CS51031/D [ETC]

Fast PFET Buck Controller ; 快PFET降压控制器\n
CS51031/D
型号: CS51031/D
厂家: ETC    ETC
描述:

Fast PFET Buck Controller
快PFET降压控制器\n

控制器
文件: 总12页 (文件大小:99K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS51031  
Fast PFET Buck Controller  
The CS51031 is a switching controller for use in DC–DC  
converters. It can be used in the buck topology with a minimum  
number of external components. The CS51031 consists of a V  
CC  
monitor for controlling the state of the device, 1.0 A power driver for  
controlling the gate of a discrete P–channel transistor, fixed frequency  
oscillator, short circuit protection timer, programmable soft start,  
precision reference, fast output voltage monitoring comparator, and  
output stage driver logic with latch.  
The high frequency oscillator allows the use of small inductors and  
output capacitors, minimizing PC board area and systems cost. The  
programmable soft start reduces current surges at start up. The short  
circuit protection timer significantly reduces the duty cycle to  
approximately 1/30 of its cycle during short circuit conditions.  
The CS51031 is available in 8 Lead SO and 8 Lead PDIP plastic  
packages.  
http://onsemi.com  
MARKING  
DIAGRAMS  
8
SO–8  
D SUFFIX  
CASE 751  
51031  
ALYW  
8
1
1
8
Features  
1.0 A Totem Pole Output Driver  
High Speed Oscillator (700 kHz max)  
No Stability Compensation Required  
Lossless Short Circuit Protection  
DIP–8  
N SUFFIX  
CASE 626  
CS51031  
AWL  
YYWW  
8
1
1
A
= Assembly Location  
WL, L = Wafer Lot  
YY, Y = Year  
V Monitor  
CC  
2.0% Precision Reference  
Programmable Soft Start  
WW, W = Work Week  
Wide Ambient Temperature Range:  
Industrial Grade: –40°C to 85°C  
Commercial Grade: 0°C to 70°C  
PIN CONNECTIONS  
1
5.0 V–12 V  
V
GATE  
V
C
PGND  
CS  
C
IN  
47 µF  
C
V
CC  
V
FB  
OSC  
20  
GND  
MP  
1
IRF7416  
V
GATE  
MBRS360  
V
GATE  
V
C
ORDERING INFORMATION*  
D
1
Device  
Package  
SO–8  
Shipping  
95 Units/Rail  
PGND  
CS  
CS51031YD8  
CS51031YDR8  
CS51031YN8  
CS51031GD8  
CS51031GDR8  
RV  
CC  
CS  
0.1 µF  
10 Ω  
SO–8  
2500 Tape & Reel  
50 Units/Rail  
L
C
V
CC  
OSC  
CV  
4.7 µH  
CC  
C
100 µF  
.01 µF  
DIP–8  
SO–8  
OSC  
100 pF  
100  
R
B
95 Units/Rail  
GND  
V
FB  
V
O
2.5 kΩ  
3.3 V @ 3 A  
SO–8  
2500 Tape & Reel  
C
RR  
*Additional ordering information can be found on  
page 9 of this data sheet.  
0.1 µF  
C
O
R
A
100 µF × 2  
1.5 kΩ  
Figure 1. Typical Application Diagram  
Semiconductor Components Industries, LLC, 2001  
1
Publication Order Number:  
May, 2001 – Rev. 8  
CS51031/D  
CS51031  
ABSOLUTE MAXIMUM RATINGS*  
Rating  
Value  
20  
Unit  
V
Power Supply Voltage, V  
CC  
Driver Supply Voltage, V  
Driver Output Voltage, V  
20  
V
C
20  
V
GATE  
C
, CS, V (Logic Pins)  
6.0  
V
OSC  
FB  
Peak Output Current  
1.0  
A
Steady State Output Current  
Operating Junction Temperature, T  
200  
mA  
°C  
°C  
°C  
kV  
150  
J
Operating Temperature Range, T  
–40 to 85  
–65 to 150  
2.0  
A
Storage Temperature Range, T  
ESD (Human Body Model)  
Lead Temperature Soldering:  
S
Wave Solder: (through hole styles only) (Note 1.)  
Reflow (SMD styles only) (Note 2.)  
260 peak  
230 peak  
°C  
°C  
1. 10 sec. maximum.  
2. 60 sec. max above 183°C.  
*The maximum package power dissipation must be observed.  
ELECTRICAL CHARACTERISTICS (Specifications apply for 4.5 V 16 V, 3.0 V V 16 V;  
CC  
C
Industrial Grade: –40°C < T < 85°C; –40°C < T < 125°C: Commercial Grade: 0°C < T < 70°C; 0°C < T < 125°C, unless otherwise specified.)  
A
J
A
J
Characteristic  
Test Conditions  
Min  
Typ  
Max  
Unit  
Oscillator  
V
FB  
= 1.2 V  
Frequency  
C
= 470 pF  
160  
200  
110  
660  
83.3  
240  
kHz  
µA  
µA  
%
OSC  
Charge Current  
1.4 V < V  
2.7 V > V  
< 2.0 V  
> 2.0 V  
COSC  
COSC  
Discharge Current  
Maximum Duty Cycle  
Short Circuit Timer  
Charge Current  
1 – (t  
/t  
)
80.0  
OFF ON  
V
= 1.0 V; CS = 0.1 mF; V  
= 2.0 V  
FB  
COSC  
1.0 V < V < 2.0 V  
175  
40  
264  
66  
325  
80  
µA  
µA  
µA  
ms  
ms  
ms  
%
CS  
Fast Discharge Current  
Slow Discharge Current  
Start Fault Inhibit Time  
Valid Fault Time  
2.55 V > V > 2.4 V  
CS  
2.4 V > V > 1.5 V  
4.0  
0.70  
0.2  
9.0  
2.5  
6.0  
0.85  
0.3  
15  
10  
CS  
0 V < V < 2.5 V  
1.40  
0.45  
23  
CS  
2.6 V > V > 2.4 V  
CS  
GATE Inhibit Time  
2.4 V > V > 1.5 V  
CS  
Fault Duty Cycle  
3.1  
4.6  
CS Comparator  
V
FB  
= 1.0 V  
Fault Enable CS Voltage  
Max. CS Voltage  
2.5  
2.6  
V
V
V
V
V
V
V
FB  
= 1.5 V  
Fault Detect Voltage  
Fault Inhibit Voltage  
Hold Off Release Voltage  
Regulator Threshold Voltage Clamp  
V
CS  
when GATE goes high  
2.4  
Minimum V  
1.5  
CS  
V
FB  
V
CS  
= 0 V  
0.4  
0.725  
0.7  
1.0  
1.035  
= 1.5 V  
0.866  
http://onsemi.com  
2
CS51031  
ELECTRICAL CHARACTERISTICS (continued) (Specifications apply for 4.5 V 16 V, 3.0 V V 16 V;  
CC  
C
Industrial Grade: –40°C < T < 85°C; –40°C < T < 125°C: Commercial Grade: 0°C < T < 70°C; 0°C < T < 125°C, unless otherwise specified.)  
A
J
A
J
Characteristic  
Test Conditions  
= V = 2.0 V  
Min  
Typ  
Max  
Unit  
V
FB  
Comparators  
V
COSC  
CS  
Regulator Threshold Voltage  
T = 25°C (Note 3.)  
T = –40 to 125°C  
J
1.225  
1.210  
1.250  
1.250  
1.275  
1.290  
V
V
J
Fault Threshold Voltage  
T = 25°C (Note 3.)  
T = –40 to 125°C  
J
1.12  
1.10  
1.15  
1.15  
1.17  
1.19  
V
V
J
Threshold Line Regulation  
Input Bias Current  
4.5 V V 16 V  
6.0  
1.0  
100  
4.0  
15  
4.0  
120  
20  
mV  
µA  
CC  
V
FB  
= 0 V  
Voltage Tracking  
(Regulator Threshold – Fault Threshold Voltage)  
70  
mV  
mV  
Input Hysteresis Voltage  
Power Stage  
V
CC  
= V = 10 V; V = 1.2 V  
C FB  
GATE DC Low Saturation Voltage  
GATE DC High Saturation Voltage  
Rise Time  
V
= 1.0 V; 200 mA Sink  
1.2  
1.5  
25  
1.5  
2.1  
60  
V
V
COSC  
COSC  
V
= 2.7 V; 200 mA Source; V = V  
C GATE  
C
C
= 1.0 nF; 1.5 V < V  
= 1.0 nF; 9.0 V > V  
< 9.0 V  
> 1.5 V  
ns  
ns  
GATE  
GATE  
GATE  
GATE  
Fall Time  
25  
60  
V
CC  
Monitor  
Turn On Threshold  
Turn Off Threshold  
Hysteresis  
4.200  
4.085  
65  
4.400  
4.300  
130  
4.600  
4.515  
200  
V
V
mV  
Current Drain  
I
I
4.5 V < V < 16 V, Gate switching  
4.5  
2.7  
6.0  
4.0  
mA  
mA  
µA  
CC  
C
CC  
3.0 V < V < 16 V, Gate non–switching  
C
Shutdown I  
V
CC  
= 4.0  
500  
900  
CC  
3. Guaranteed by design, not 100% tested in production.  
PACKAGE LEAD DESCRIPTION  
PACKAGE PIN NUMBER  
SO–8  
DIP–8  
PIN SYMBOL  
FUNCTION  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
V
Driver pin to gate of external PFET.  
Output power stage ground connection.  
Oscillator frequency programming capacitor.  
Logic ground.  
GATE  
PGND  
C
OSC  
GND  
V
Feedback voltage input.  
FB  
V
Logic supply voltage.  
CC  
CS  
Soft start and fault timing capacitor.  
Driver supply voltage.  
V
C
http://onsemi.com  
3
CS51031  
V
V
C
V
REF  
RG  
I
C
Oscillator  
Comparator  
V
GATE  
GATE  
+
C
Flip–Flop  
OSC  
A1  
7I  
C
G1  
R
Q
F2  
PGND  
S
Q
V
G2  
+
+
FB  
Comparator  
+
1.5 V  
2.5 V  
V
FB  
A6  
1.25 V  
+
+ 0.7 V  
+
Hold Off  
Comp  
V
CC  
V
REF  
V
CC  
V
CC  
OK  
3.3 V  
+
Fault  
Comp  
1.15 V  
+
CS Charge  
Sense  
Comparator  
G4  
V
REF  
= 3.3 V  
G3  
A4  
+
I
CS  
Comparator  
T
2.3 V  
+
CS  
A2  
R
S
Q
Q
F1  
I
T
I
T
5
G5  
+
+
55  
1.5 V  
2.5 V  
Slow Discharge  
Flip–Flop  
A3  
+
Slow Discharge  
Comparator  
+
2.4 V  
GND  
Figure 2. Block Diagram  
CIRCUIT DESCRIPTION  
THEORY OF OPERATION  
duration of the charge time. The PFET gets turned off and  
remains off during the oscillator’s discharge time with the  
maximum duty cycle to 80%. It requires 7.0 mV typical, and  
Control Scheme  
The CS51031 monitors and the output voltage to  
20 mV maximum ripple on the V pin is required to  
FB  
determine when to turn on the PFET. If V falls below the  
FB  
operate. This method of control does not require any loop  
stability compensation.  
internal reference voltage of 1.25 V during the oscillator’s  
charge cycle, the PFET is turned on and remains on for the  
http://onsemi.com  
4
CS51031  
Startup  
Lossless Short Circuit Protection  
The CS51031 has an externally programmable soft start  
feature that allows the output voltage to come up slowly,  
preventing voltage overshoot on the output.  
The CS51031 has “lossless” short circuit protection since  
there is no current sense resistor required. When the voltage  
at the CS pin (the fault timing capacitor voltage ) reaches  
2.5 V during startup, the fault timing circuitry is enabled.  
During normal operation the CS voltage is 2.6 V. During a  
short circuit or a transient condition, the output voltage  
At startup, the voltage on all pins is zero. As V rises, the  
CC  
V
voltage along with the internal resistor R keeps the  
C
G
PFET off. As V and V continue to rise, the oscillator  
CC  
C
capacitor (C  
) and the Soft Start/Fault Timing capacitor  
moves lower and the voltage at V drops. If V drops  
OSC  
FB FB  
(CS) charges via internal current sources. C  
by the current source IC and CS gets charged by the I source  
gets charged  
below 1.15 V, the output of the fault comparator goes high  
and the CS51031 goes into a fast discharge mode. The fault  
OSC  
T
combination described by:  
timing capacitor, CS, discharges to 2.4 V. If the V voltage  
FB  
is still below 1.15 V when the CS pin reaches 2.4 V, a valid  
fault condition has been detected. The slow discharge  
comparator output goes high and enables gate G5 which sets  
I
55  
I
T
5
T
* ǒ  
Ǔ
I
+ I  
)
CS  
T
The internal Holdoff Comparator ensures that the external  
the slow discharge flip flop. The V  
flip flop resets and  
GATE  
PFET is off until V > 0.7 V, preventing the GATE flip–flop  
(F2) from being set. This allows the oscillator to reach its  
operating frequency before enabling the drive output. Soft  
the output switch is turned off. The fault timing capacitor is  
slowly discharged to 1.5 V. The CS51031 then enters a  
normal startup routine. If the fault is still present when the  
fault timing capacitor voltage reaches 2.5 V, the fast and  
slow discharge cycles repeat as shown in figure 3.  
CS  
start is obtained by clamping the V comparator’s (A6)  
FB  
reference input to approximately 1/2 of the voltage at the CS  
pin during startup, permitting the control loop and the output  
voltage to slowly increase. Once the CS pin charges above  
the Holdoff Comparator trip point of 0.7 V, the low feedback  
If the V voltage is above 1.15 V when CS reaches  
FB  
2.4 V a fault condition is not detected, normal operation  
resumes and CS charges back to 2.6 V. This reduces the  
chance of erroneously detecting a load transient as a fault  
condition.  
to the V Comparator sets the GATE flip–flop during  
FB  
C
OSC  
’s charge cycle. Once the GATE flip–flop is set,  
V
GATE  
goes low and turns on the PFET. When V exceeds  
CS  
2.4 V, the CS charge sense comparator (A4) sets the V  
FB  
comparator reference to 1.25 V completing the startup cycle.  
2.6 V  
S2  
2.5 V  
0 V  
S2  
S1  
V
CS  
S2  
2.4 V  
S3  
S3  
S1  
S1  
S3  
S3  
1.5 V  
0 V  
T
td1  
t
t
td2  
t
FAULT  
START  
FAULT  
RESTART  
START  
NORMAL OPERATION  
FAULT  
V
GATE  
1.25 V  
1.15 V  
V
FB  
Figure 3. Voltage on Start Capacitor (VGS), the Gate (VGATE), and in the  
Feedback Loop (VFB), During Startup, Normal and Fault Conditions.  
http://onsemi.com  
5
CS51031  
Buck Regulator Operation  
and R2 and the reference voltage V , the power transistor  
REF  
A block diagram of a typical buck regulator is shown in  
Figure 4. If we assume that the output transistor is initially  
off, and the system is in discontinuous operation, the  
Q1 switches on and current flows through the inductor to the  
output. The inductor current rises at a rate determined by  
(V – V  
)/L. The duty cycle (or “on” time) for the  
OUT  
IN  
inductor current I is zero and the output voltage is at its  
CS51031 is limited to 80%. If output voltage remains higher  
than nominal during the entire C change time, the Q1  
does not turn on, skipping the pulse.  
L
nominal value. The current drawn by the load is supplied by  
the output capacitor C . When the voltage across C drops  
OSC  
O
O
below the threshold established by the feedback resistors R1  
L
Q
1
V
IN  
R
R
1
2
C
IN  
C
R
LOAD  
O
D
1
Control  
Feedback  
Figure 4. Buck Regulator Block Diagram.  
APPLICATIONS INFORMATION  
CS51031 DESIGN EXAMPLE  
5.6  
9.0  
D
+
+ 0.62  
+ 0.40  
MAX  
Specifications 12 V to 5.0 V, 3.0 A Buck Controller  
5.6  
13.8  
V = 12 V ±20% (i.e. 14.4 V max., 12 V nom., 9.6 V  
IN  
min.)  
D
+
MIN  
V  
I  
= 5.0 V ±2%  
OUT  
2) Switching Frequency and On and Off Time  
Calculations  
= 0.3 A to 3.0 A  
OUT  
Output ripple voltage < 50 mV max.  
Efficiency > 80%  
Given that f = 200 kHz and D  
= 0.80  
SW  
MAX  
1.0  
T +  
+ 5.0 ms  
f = 200 kHz  
SW  
f
SW  
1) Duty Cycle Estimates  
T
+ T   D  
+ T   D  
+ 5.0 ms   0.62 ^ 3.0 ms  
+ 5.0 ms   0.40 ^ 2.0 ms  
ON(max)  
MAX  
Since the maximum duty cycle D, of the CS51031 is  
limited to 80% min., it is necessary to estimate the duty cycle  
for the various input conditions over the complete operating  
range.  
The duty cycle for a buck regulator operating in a  
continuous conduction mode is given by:  
T
ON(min)  
MIN  
T
+ T  
+ 5.0 ms * 2.0 ms + 3.0 ms  
ON(min)  
OFF(max)  
3) Oscillator Capacitor Selection  
The switching frequency is set by C  
given by:  
V
) V  
F
SAT  
OUT  
* V  
, whose value is  
OSC  
D +  
V
IN  
where:  
*6  
95   10  
C
in pF +  
OSC  
V
SAT  
= R  
× I  
max. and R  
is the value at T  
2
ds(on)  
OUT  
ds(on) J  
3
F
30 10  
SW  
* ǒ  
Ǔ
SWǒ1 )  
Ǔ
F
6
100°C.  
F
3 10  
SW  
If V = 0.60 V and V  
= 0.60 V then the above equation  
F
SAT  
becomes:  
http://onsemi.com  
6
CS51031  
4) Inductor Selection  
6) VFB Divider  
The inductor value is chosen for continuous mode  
operation down to 0.3 Amps.  
R1 ) R2  
R1  
ǒ
R2  
+ 1.25 Vǒ  
Ǔ + 1.25 V  
) 1.0Ǔ  
V
OUT  
R2  
The ripple current I = 2 × I min = 2 × 0.3 A = 0.6 A.  
OUT  
The input bias current to the comparator is 4.0 µA. The  
resistor divider current should be considerably higher than  
this to ensure that there is sufficient bias current. If we  
choose the divider current to be at least 250 times the bias  
current this permits a divider current of 1mA and simplifies  
the calculations.  
(
)
) V   T  
D
V
5.6 V   3.0 ms  
OUT  
OFF(max)  
L
+
+
+ 28 mH  
min  
DI  
0.6 A  
This is the minimum value of inductor to keep the ripple  
current < 0.6 A during normal operation.  
A smaller inductor will result in larger ripple current.  
Ripple current at a minimum off time is  
5.0 V  
1.0 mA  
+ R1 ) R2 + 5.0 KW  
(
)
F
V
) V   T  
5.6 V   2.0 ms  
28 mH  
OUT  
OFF(min)  
DI +  
+
+ 0.4 A  
L
MIN  
Let R2 = 1.0 K  
Rearranging the divider equation gives:  
The core must not saturate with the maximum expected  
current, here given by:  
V
5.0 V  
1.25  
OUT  
R1 + R2ǒ  
* 1.0Ǔ+ 1.0 kW  
ǒ
* 1.0Ǔ+ 3.0 kW  
1.25  
I
+ I ) DIń2 + 3.0 A ) 0.4 Ań2 + 3.2 A  
OUT  
MAX  
7) Divider Bypass Capacitor CRR  
5) Output Capacitor  
Since the feedback resistors divide the output voltage by  
a factor of 4.0, i.e. 5.0 V/1.25 V= 4.0, it follows that the  
output ripple is also divided by four. This would require that  
the output ripple be at least 60 mV (4.0 × 15 mV) to trip the  
The output capacitor and the inductor form a low pass  
filter. The output capacitor should have a low ESL and ESR.  
Low impedance aluminum electrolytic, tantalum or organic  
semiconductor capacitors are a good choice for an output  
capacitor. Low impedance aluminum are less expensive.  
Solid tantalum chip capacitors are available from a number  
of suppliers and are the best choice for surface mount  
applications.  
feedback comparator. We use a capacitor C to act as an  
RR  
AC short.  
The ripple voltage frequency is equal to the switching  
frequency so we choose C = 1.0 nF.  
RR  
The output capacitor limits the output ripple voltage. The  
CS51031 needs a maximum of 20 mV of output ripple for  
the feedback comparator to change state. If we assume that  
all the inductor ripple current flows through the output  
capacitor and that it is an ideal capacitor (i.e. zero ESR), the  
minimum capacitance needed to limit the output ripple to  
50 mV peak to peak is given by:  
8) Soft Start and Fault Timing Capacitor CS  
CS performs several important functions. First it provides  
a delay time for load transients so that the IC does not enter  
a fault mode every time the load changes abruptly. Secondly  
it disables the fault circuitry during startup, it also provides  
soft start by clamping the reference voltage during startup,  
allowing it to rise slowly, and, finally it controls the hiccup  
short circuit protection circuitry. This reduces the duty cycle  
to approximately 0.035 during short circuit conditions.  
An important consideration in calculating CS is that it’s  
voltage does not reach 2.5 V (the voltage at which the fault  
0.6 A  
DI  
C +  
+
+ 7.5mF  
3
*3  
)
V
(
)
(
8.0   f  
  DV  
8.0   200   10 Hz   50   10  
SW  
The minimum ESR needed to limit the output voltage  
ripple to 50 mV peak to peak is:  
detect circuitry is enabled) before V reaches 1.15 V  
FB  
*3  
0.6 A  
otherwise the power supply will never start.  
50   10  
DV  
DI  
ESR +  
+
+ 83 mW  
If the V pin reaches 1.15 V, the fault timing comparator  
FB  
will discharge CS and the supply will not start. For the V  
voltage to reach 1.15 V the output voltage must be at least  
4 × 1.15 = 4.6 V.  
If we choose an arbitrary startup time of 900 µs, the value  
of CS is:  
FB  
The output capacitor should be chosen so that its ESR is  
less than 83 m.  
During the minimum off time, the ripple current is 0.4 A  
and the output voltage ripple will be:  
DV + ESR   DI + 83m W   0.4 + 33 mV  
CS   2.5 V  
Charge  
t
+
Startup  
I
900 ms   264 mA  
CS  
+
+ 950 nF ^ 0.1 mF  
min  
2.5 V  
http://onsemi.com  
7
CS51031  
9) Input Capacitor  
The fault time is the sum of the slow discharge time the  
fast discharge time and the recharge time. It is dominated by  
the slow discharge time.  
The first parameter is the slow discharge time, it is the time  
for the CS capacitor to discharge from 2.4 V to 1.5 V and is  
given by:  
The input capacitor reduces the peak currents drawn from  
the input supply and reduces the noise and ripple voltage on  
the V and V pins. This capacitor must also ensure that  
CC  
C
the V remains above the UVLO voltage in the event of an  
CC  
output short circuit. A low ESR capacitor of at least 100 µF  
is good. A ceramic surface mount capacitor should also be  
(
)
CS   2.4 V * 1.5 V  
connected between V and ground to filter high frequency  
t
+
CC  
SlowDischarge(t)  
I
Discharge  
noise.  
where I  
is 6.0 µA typical.  
Discharge  
10) MOSFET Selection  
The CS51031 drives a P–channel MOSFET. The V  
GATE  
5
+ CS   1.5   10  
t
SlowDischarge(t)  
pin swings from GND to V . The type of PFET used  
C
depends on the operating conditions but for input voltages  
below 7.0 V a logic level FET should be used.  
The fast discharge time occurs when a fault is first  
detected. The CS capacitor is discharged from 2.5 V to 2.4 V.  
A PFET with a continuous drain current (I ) rating greater  
D
(
)
CS   2.5 V * 2.4 V  
than the maximum output current is required.  
t
+
FastDischarge(t)  
I
FastDischarge  
The Gate–to–Source voltage V  
and the Drain–to  
GS  
Source Breakdown Voltage should be chosen based on the  
input supply voltage.  
where I  
is 66 µA typical.  
FastDischarge  
The power dissipation due to the conduction losses is  
given by:  
t
+ CS   1515  
FastDischarge(t)  
The recharge time is the time for CS to charge from 1.5 V  
to 2.5 V.  
2
P
+ I  
OUT  
  R  
  D  
DS(ON)  
D
(
I
)
CS   2.5 V * 1.5 V  
where  
t
+
Charge(t)  
Charge  
R
is the value at T + 100°C  
DS(ON)  
J
where I  
is 264 µA typical.  
Charge  
The power dissipation of the PFET due to the switching  
losses is given by:  
t
+ CS   3787  
Charge(t)  
( )  
  t   f  
SW  
P
+ 0.5   V   I  
IN OUT  
The fault time is given by:  
D
r
5
( )  
+ CS   3787 ) 1515 ) 1.5   10  
where t = Rise Time.  
t
r
Fault  
11) Diode Selection  
5
( )  
+ CS   1.55   10  
t
Fault  
The flyback or catch diode should be a Schottky diode  
because of it’s fast switching ability and low forward voltage  
drop. The current rating must be at least equal to the  
maximum output current. The breakdown voltage should be  
at least 20 V for this 12 V application.  
For this circuit  
*6  
+ 0.1   10  
5
  1.55   10 + 15.5 ms  
t
Fault  
A larger value of CS will increase the fault time out time  
but will also increase the soft start time.  
The diode power dissipation is given by:  
(
+ I   V   1.0 * D  
OUT D min  
)
P
D
http://onsemi.com  
8
CS51031  
ORDERING INFORMATION  
Operating  
Temperature Range  
Device  
Package  
SO–8  
Shipping  
95 Units/Rail  
CS51031YD8  
CS51031YDR8  
CS51031YN8  
CS51031GD8  
CS51031GDR8  
–40°C < T < 85°C  
A
–40°C < T < 85°C  
SO–8  
2500 Tape & Reel  
50 Units/Rail  
A
–40°C < T < 85°C  
DIP–8  
SO–8  
A
0°C < T < 70°C  
95 Units/Rail  
A
0°C < T < 70°C  
SO–8  
2500 Tape & Reel  
A
http://onsemi.com  
9
CS51031  
PACKAGE DIMENSIONS  
SO–8  
D SUFFIX  
CASE 751–07  
ISSUE V  
–X–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
A
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE MOLD  
PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER  
SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN  
EXCESS OF THE D DIMENSION AT MAXIMUM  
MATERIAL CONDITION.  
8
5
4
S
M
M
B
0.25 (0.010)  
Y
1
K
–Y–  
G
MILLIMETERS  
INCHES  
DIM MIN  
MAX  
5.00  
4.00  
1.75  
0.51  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
A
B
C
D
G
H
J
4.80  
3.80  
1.35  
0.33  
0.189  
0.150  
0.053  
0.013  
C
N X 45  
_
SEATING  
PLANE  
–Z–  
1.27 BSC  
0.050 BSC  
0.10 (0.004)  
0.10  
0.19  
0.40  
0
0.25  
0.25  
1.27  
8
0.004  
0.010  
0.010  
0.050  
8
0.007  
0.016  
0
M
J
H
D
K
M
N
S
_
_
_
_
0.25  
5.80  
0.50  
6.20  
0.010  
0.228  
0.020  
0.244  
M
S
S
X
0.25 (0.010)  
Z
Y
DIP–8  
N SUFFIX  
CASE 626–05  
ISSUE L  
NOTES:  
1. DIMENSION L TO CENTER OF LEAD WHEN  
FORMED PARALLEL.  
2. PACKAGE CONTOUR OPTIONAL (ROUND OR  
SQUARE CORNERS).  
8
5
3. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
–B–  
MILLIMETERS  
INCHES  
MIN  
1
4
DIM MIN  
MAX  
10.16  
6.60  
4.45  
0.51  
1.78  
MAX  
0.400  
0.260  
0.175  
0.020  
0.070  
A
B
C
D
F
9.40  
6.10  
3.94  
0.38  
1.02  
0.370  
0.240  
0.155  
0.015  
0.040  
F
–A–  
NOTE 2  
L
G
H
J
2.54 BSC  
0.100 BSC  
0.76  
0.20  
2.92  
1.27  
0.30  
3.43  
0.030  
0.008  
0.115  
0.050  
0.012  
0.135  
K
L
C
7.62 BSC  
0.300 BSC  
M
N
---  
0.76  
10  
_
1.01  
---  
0.030  
10  
0.040  
_
J
–T–  
SEATING  
PLANE  
N
M
D
K
G
H
M
M
M
B
0.13 (0.005)  
T A  
PACKAGE THERMAL DATA  
Parameter  
SO–8  
45  
DIP–8  
52  
Unit  
°C/W  
°C/W  
R
R
Typical  
Typical  
Θ
Θ
JC  
JA  
165  
100  
http://onsemi.com  
10  
CS51031  
Notes  
http://onsemi.com  
11  
CS51031  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes  
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
NORTH AMERICA Literature Fulfillment:  
CENTRAL/SOUTH AMERICA:  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)  
Email: ONlit–spanish@hibbertco.com  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 1–303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Toll Free from Hong Kong & Singapore:  
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada  
001–800–4422–3781  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
Email: ONlit–asia@hibbertco.com  
EUROPE: LDC for ON Semiconductor – European Support  
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)  
Email: ONlit–german@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2745  
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)  
Email: ONlit–french@hibbertco.com  
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781  
For additional information, please contact your local  
Sales Representative.  
*Available from Germany, France, Italy, UK, Ireland  
CS51031/D  

相关型号:

CS51031ED8

Voltage-Mode SMPS Controller
ETC

CS51031EDR8

Voltage-Mode SMPS Controller
ETC

CS51031EN8

Voltage-Mode SMPS Controller
ETC

CS51031GD8

Fast PFET Buck Controller
ONSEMI

CS51031GD8G

Fast P−Ch FET Buck Controller
ONSEMI

CS51031GDR8

Fast PFET Buck Controller
ONSEMI

CS51031GDR8G

Fast P−Ch FET Buck Controller
ONSEMI

CS51031GN8

Voltage-Mode SMPS Controller
ETC

CS51031YD8

Fast PFET Buck Controller
ONSEMI

CS51031YD8

Fast PFET Buck Controller Does Not Require Compensation
CHERRY

CS51031YD8G

Fast P−Ch FET Buck Controller
ONSEMI

CS51031YDR8

Fast PFET Buck Controller
ONSEMI