CS51031GD8G [ONSEMI]

Fast P−Ch FET Buck Controller; 快速P沟道FET降压控制器
CS51031GD8G
型号: CS51031GD8G
厂家: ONSEMI    ONSEMI
描述:

Fast P−Ch FET Buck Controller
快速P沟道FET降压控制器

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总10页 (文件大小:96K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS51031  
Fast P−Ch FET  
Buck Controller  
The CS51031 is a switching controller for use in DC−DC  
converters. It can be used in the buck topology with a minimum  
number of external components. The CS51031 consists of a V  
CC  
http://onsemi.com  
monitor for controlling the state of the device, 1.0 A power driver for  
controlling the gate of a discrete P−Channel transistor, fixed frequency  
oscillator, short circuit protection timer, programmable Soft−Start,  
precision reference, fast output voltage monitoring comparator, and  
output stage driver logic with latch.  
The high frequency oscillator allows the use of small inductors and  
output capacitors, minimizing PC board area and systems cost. The  
programmable Soft−Start reduces current surges at startup. The short  
circuit protection timer significantly reduces the duty cycle to  
approximately 1/30 of its cycle during short circuit conditions.  
8
1
SOIC−8  
D SUFFIX  
CASE 751  
Features  
1.0 A Totem Pole Output Driver  
High Speed Oscillator (700 kHz max)  
No Stability Compensation Required  
Lossless Short Circuit Protection  
MARKING DIAGRAM  
8
V Monitor  
CC  
51031  
ALYWx  
G
2.0% Precision Reference  
Programmable Soft−Start  
Wide Ambient Temperature Range:  
Industrial Grade: −40°C to 85°C  
Commercial Grade: 0°C to 70°C  
1
Pb−Free Packages are Available  
51031 = Device Code  
A
L
= Assembly Location  
= Wafer Lot  
5.0 V−12 V  
Y
W
x
= Year  
= Work Week  
= Continuation of Device Code  
x = Y or G  
= Pb−Free Package  
C
47 mF  
IN  
MP  
1
G
IRF7416  
V
GATE  
MBRS360  
V
V
C
GATE  
PIN CONNECTIONS  
D
1
PGND  
CS  
1
RV  
100 W  
V
V
CC  
GATE  
C
CS  
0.1 mF  
PGND  
CS  
L
C
OSC  
V
CC  
CV  
0.1 mF  
4.7 mH  
CC  
C
V
CC  
V
FB  
OSC  
C
OSC  
GND  
470 pF  
R
B
GND  
V
FB  
V
O
2.5 kW  
3.3 V @ 3 A  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 2 of this data sheet.  
C
0.1 mF  
RR  
C
O
R
A
100 mF × 2  
1.5 kW  
Figure 1. Typical Application Diagram  
©
Semiconductor Components Industries, LLC, 2005  
1
Publication Order Number:  
October, 2005 − Rev. 11  
CS51031/D  
CS51031  
ORDERING INFORMATION  
Operating  
Temperature Range  
Device  
CS51031YD8  
Package  
Shipping  
SOIC−8  
98 Units / Rail  
98 Units / Rail  
CS51031YD8G  
SOIC−8  
(Pb−Free)  
−40°C < T < 85°C  
A
CS51031YDR8  
SOIC−8  
2500 / Tape & Reel  
2500 / Tape & Reel  
CS51031YDR8G  
SOIC−8  
(Pb−Free)  
CS51031GD8  
SOIC−8  
98 Units / Rail  
98 Units / Rail  
CS51031GD8G  
SOIC−8  
(Pb−Free)  
0°C < T < 70°C  
A
CS51031GDR8  
SOIC−8  
2500 / Tape & Reel  
2500 / Tape & Reel  
CS51031GDR8G  
SOIC−8  
(Pb−Free)  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
MAXIMUM RATINGS  
Rating  
Value  
20  
Unit  
V
Power Supply Voltage, V  
CC  
Driver Supply Voltage, V  
Driver Output Voltage, V  
20  
V
C
20  
V
GATE  
C
OSC  
, CS, V (Logic Pins)  
6.0  
V
FB  
Peak Output Current  
1.0  
A
Steady State Output Current  
Operating Junction Temperature, T  
200  
mA  
°C  
°C  
°C  
kV  
150  
J
Operating Temperature Range, T  
−40 to 85  
−65 to 150  
2.0  
A
Storage Temperature Range, T  
S
ESD (Human Body Model)  
Lead Temperature Soldering:  
Wave Solder: (through hole styles only) (Note 1)  
Reflow (SMD styles only) (Note 2)  
260 peak  
230 peak  
°C  
°C  
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit  
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,  
damage may occur and reliability may be affected.  
1. 10 sec. maximum.  
2. 60 sec. max above 183°C.  
PACKAGE LEAD DESCRIPTION  
Package Pin Number  
Pin Symbol  
Function  
Driver pin to gate of external P−Ch FET.  
1
2
3
4
5
6
7
8
V
GATE  
PGND  
Output power stage ground connection.  
Oscillator frequency programming capacitor.  
Logic ground.  
C
OSC  
GND  
V
Feedback voltage input.  
FB  
V
Logic supply voltage.  
CC  
CS  
Soft−Start and fault timing capacitor.  
Driver supply voltage.  
V
C
http://onsemi.com  
2
 
CS51031  
ELECTRICAL CHARACTERISTICS (Specifications apply for 4.5 V 16 V, 3.0 V V 16 V;  
CC  
C
Industrial Grade: −40°C < T < 85°C; −40°C < T < 125°C: Commercial Grade: 0°C < T < 70°C; 0°C < T < 125°C, unless otherwise specified.)  
A
J
A
J
Characteristic  
Test Conditions  
Min  
Typ  
Max  
Unit  
Oscillator  
V
= 1.2 V  
FB  
Frequency  
C
= 470 pF  
160  
200  
110  
240  
kHz  
mA  
mA  
%
OSC  
Charge Current  
1.4 V < V  
< 2.0 V  
> 2.0 V  
COSC  
COSC  
Discharge Current  
2.7 V > V  
1 − (t /t  
660  
83.3  
Maximum Duty Cycle  
Short Circuit Timer  
Charge Current  
)
80.0  
OFF ON  
V
= 1.0 V; CS = 0.1 mF; V  
= 2.0 V  
COSC  
FB  
1.0 V < V < 2.0 V  
175  
40  
264  
66  
325  
80  
mA  
mA  
mA  
ms  
ms  
ms  
%
CS  
Fast Discharge Current  
Slow Discharge Current  
Start Fault Inhibit Time  
Valid Fault Time  
2.55 V > V > 2.4 V  
CS  
2.4 V > V > 1.5 V  
4.0  
0.70  
0.2  
9.0  
2.5  
6.0  
0.85  
0.3  
15  
10  
CS  
0 V < V < 2.5 V  
1.40  
0.45  
23  
CS  
2.6 V > V > 2.4 V  
CS  
GATE Inhibit Time  
2.4 V > V > 1.5 V  
CS  
Fault Duty Cycle  
3.1  
4.6  
CS Comparator  
V
= 1.0 V  
FB  
Fault Enable CS Voltage  
Max CS Voltage  
2.5  
2.6  
V
V
V
V
V
V
V
= 1.5 V  
FB  
CS  
Fault Detect Voltage  
Fault Inhibit Voltage  
Hold Off Release Voltage  
Regulator Threshold Voltage Clamp  
V
when GATE goes high  
2.4  
Minimum V  
1.5  
CS  
V
V
= 0 V  
0.4  
0.725  
0.7  
1.0  
1.035  
FB  
CS  
= 1.5 V  
= V = 2.0 V  
0.866  
V
Comparators  
V
COSC  
FB  
CS  
Regulator Threshold Voltage  
T = 25°C (Note 3)  
T = −40 to 125°C  
J
1.225  
1.210  
1.250  
1.250  
1.275  
1.290  
V
V
J
Fault Threshold Voltage  
T = 25°C (Note 3)  
T = −40 to 125°C  
J
1.12  
1.10  
1.15  
1.15  
1.17  
1.19  
V
V
J
Threshold Line Regulation  
Input Bias Current  
4.5 V V 16 V  
6.0  
1.0  
100  
4.0  
15  
4.0  
120  
20  
mV  
mA  
CC  
V
= 0 V  
FB  
Voltage Tracking  
(Regulator Threshold − Fault Threshold Voltage)  
70  
mV  
mV  
Input Hysteresis Voltage  
Power Stage  
V
= V = 10 V; V = 1.2 V  
C FB  
CC  
GATE DC Low Saturation Voltage  
GATE DC High Saturation Voltage  
Rise Time  
V
= 1.0 V; 200 mA Sink  
1.2  
1.5  
25  
1.5  
2.1  
60  
V
V
COSC  
COSC  
V
= 2.7 V; 200 mA Source; V = V  
C GATE  
C
C
= 1.0 nF; 1.5 V < V  
= 1.0 nF; 9.0 V > V  
< 9.0 V  
> 1.5 V  
ns  
ns  
GATE  
GATE  
GATE  
Fall Time  
25  
60  
GATE  
V
Monitor  
CC  
Turn−On Threshold  
Turn−Off Threshold  
Hysteresis  
4.200  
4.085  
65  
4.400  
4.300  
130  
4.600  
4.515  
200  
V
V
mV  
Current Drain  
I
I
4.5 V < V < 16 V, Gate switching  
4.5  
2.7  
500  
6.0  
4.0  
900  
mA  
mA  
mA  
CC  
C
CC  
3.0 V < V < 16 V, Gate non−switching  
C
Shutdown I  
V
= 4.0  
CC  
CC  
3. Guaranteed by design, not 100% tested in production.  
http://onsemi.com  
3
 
CS51031  
V
V
C
V
REF  
RG  
I
C
C
Oscillator  
Comparator  
V
GATE  
GATE  
+
C
OSC  
Flip−Flop  
A1  
7I  
G1  
Q
R
F2  
PGND  
Q
S
V
FB  
Comparator  
G2  
+
+
+
1.5 V  
2.5 V  
V
FB  
A6  
1.25 V  
+
0.7 V  
+
+
Hold Off  
Comp  
V
CC  
V
REF  
V
V
OK  
CC  
CC  
3.3 V  
+
Fault  
Comp  
1.15 V  
+
CS Charge  
Sense  
Comparator  
G4  
V
= 3.3 V  
REF  
G3  
A4  
+
I
CS  
Comparator  
T
2.3 V  
+
CS  
A2  
Q
Q
R
S
F1  
I
I
T
5
T
G5  
+
+
55  
1.5 V  
2.5 V  
Slow Discharge  
Flip−Flop  
A3  
+
Slow Discharge  
Comparator  
+
2.4 V  
GND  
Figure 2. Block Diagram  
CIRCUIT DESCRIPTION  
THEORY OF OPERATION  
duration of the charge time. The P−Ch FET gets turned off  
and remains off during the oscillator’s discharge time with  
the maximum duty cycle to 80%. It requires 7.0 mV typical,  
Control Scheme  
The CS51031 monitors the output voltage to determine  
and 20 mV maximum ripple on the V pin is required to  
FB  
when to turn on the P−Ch FET. If V falls below the internal  
FB  
operate. This method of control does not require any loop  
stability compensation.  
reference voltage of 1.25 V during the oscillator’s charge  
cycle, the P−Ch FET is turned on and remains on for the  
http://onsemi.com  
4
CS51031  
Startup  
comparator (A4) sets the V comparator reference to  
FB  
The CS51031 has an externally programmable Soft−Start  
1.25 V completing the startup cycle.  
feature that allows the output voltage to come up slowly,  
preventing voltage overshoot on the output.  
Lossless Short Circuit Protection  
The CS51031 has “lossless” short circuit protection since  
there is no current sense resistor required. When the voltage  
at the CS pin (the fault timing capacitor voltage) reaches  
2.5 V during startup, the fault timing circuitry is enabled by  
A2. During normal operation the CS voltage is 2.6 V. During  
a short circuit or a transient condition, the output voltage  
At startup, the voltage on all pins is zero. As V rises, the  
CC  
V
C
voltage along with the internal resistor R keeps the  
G
P−Ch FET off. As V and V continue to rise, the oscillator  
CC  
C
capacitor (C  
) and the Soft−Start/Fault Timing capacitor  
OSC  
(CS) charges via internal current sources. C  
gets charged  
OSC  
by the current source IC and CS gets charged by the I source  
T
moves lower and the voltage at V drops. If V drops  
FB  
FB  
combination described by:  
below 1.15 V, the output of the fault comparator goes high  
and the CS51031 goes into a fast discharge mode. The fault  
timing capacitor, CS, discharges to 2.4 V. If the V voltage  
is still below 1.15 V when the CS pin reaches 2.4 V, a valid  
fault condition has been detected. The slow discharge  
comparator output goes high and enables gate G5 which sets  
I
I
T
5
T
* ǒ  
Ǔ
I
+ I  
)
CS  
T
55  
FB  
The internal Holdoff Comparator ensures that the external  
P−Ch FET is off until V > 0.7 V, preventing the GATE  
CS  
flip−flop (F2) from being set. This allows the oscillator to  
reach its operating frequency before enabling the drive  
the slow discharge flip−flop. The V  
flip−flop resets and  
GATE  
output. Soft−Start is obtained by clamping the V  
FB  
the output switch is turned off. The fault timing capacitor is  
slowly discharged to 1.5 V. The CS51031 then enters a  
normal startup routine. If the fault is still present when the  
fault timing capacitor voltage reaches 2.5 V, the fast and  
slow discharge cycles repeat as shown in figure 3.  
comparator’s (A6) reference input to approximately 1/2 of  
the voltage at the CS pin during startup, permitting the  
control loop and the output voltage to slowly increase. Once  
the CS pin charges above the Holdoff Comparator trip point  
of 0.7 V, the low feedback to the V Comparator sets the  
FB  
If the V voltage is above 1.15 V when CS reaches 2.4 V  
FB  
GATE flip−flop during C  
’s charge cycle. Once the  
goes low and turns on the  
OSC  
a fault condition is not detected, normal operation resumes  
and CS charges back to 2.6 V. This reduces the chance of  
erroneously detecting a load transient as a fault condition.  
GATE flip−flop is set, V  
GATE  
P−Ch FET. When V exceeds 2.3 V, the CS charge sense  
CS  
2.6 V  
S2  
2.5 V  
0 V  
S2  
S1  
V
S2  
CS  
2.4 V  
S3  
S3  
S1  
S1  
S3  
S3  
1.5 V  
0 V  
0.7 V  
T
td1  
t
t
td2  
t
FAULT  
START  
FAULT  
RESTART  
START  
NORMAL OPERATION  
FAULT  
V
GATE  
1.25 V  
1.15 V  
V
FB  
Figure 3. Voltage on Start Capacitor (VGS), the Gate (VGATE), and in the  
Feedback Loop (VFB), During Startup, Normal and Fault Conditions  
http://onsemi.com  
5
 
CS51031  
Buck Regulator Operation  
and R2 and the reference voltage V , the power transistor  
REF  
A block diagram of a typical buck regulator is shown in  
Figure 4. If we assume that the output transistor is initially  
off, and the system is in discontinuous operation, the  
Q1 switches on and current flows through the inductor to the  
output. The inductor current rises at a rate determined by  
(V − V  
)/L. The duty cycle (or “on” time) for the  
IN  
OUT  
inductor current I is zero and the output voltage is at its  
CS51031 is limited to 80%. If output voltage remains higher  
than nominal during the entire C change time, the Q1  
does not turn on, skipping the pulse.  
L
nominal value. The current drawn by the load is supplied by  
the output capacitor C . When the voltage across C drops  
OSC  
O
O
below the threshold established by the feedback resistors R1  
L
Q
1
V
IN  
R
R
1
C
IN  
C
O
R
LOAD  
D
1
2
Control  
Feedback  
Figure 4. Buck Regulator Block Diagram  
APPLICATIONS INFORMATION  
CS51031 DESIGN EXAMPLE  
If V = 0.60 V and V  
= 0.60 V then the above equation  
F
SAT  
becomes:  
Specifications 12 V to 5.0 V, 3.0 A Buck Controller  
5.6  
9.0  
D
+
+ 0.62  
+ 0.40  
V = 12 V 20% (i.e. 14.4 V max, 12 V nom, 9.6 V  
MAX  
IN  
min)  
5.6  
13.8  
D
MIN  
+
V  
I  
= 5.0 V 2%  
OUT  
= 0.3 A to 3.0 A  
OUT  
2) Switching Frequency and On and Off Time  
Calculations  
Given that f = 200 kHz and D  
Output ripple voltage < 50 mV max  
Efficiency > 80%  
= 0.80  
SW  
MAX  
f = 200 kHz  
SW  
1.0  
T +  
+ 5.0 ms  
f
SW  
1) Duty Cycle Estimates  
T
+ T   D  
+ 5.0 ms   0.62 ^ 3.0 ms  
+ 5.0 ms   0.40 ^ 2.0 ms  
Since the maximum duty cycle D, of the CS51031 is  
limited to 80% min, it is necessary to estimate the duty cycle  
for the various input conditions over the complete operating  
range.  
The duty cycle for a buck regulator operating in a  
continuous conduction mode is given by:  
ON(max)  
MAX  
MIN  
T
+ T   D  
ON(min)  
T
+ T  
+ 5.0 ms * 2.0 ms + 3.0 ms  
ON(min)  
OFF(max)  
3) Oscillator Capacitor Selection  
The switching frequency is set by C  
given by:  
, whose value is  
V
) V  
F
SAT  
OSC  
OUT  
* V  
D +  
V
IN  
)6  
95   10  
where:  
C
OSC  
in pF +  
2
3
F
SW  
30 10  
V
SAT  
= R  
× I  
max and R is the value at  
DS(ON)  
DS(ON)  
OUT  
* ǒ  
Ǔ
SWǒ1 )  
Ǔ
F
6
F
3 10  
SW  
T 100°C.  
J
http://onsemi.com  
6
 
CS51031  
4) Inductor Selection  
6) VFB Divider  
The inductor value is chosen for continuous mode  
operation down to 0.3 Amps.  
R1 ) R2  
R1  
R2  
+ 1.25 Vǒ  
Ǔ + 1.25 V  
ǒ
) 1.0Ǔ  
V
OUT  
R2  
The ripple current DI = 2 × I  
min = 2 × 0.3 A = 0.6 A.  
OUT  
The input bias current to the comparator is 4.0 mA. The  
resistor divider current should be considerably higher than  
this to ensure that there is sufficient bias current. If we  
choose the divider current to be at least 250 times the bias  
current this permits a divider current of 1.0 mA and  
simplifies the calculations.  
(
V
)
) V   T  
D
5.6 V   3.0 ms  
OUT  
OFF(max)  
L
+
+
+ 28 mH  
min  
DI  
0.6 A  
This is the minimum value of inductor to keep the ripple  
current < 0.6 A during normal operation.  
A smaller inductor will result in larger ripple current.  
Ripple current at a minimum off time is:  
5.0 V  
1.0 mA  
+ R1 ) R2 + 5.0 KW  
(
V
)
F
) V   T  
5.6 V   2.0 ms  
28 mH  
OUT  
OFF(min)  
DI +  
+
+ 0.4 A  
Let R2 = 1.0 K  
L
MIN  
Rearranging the divider equation gives:  
The core must not saturate with the maximum expected  
current, here given by:  
V
OUT  
5.0 V  
1.25  
R1 + R2ǒ  
* 1.0Ǔ+ 1.0 kW  
ǒ
* 1.0Ǔ+ 3.0 kW  
1.25  
I
+ I  
) DIń2 + 3.0 A ) 0.4 Ań2 + 3.2 A  
OUT  
MAX  
7) Divider Bypass Capacitor CRR  
5) Output Capacitor  
Since the feedback resistors divide the output voltage by  
a factor of 4.0, i.e. 5.0 V/1.25 V = 4.0, it follows that the  
output ripple is also divided by four. This would require that  
the output ripple be at least 60 mV (4.0 × 15 mV) to trip the  
The output capacitor and the inductor form a low pass  
filter. The output capacitor should have a low ESL and ESR.  
Low impedance aluminum electrolytic, tantalum or organic  
semiconductor capacitors are a good choice for an output  
capacitor. Low impedance aluminum are less expensive.  
Solid tantalum chip capacitors are available from a number  
of suppliers and are the best choice for surface mount  
applications.  
feedback comparator. We use a capacitor C to act as an  
RR  
AC short.  
The ripple voltage frequency is equal to the switching  
frequency so we choose C = 1.0 nF.  
RR  
The output capacitor limits the output ripple voltage. The  
CS51031 needs a maximum of 20 mV of output ripple for  
the feedback comparator to change state. If we assume that  
all the inductor ripple current flows through the output  
capacitor and that it is an ideal capacitor (i.e. zero ESR), the  
minimum capacitance needed to limit the output ripple to  
50 mV peak−to−peak is given by:  
8) Soft−Start and Fault Timing Capacitor CS  
CS performs several important functions. First it provides  
a delay time for load transients so that the IC does not enter  
a fault mode every time the load changes abruptly. Secondly  
it disables the fault circuitry during startup, it also provides  
Soft−Start by clamping the reference voltage during startup,  
allowing it to rise slowly, and, finally it controls the hiccup  
short circuit protection circuitry. This reduces the duty cycle  
to approximately 0.035 during short circuit conditions.  
An important consideration in calculating CS is that it’s  
voltage does not reach 2.5 V (the voltage at which the fault  
DI  
0.6 A  
C +  
+
+ 7.5mF  
3
*3  
)
V
(
)
(
8.0   f  
  DV  
8.0   200   10 Hz   50   10  
SW  
The minimum ESR needed to limit the output voltage  
ripple to 50 mV peak−to−peak is:  
detect circuitry is enabled) before V reaches 1.15 V  
otherwise the power supply will never start.  
*3  
0.6 A  
FB  
50   10  
DV  
DI  
ESR +  
+
+ 83 mW  
If the V pin reaches 1.15 V, the fault timing comparator  
The output capacitor should be chosen so that its ESR is  
less than 83 mW.  
FB  
will discharge CS and the supply will not start. For the V  
FB  
voltage to reach 1.15 V the output voltage must be at least  
4 × 1.15 = 4.6 V.  
During the minimum off time, the ripple current is 0.4 A  
and the output voltage ripple will be:  
If we choose an arbitrary startup time of 900 ms, the value  
of CS is:  
DV + ESR   DI + 83m W   0.4 + 33 mV  
CS   2.5 V  
Charge  
t
+
Startup  
I
900 ms   264 mA  
CS  
+
+ 950 nF ^ 0.1 mF  
min  
2.5 V  
http://onsemi.com  
7
CS51031  
The fault time is the sum of the slow discharge time the  
the V and V pins. This capacitor must also ensure that  
CC C  
fast discharge time and the recharge time. It is dominated by  
the slow discharge time.  
the V remains above the UVLO voltage in the event of an  
output short circuit. A low ESR capacitor of at least 100 mF  
CC  
The first parameter is the slow discharge time, it is the time  
for the CS capacitor to discharge from 2.4 V to 1.5 V and is  
given by:  
is good. A ceramic surface mount capacitor should also be  
connected between V and ground to filter high frequency  
CC  
noise.  
(
)
CS   2.4 V * 1.5 V  
10) MOSFET Selection  
The CS51031 drives a P−Channel MOSFET. The V  
t
+
SlowDischarge(t)  
I
Discharge  
GATE  
pin swings from GND to V . The type of P−Ch FET used  
depends on the operating conditions but for input voltages  
below 7.0 V a logic level FET should be used.  
C
where I  
is 6.0 mA typical.  
Discharge  
5
+ CS   1.5   10  
t
SlowDischarge(t)  
The fast discharge time occurs when a fault is first  
detected. The CS capacitor is discharged from 2.5 V to 2.4 V.  
A P−Ch FET with a continuous drain current (I ) rating  
greater than the maximum output current is required.  
D
The Gate−to−Source voltage V  
Source Breakdown Voltage should be chosen based on the  
input supply voltage.  
and the Drain−to  
GS  
(
)
CS   2.5 V * 2.4 V  
t
+
FastDischarge(t)  
I
FastDischarge  
where I  
is 66 mA typical.  
The power dissipation due to the conduction losses is  
given by:  
FastDischarge  
t
+ CS   1515  
FastDischarge(t)  
2
P
+ I  
  R  
  D  
DS(ON)  
The recharge time is the time for CS to charge from 1.5 V  
to 2.5 V.  
D
OUT  
where  
(
I
)
CS   2.5 V * 1.5 V  
R
is the value at T + 100°C  
The power dissipation of the P−Ch FET due to the  
switching losses is given by:  
t
+
DS(ON)  
J
Charge(t)  
Charge  
where I  
is 264 mA typical.  
Charge  
t
+ CS   3787  
Charge(t)  
( )  
  t   f  
SW  
P
D
+ 0.5   V   I  
IN  
OUT  
r
The fault time is given by:  
where t = Rise Time.  
r
5
( )  
+ CS   3787 ) 1515 ) 1.5   10  
t
Fault  
11) Diode Selection  
5
( )  
+ CS   1.55   10  
t
The flyback or catch diode should be a Schottky diode  
because of it’s fast switching ability and low forward voltage  
drop. The current rating must be at least equal to the  
maximum output current. The breakdown voltage should be  
at least 20 V for this 12 V application.  
Fault  
For this circuit  
*6  
+ 0.1   10  
5
  1.55   10 + 15.5 ms  
t
Fault  
A larger value of CS will increase the fault time out time  
but will also increase the Soft−Start time.  
The diode power dissipation is given by:  
(
  V   1.0 * D  
OUT D min  
)
P
D
+ I  
9) Input Capacitor  
The input capacitor reduces the peak currents drawn from  
the input supply and reduces the noise and ripple voltage on  
http://onsemi.com  
8
CS51031  
PACKAGE DIMENSIONS  
SOIC−8 NB  
CASE 751−07  
ISSUE AG  
NOTES:  
−X−  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
A
8
5
4
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
6. 751−01 THRU 751−06 ARE OBSOLETE. NEW  
STANDARD IS 751−07.  
S
M
M
B
0.25 (0.010)  
Y
1
K
−Y−  
G
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN  
MAX  
0.197  
0.157  
0.069  
0.020  
C
N X 45  
_
A
B
C
D
G
H
J
K
M
N
S
4.80  
3.80  
1.35  
0.33  
5.00 0.189  
4.00 0.150  
1.75 0.053  
0.51 0.013  
SEATING  
PLANE  
−Z−  
1.27 BSC  
0.050 BSC  
0.10 (0.004)  
0.10  
0.19  
0.40  
0
0.25 0.004  
0.25 0.007  
1.27 0.016  
0.010  
0.010  
0.050  
8
0.020  
0.244  
M
J
H
D
8
0
_
_
_
_
M
S
S
X
0.25 (0.010)  
Z
Y
0.25  
5.80  
0.50 0.010  
6.20 0.228  
SOLDERING FOOTPRINT*  
1.52  
0.060  
7.0  
4.0  
0.275  
0.155  
0.6  
0.024  
1.270  
0.050  
mm  
inches  
ǒ
Ǔ
SCALE 6:1  
*For additional information on our Pb−Free strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
PACKAGE THERMAL DATA  
Parameter  
SOIC−8  
Unit  
R
R
Typical  
Typical  
45  
°C/W  
°C/W  
q
JC  
JA  
165  
q
http://onsemi.com  
9
CS51031  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
CS51031/D  

相关型号:

CS51031GDR8

Fast PFET Buck Controller
ONSEMI

CS51031GDR8G

Fast P−Ch FET Buck Controller
ONSEMI

CS51031GN8

Voltage-Mode SMPS Controller
ETC

CS51031YD8

Fast PFET Buck Controller
ONSEMI

CS51031YD8

Fast PFET Buck Controller Does Not Require Compensation
CHERRY

CS51031YD8G

Fast P−Ch FET Buck Controller
ONSEMI

CS51031YDR8

Fast PFET Buck Controller
ONSEMI

CS51031YDR8

Fast PFET Buck Controller Does Not Require Compensation
CHERRY

CS51031YDR8G

Fast P−Ch FET Buck Controller
ONSEMI

CS51031YN8

Fast PFET Buck Controller Does Not Require Compensation
CHERRY

CS51031_05

Fast P−Ch FET Buck Controller
ONSEMI

CS51033

Fast PFET Buck Controller
ONSEMI