO LOAD  
0.0  
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0  
VIN (V)  
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0  
VIN (V)  
VOUT vs. VIN over RLOAD  
Output Voltage vs Input Voltage over Temperature  
5.5  
5.0  
Room Temp.  
5.5  
Rload=25½  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
4.5  
4.0  
3.5  
Rload = 6.67W  
3.0  
125ûC  
2.5  
Rload =  
2.0  
NO LOAD  
25ûC  
1.5  
-40ûC  
1.0  
Rload = 10W  
0.5  
0.0  
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0  
VIN (V)  
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0  
VIN (V)  
Line Regulation vs. Output Current  
Load Regulation vs. Output Current  
100  
6
VIN 6-26V  
80  
60  
4
TEMP = -40ûC  
2
0
40  
TEMP = 25ûC  
TEMP = -40ûC  
20  
-2  
-4  
TEMP = 25ûC  
0
VIN = 14V  
-20  
-40  
-60  
-80  
-100  
-6  
-8  
TEMP = 125ûC  
TEMP = 125ûC  
-10  
-12  
-14  
0
100 200 300 400 500 600 700 800  
OUTPUT CURRENT (mA)  
0
100 200 300 400 500 600 700 800  
OUTPUT CURRENT (mA)  
3
Typical Performance Characteristics Continued  
Quiescent Current vs. Output Current  
Dropout Voltage vs. Output Current  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
125ûC  
25ûC  
VIN = 14V  
25ûC  
125ûC  
-40ûC  
-40ûC  
0
100 200 300 400 500 600 700 800  
OUTPUT CURRENT (mA)  
0
100 200 300 400 500 600 700 800  
OUTPUT CURRENT (mA)  
Ripple Rejection  
Output Capacitor ESR  
103  
I
= 250mA  
OUT  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
102  
101  
COUT= 10mF, ESR = 1 & 0.1mF,  
ESR = 0  
C
= 47/68mF  
OUT  
Stable Region  
100  
10-1  
COUT= 10mF, ESR = 1W  
C
= 47mF  
OUT  
10-2  
C
= 68mF  
OUT  
COUT= 10mF, ESR = 10W  
10-3  
10-4  
100 101 102 103 104 105 106 107 108  
FREQUENCY (Hz)  
101  
102  
103  
100  
Output Current (mA)  
Test & Application Circuit  
VOUT  
VIN  
C
*
IN  
100nF  
C
**  
10mF to 100mF  
RRST  
4.7kW  
OUT  
CS8129  
Delay  
RESET  
Gnd  
Delay  
0.1mF  
*CIN required if regulator is far from the power source filter.  
**COUT required for stability.  
4
RESET  
Circuit Waveform  
(1) = No Delay Capacitor  
(2) = With Delay Capacitor  
V
OUT  
V
RH  
V
V
RT(ON)  
RESET  
(3) = Max:  
Voltage (1.0V)  
RT(OFF)  
(1)  
RESET  
(2)  
(3)  
V
RL  
t
Delay  
Delay  
V
DH  
V
DC(HI)  
V
DC(LO)  
V
DIS  
(2)  
RESET Circuit Functional Description  
put voltage is above VRT(ON). Otherwise, the Delay lead  
sinks current to ground (used to discharge the delay  
capacitor). The discharge current is latched ON when the  
output voltage is below VRT(OFF). The Delay capacitor is  
fully discharged anytime the output voltage falls out of  
regulation, even for a short period of time. This feature  
The CS8129  
function has hysteresis on both the  
RESET  
reset and delay comparators, a latching Delay capacitor  
discharge circuit, and operates down to 1V.  
The  
circuit output is an open collector type with  
RESET  
ON and OFF parameters as specified. The RESET output  
NPN transistor is controlled by the two circuits described  
(see Block Diagram).  
ensures a controlled  
pulse is generated following  
RESET  
detection of an error condition. The circuit allows  
the output transistor to go to the OFF (open) state  
RESET  
only when the voltage on the Delay lead is higher than  
VDC(HI)  
Low Voltage Inhibit Circuit  
.
This circuit monitors output voltage, and when output  
voltage is below the specified minimum causes the  
The Delay time for the  
the formula:  
function is calculated from  
RESET  
output transistor to be in the ON (saturation)  
RESET  
C
Delay x VDelay Threshold  
ICharge  
state. When the output voltage is above the specified level,  
this circuit permits the RESET output transistor to go into  
Delay time =  
the OFF state if allowed by the  
Delay circuit.  
RESET  
Delay time = CDelay(µF) x 3.2 x 105  
Reset Delay Circuit  
If CDelay=0.1µF, Delay time (ms)=32ms ± 50%: i.e. 16ms to  
48ms. The tolerance of the capacitor must be taken into  
account to calculate the total variation in the delay time.  
This circuit provides a programmable (by external capaci-  
tor) delay on the output lead. The Delay lead pro-  
vides source current to the external delay capacitor only  
when the "Low Voltage Inhibit" circuit indicates that out-  
RESET  
5
Application Notes  
low temperatures. The ESR of the capacitor should be less  
Stability Considerations  
than 50% of the maximum allowable ESR found in step 3  
above.  
The output or compensation capacitor helps determine  
three main characteristics of a linear regulator: start-up  
delay, load transient response and loop stability.  
Calculating Power Dissipation  
The capacitor value and type should be based on cost,  
availability, size and temperature constraints. A tantalum  
or aluminum electrolytic capacitor is best, since a film or  
ceramic capacitor with almost zero ESR can cause instabil-  
ity. The aluminum electrolytic capacitor is the least expen-  
sive solution, but, if the circuit operates at low tempera-  
tures (-25¡C to -40¡C), both the value and ESR of the least  
expensive will vary considerably. The capacitor manufac-  
turers data sheet usually provides this information.  
in a Single Output Linear Regulator  
The maximum power dissipation for a single output regu-  
lator (Figure 1) is:  
PD(max)= VIN(max)ÐVOUT(min)}  
I
OUT(max)+VIN(max) Q  
I
(1)  
{
where  
VIN(max) is the maximum input voltage,  
VOUT(min) is the minimum output voltage,  
The value for the output capacitor COUT shown in the test  
and applications circuit should work for most applica-  
tions, however it is not necessarily the optimized solution.  
IOUT(max) is the maximum output current for the applica-  
tion, and  
To determine an acceptable value for COUT for a particular  
application, start with a tantalum capacitor of the recom-  
mended value and work towards a less expensive alterna-  
tive part.  
IQ is the quiescent current the regulator consumes at  
IOUT(max)  
.
Once the value of PD(max) is known, the maximum permis-  
sible value of RQJA can be calculated:  
Step 1: Place the completed circuit with a tantalum capac-  
itor of the recommended value in an environmental cham-  
ber at the lowest specified operating temperature and  
monitor the outputs with an oscilloscope. A decade box  
connected in series with the capacitor will simulate the  
higher ESR of an aluminum capacitor. Leave the decade  
box outside the chamber, the small resistance added by  
the longer leads is negligible.  
150¡C - TA  
(2)  
RQJA  
=
PD  
The value of RQJA can then be compared with those in  
the package section of the data sheet. Those packages  
with RQJA's less than the calculated value in equation 2  
will keep the die temperature below 150¡C.  
Step 2: With the input voltage at its maximum value,  
increase the load current slowly from zero to full load  
while observing the output for any oscillations. If no oscil-  
lations are observed, the capacitor is large enough to  
ensure a stable design under steady state conditions.  
In some cases, none of the packages will be sufficient to  
dissipate the heat generated by the IC, and an external  
heatsink will be required.  
Step 3: Increase the ESR of the capacitor from zero using  
the decade box and vary the load current until oscillations  
appear. Record the values of load current and ESR that  
cause the greatest oscillation. This represents the worst  
case load conditions for the regulator at low temperature.  
Step 4: Maintain the worst case load conditions set in step  
3 and vary the input voltage until the oscillations increase.  
This point represents the worst case input voltage condi-  
tions.  
I
IN  
I
OUT  
V
IN  
Smart  
Regulator  
V
OUT  
Step 5: If the capacitor is adequate, repeat steps 3 and 4  
with the next smaller valued capacitor. A smaller capaci-  
tor will usually cost less and occupy less board space. If  
the output oscillates within the range of expected operat-  
ing conditions, repeat steps 3 and 4 with the next larger  
standard capacitor value.  
Control  
Features  
}
I
Q
Step 6: Test the load transient response by switching in  
various loads at several frequencies to simulate its real  
working environment. Vary the ESR to reduce ringing.  
Figure 1: Single output regulator with key performance parameters  
labeled.  
Step 7: Remove the unit from the environmental chamber  
and heat the IC with a heat gun. Vary the load current as  
instructed in step 5 to test for any oscillations.  
Once the minimum capacitor value with the maximum  
ESR is found, a safety factor should be added to allow for  
the tolerance of the capacitor and any variations in regula-  
tor performance. Most good quality aluminum electrolytic  
capacitors have a tolerance of +/- 20% so the minimum  
value found should be increased by at least 50% to allow  
for this tolerance plus the variation which will occur at  
6
Application Notes: continued  
where  
Heat Sinks  
R
R
R
QJC = the junctionÐtoÐcase thermal resistance,  
QCS = the caseÐtoÐheatsink thermal resistance, and  
QSA = the heatsinkÐtoÐambient thermal resistance.  
A heat sink effectively increases the surface area of the  
package to improve the flow of heat away from the IC and  
into the surrounding air.  
R
R
QJC appears in the package section of the data sheet. Like  
QJA, it too is a function of package type. RQCS and RQSA  
are functions of the package type, heatsink and the inter-  
face between them. These values appear in heat sink data  
sheets of heat sink manufacturers.  
Each material in the heat flow path between the IC and the  
outside environment will have a thermal resistance. Like  
series electrical resistances, these resistances are summed  
to determine the value of RQJA  
.
R
QJA = RQJC + RQCS + RQSA  
(3)  
7
Package Specification  
PACKAGE THERMAL DATA  
PACKAGE DIMENSIONS IN mm (INCHES)  
D
Thermal Data  
16 Lead  
SOIC Wide  
5 Lead  
TO-220  
Lead Count  
Metric  
English  
RQJC  
RQJA  
typ  
typ  
23  
105  
2.1  
50  
ûC/W  
ûC/W  
Max  
10.50  
Min  
Max Min  
16 L SOIC Wide  
10.10 .413 .398  
Surface Mount Wide Body (DW); 300 mil wide  
5 Lead TO-220 (THA) Horizontal  
4.83 (.190)  
4.06 (.160)  
10.54 (.415)  
9.78 (.385)  
1.40 (.055)  
1.14 (.045)  
3.96 (.156)  
3.71 (.146)  
7.60 (.299)  
7.40 (.291)  
10.65 (.419)  
10.00 (.394)  
2.87 (.113)  
2.62 (.103)  
14.99 (.590)  
14.22 (.560)  
6.55 (.258)  
5.94 (.234)  
0.51 (.020)  
0.33 (.013)  
1.27 (.050) BSC  
2.77 (.109)  
2.49 (.098)  
2.24 (.088)  
6.83 (.269)  
1.68  
2.65 (.104)  
2.35 (.093)  
2.92 (.115)  
2.29 (.090)  
0.56 (.022)  
(.066)  
TYP  
0.81(.032)  
0.36 (.014)  
6.60 (.260)  
5.84 (.230)  
0.32 (.013)  
0.23 (.009)  
1.27 (.050)  
0.40 (.016)  
1.70 (.067)  
6.81(.268)  
0.30 (.012)  
0.10 (.004)  
D
REF: JEDEC MS-013  
5 Lead TO-220 (T) Straight  
5 Lead TO-220 (TVA) Vertical  
1.40 (.055)  
1.14 (.045)  
4.83 (.190)  
4.06 (.160)  
4.83 (.190)  
4.06 (.160)  
10.54 (.415)  
9.78 (.385)  
3.96 (.156)  
3.71 (.146)  
2.87 (.113)  
3.96 (.156)  
3.71 (.146)  
10.54 (.415)  
9.78 (.385)  
2.62 (.103)  
6.55 (.258)  
5.94 (.234)  
1.40 (.055)  
1.14 (.045)  
14.99 (.590)  
14.22 (.560)  
6.55 (.258)  
5.94 (.234)  
2.87 (.113)  
2.62 (.103)  
14.99 (.590)  
14.22 (.560)  
14.22 (.560)  
13.72 (.540)  
1.78 (.070)  
2.92 (.115)  
2.29 (.090)  
8.64 (.340)  
7.87 (.310)  
1.02 (.040)  
0.76 (.030)  
4.34 (.171)  
7.51 (.296)  
0.56 (.022)  
0.36 (.014)  
1.68  
(.066) typ  
0.56 (.022)  
0.36 (.014)  
1.70 (.067)  
1.83(.072)  
1.57(.062)  
1.02(.040)  
0.63(.025)  
6.80 (.268)  
6.93(.273)  
6.68(.263)  
2.92 (.115)  
2.29 (.090)  
.94 (.037)  
.69 (.027)  
Ordering Information  
Description  
Part Number  
CS8129YDW16  
CS8129YDWR16  
16 Lead SOIC Wide  
16 Lead SOIC Wide  
(tape & reel)  
Ch erry Sem icon du ctor Corporation reserves th e  
righ t to m ake ch an ges to th e specification s with ou t  
n otice. Please con tact Ch erry Sem icon du ctor  
Corporation for th e latest available in form ation .  
CS8129YT5  
CS8129YTHA5  
CS8129YTVA5  
5 Lead TO-220 Straight  
5 Lead TO-220 Horizontal  
5 Lead TO-220 Vertical  
© 1999 Cherry Semiconductor Corporation  
Rev. 3/31/99  
8

相关型号:

CS8129YDWR16G

5.0 V, 750 mA Low Dropout Linear Regulator with Lower RESET Threshold
ONSEMI

CS8129YT5

5V, 750mA Low Dropout Linear Regulator with Lower RESET Threshold
CHERRY

CS8129YT5

5.0 V, 750 mA Low Dropout Linear Regulator with Lower RESET Threshold
ONSEMI

CS8129YT5G

5.0 V, 750 mA Low Dropout Linear Regulator with Lower RESET Threshold
ONSEMI

CS8129YTHA5

5V, 750mA Low Dropout Linear Regulator with Lower RESET Threshold
CHERRY

CS8129YTHA5

5.0 V, 750 mA Low Dropout Linear Regulator with Lower RESET Threshold
ONSEMI

CS8129YTHA5G

5.0 V, 750 mA Low Dropout Linear Regulator with Lower RESET Threshold
ONSEMI

CS8129YTVA5

5V, 750mA Low Dropout Linear Regulator with Lower RESET Threshold
CHERRY

CS8129YTVA5

5.0 V, 750 mA Low Dropout Linear Regulator with Lower RESET Threshold
ONSEMI

CS8129YTVA5G

5.0 V, 750 mA Low Dropout Linear Regulator with Lower RESET Threshold
ONSEMI

CS812A1

MOV Modules
HVPSI

CS812A2

MOV Modules
HVPSI