AT-41532 [ETC]

General purpose transistor ; 通用晶体管\n
AT-41532
型号: AT-41532
厂家: ETC    ETC
描述:

General purpose transistor
通用晶体管\n

晶体 晶体管
文件: 总15页 (文件大小:90K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
General Purpose, Low Current  
NPN Silicon Bipolar Transistor  
Technical Data  
AT-41532  
3-Lead SC-70 ( SOT-323)  
Surface Mount Plastic  
Package  
Features  
• General Purpose NPN  
Bipolar Transistor  
Optimized for Low Current,  
Low Voltage Applications at  
900 MHz, 1.8 GHz, and  
2.4 GHz  
Description  
Agilents AT-41532 is a general  
purpose NPN bipolar transistor  
that has been optimized for  
maximum ft at low voltage  
operation, making it ideal for use  
in battery powered  
applications in cellular/PCS  
and other wireless markets.  
The AT-41532 uses the miniature  
3-lead SOT-323 (SC-70) plastic  
package.  
• Performance ( 5 V, 5 mA)  
0.9 GHz: 1 dB NF, 15.5 dB GA  
1.8 GHz: 1.4 dB NF, 10.5 dB GA  
2.4 GHz: 1.9 dB NF, 9 dB GA  
• Characterized for 3, 5, and  
8 V Use  
Pin Configuration  
Optimized performance at 5 V  
makes this device ideal for use in  
900 MHz, 1.8 GHz, and 2.4 GHz  
systems. Typical amplifier design  
at 900 MHz yields 1 dB NF and  
15.5 dB associated gain at 5 V and  
5 mA bias. High gain capability at  
1 V and 1 mA makes this device a  
good fit for 900 MHz pager  
applications. A good noise  
match near 50 ohms at 900 MHz  
makes this a very user-friendly  
device. Moreover, voltage  
COLLECTOR  
• Miniature 3-lead SOT-323  
( SC-70) Plastic Package  
• High Breakdown Voltage  
( can be operated up to 10 V)  
41  
Applications  
BASE  
EMITTER  
• LNA, Oscillator, Driver  
Amplifier, Buffer Amplifier,  
and Down Converter for  
Cellular and PCS Handsets  
and Cordless Telephones  
• LNA, Oscillator, Mixer, and  
Gain Amplifier for Pagers  
breakdowns are high enough to  
support operation at 10 V.  
• Power Amplifier and  
Oscillator for RF-ID Tag  
• LNA and Gain Amplifier for  
GPS  
The AT-41532 belongs to Agilents  
AT-4XXXX series bipolar  
transistors. It exhibits excellent  
device uniformity, performance,  
and reliability as a result of ion-  
implantation, self-alignment  
techniques, and gold metalization  
in the fabrication process.  
• LNA for CATV Set-Top Box  
2
AT-41532 Absolute Maximum Ratings  
Thermal Resistance:[2]  
Absolute  
Symbol  
Parameter  
Units  
V
Maximum[1]  
θjc = 350°C/W  
V
Emitter-Base Voltage  
Collector-Base Voltage  
Collector-Emitter Voltage  
Collector Current  
Power Dissipation[2,3]  
Junction Temperature  
Storage Temperature  
1.5  
20  
EBO  
Notes:  
1. Operation of this device above any one  
of these parameters may cause  
permanent damage.  
V
CBO  
V
V
CEO  
V
12  
2. TMOUNTING SURFACE = 25°C.  
IC  
PT  
mA  
mW  
°C  
50  
3. Derate at 2.86 mW/°C for  
TMOUNTING SURFACE > 72°C.  
225  
Tj  
150  
TSTG  
°C  
-65 to 150  
Electrical Specifications, TA = 25°C  
Symbol  
Parameters and Test Conditions  
Units  
Min  
Typ  
Max  
hFE  
Forward Current Transfer Ratio  
VCE = 5 V  
-
30  
150  
270  
IC = 5 mA  
VCB = 3 V  
VEB = 1 V  
ICBO  
IEBO  
Collector Cutoff Current  
Emitter Cutoff Current  
mA  
mA  
0.2  
1.0  
Characterization Information, TA = 25°C  
Symbol  
Parameters and Test Conditions  
Noise Figure  
Units  
Min  
Typ  
NF  
f = 0.9 GHz  
f = 1.8 GHz  
f = 2.4 GHz  
dB  
1.0  
1.4  
1.9  
V
= 5 V, IC = 5 mA  
CE  
GA  
Associated Gain  
f = 0.9 GHz  
f = 1.8 GHz  
f = 2.4 GHz  
dB  
15.5  
10.5  
9.0  
VCE = 5 V, IC = 5 mA  
P1dB  
G1dB  
Power at 1 dB Gain Compression (opt tuning) f = 0.9 GHz  
CE = 5 V, IC = 25 mA  
Gain at 1 dB Gain Compression (opt tuning)  
CE = 5 V, IC = 25 mA  
Output Third Order Intercept Point,  
CE = 5 V, IC =25 mA (opt tuning)  
Gain in 50 system; VCE = 5 V, IC = 5 mA  
dBm  
dB  
14.5  
14.5  
25  
V
f = 0.9 GHz  
f = 0.9 GHz  
V
IP3  
dBm  
dB  
V
2
|S21E  
|
f = 0.9 GHz  
f = 2.4 GHz  
12.5  
13.25  
5.2  
3
AT-41532 Typical Performance  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
3.5  
3.5  
3.0  
2 mA  
5 mA  
2 mA  
5 mA  
3.0  
2.5  
2.0  
1.5  
1.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.5  
0
0.5  
0
0
1.0  
2.0  
3.0  
4.0  
0
1.0  
2.0  
3.0  
4.0  
0
1.0  
2.0  
3.0  
4.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 1. AT-41532 Typical Noise  
Figure vs. Frequency at 1 V, 1 mA.  
Figure 2. AT-41532 Typical Noise  
Figure vs. Frequency and Current at  
2.7 V.  
Figure 3. AT-41532 Typical Noise  
Figure vs. Frequency and Current at  
5 V.  
10  
8
16  
16  
2 mA  
5 mA  
2 mA  
5 mA  
12  
8
12  
8
6
4
4
4
2
0
0
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 4. AT-41532 Associated Gain  
vs. Frequency at 1 V, 1 mA.  
Figure 5. AT-41532 Associated Gain  
vs. Frequency and Current at 2.7 V.  
Figure 6. AT-41532 Associated Gain  
vs. Frequency and Current at 5 V.  
20  
15  
10  
5
9
8
7
6
5
4
3
0
2
2.7 V  
5 V  
-5  
-10  
2.7 V  
5 V  
1
0
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
COLLECTOR CURRENT (mA)  
COLLECTOR CURRENT (mA)  
Figure 7. AT-41532 P  
Collector Current and Voltage  
( valid up to 2.4 GHz) .  
vs.  
Figure 8. AT-41532 G  
Collector Current and Voltage  
( valid up to 2.4 GHz) .  
vs.  
1dB  
1dB  
4
AT-41532 Typical Scattering Parameters, Common Emitter, ZO = 50 , VCE = 1 V, IC = 1 mA  
Freq.  
GHz  
S11  
S21  
S12  
S22  
Mag  
Ang  
dB  
Mag  
Ang  
dB  
Mag  
Ang  
Mag  
Ang  
0.5  
0.75  
1.0  
1.5  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
11.0  
12.0  
0.787  
0.697  
0.620  
0.554  
0.538  
0.543  
0.559  
0.561  
0.545  
0.534  
0.544  
0.563  
0.597  
0.655  
0.703  
-75  
-104  
-128  
-166  
-164  
118  
79  
47  
28  
14  
2
8.79  
7.28  
5.84  
3.40  
1.52  
-1.06  
-2.61  
-3.06  
-2.81  
-2.46  
-2.38  
-2.49  
-2.79  
-3.39  
-4.03  
2.750  
2.311  
1.960  
1.480  
1.191  
0.886  
0.741  
0.703  
0.724  
0.754  
0.761  
0.751  
0.725  
0.677  
0.629  
125  
106  
90  
66  
48  
22  
5
-7  
-20  
-35  
-52  
-68  
-84  
-100  
-112  
-20.18  
-18.74  
-18.40  
-18.80  
-18.69  
-13.30  
-8.03  
-4.83  
-3.11  
-2.30  
-2.08  
-2.18  
-2.52  
-3.15  
-3.76  
0.098  
0.116  
0.120  
0.115  
0.116  
0.216  
0.397  
0.574  
0.699  
0.768  
0.787  
0.778  
0.748  
0.696  
0.649  
49  
38  
31  
30  
42  
60  
47  
24  
0
-23  
-44  
-63  
-80  
-96  
-110  
0.860  
0.785  
0.734  
0.678  
0.653  
0.620  
0.568  
0.487  
0.398  
0.362  
0.407  
0.467  
0.523  
0.593  
0.665  
-22  
-28  
-32  
-40  
-50  
-73  
-102  
-137  
-180  
130  
88  
-10  
-23  
-34  
-42  
58  
35  
16  
-6  
AT-41532 Typical Noise Parameters,  
Common Emitter, ZO = 50 , VCE = 1 V, IC = 1 mA  
20  
16  
1.50  
1.25  
1.00  
Γopt  
gmax  
dB(S|2,1|)  
k
Freq.  
GHz  
Fmin  
dB  
Rn  
ohms  
Gassoc  
dB  
Mag  
Ang  
0.9  
1.8  
2.0  
2.5  
3.0  
3.5  
4.0  
1.4  
1.8  
1.9  
2.2  
2.6  
3.1  
3.6  
0.44  
0.57  
0.60  
0.66  
0.71  
0.75  
0.77  
92  
-183  
-169  
-140  
-116  
-95  
12.4  
3.0  
3.3  
10.1  
27.6  
59.9  
103.0  
9.4  
7.6  
6.7  
5.7  
4.6  
3.5  
2.1  
12  
8
0.75  
0.50  
0.25  
4
0
-77  
-4  
0
6
0
1
2
3
4
5
gmax = maximum available gain ( MAG) if k > 1  
gmax = maximum stable gain ( MSG) if k < 1  
k = stability factor  
FREQUENCY (GHz)  
Figure 9. Gain vs. Frequency at  
1 V, 1 mA.  
S21  
MAG =  
(k± √k2–1)  
Note: dB( |S21|) = 20 log( |S21|)  
S12  
*
MSG = |S21|/|S12  
|
2
2
2
1 – |S11| – |S22| + |D|  
; D = S11S22 S12S21  
k =  
2 |S12||S21  
|
*
5
AT-32032 Typical Scattering Parameters, Common Emitter, ZO = 50 , VCE = 2.7 V, IC = 2 mA  
Freq.  
GHz  
S11  
S21  
S12  
S22  
Mag  
Ang  
dB  
Mag  
Ang  
dB  
Mag  
Ang  
Mag  
Ang  
0.5  
0.75  
1.0  
1.5  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
11.0  
12.0  
0.647  
0.532  
0.455  
0.394  
0.382  
0.397  
0.434  
0.474  
0.497  
0.501  
0.512  
0.532  
0.569  
0.643  
0.687  
-82  
-111  
-134  
-171  
160  
116  
80  
50  
30  
15  
4
13.45  
11.34  
9.54  
6.70  
4.64  
4.702  
3.691  
3.000  
2.162  
1.707  
1.240  
1.004  
0.871  
0.812  
0.805  
0.804  
0.796  
0.767  
0.762  
0.668  
119  
101  
88  
68  
51  
-23.97  
-22.60  
-21.87  
-20.48  
-18.50  
-13.56  
-9.26  
-6.05  
-3.84  
-2.40  
-1.73  
-1.61  
-1.86  
-2.41  
-3.10  
0.063  
0.074  
0.081  
0.095  
0.119  
0.210  
0.344  
0.498  
0.643  
0.759  
0.819  
0.831  
0.808  
0.758  
0.700  
52  
46  
46  
52  
59  
61  
50  
32  
11  
-12  
-34  
-55  
-74  
-93  
-107  
0.808  
0.737  
0.696  
0.658  
0.643  
0.627  
0.604  
0.556  
0.470  
0.377  
0.361  
0.411  
0.476  
0.562  
0.639  
-21  
-24  
-27  
-33  
-40  
-59  
-81  
-108  
-142  
174  
123  
82  
1.87  
0.03  
26  
5
-1.20  
-1.81  
-1.88  
-1.89  
-1.99  
-2.31  
-2.37  
-3.51  
-10  
-23  
-36  
-51  
-67  
-83  
-97  
-112  
-9  
-22  
-32  
-40  
52  
27  
1
AT-32032 Typical Noise Parameters,  
Common Emitter, ZO = 50 , VCE = 2.7 V, IC = 2 mA  
20  
1.2  
1
Γopt  
gmax  
dB(S|2,1|)  
k
Freq.  
GHz  
Fmin  
dB  
Rn  
ohms  
Gassoc  
dB  
16  
12  
8
Mag  
Ang  
0.8  
0.9  
1.8  
2.0  
2.5  
3.0  
3.5  
4.0  
1.2  
1.6  
1.7  
1.9  
2.2  
2.5  
2.9  
0.35  
0.48  
0.51  
0.60  
0.65  
0.70  
0.74  
100  
-179  
-165  
-136  
-112  
-91  
8.7  
3.3  
3.7  
12.9  
9.7  
9.1  
8.0  
6.9  
5.9  
5.1  
0.6  
0.4  
0.2  
8.9  
4
21.0  
42.0  
72.0  
0
-74  
-4  
0
6
0
1
2
3
4
5
FREQUENCY (GHz)  
gmax = maximum available gain ( MAG) if k > 1  
gmax = maximum stable gain ( MSG) if k < 1  
k = stability factor  
Figure 10. Gain vs. Frequency at  
2.7 V, 2 mA.  
Note: dB(|S21|) = 20 log( |S21|)  
S21  
S12  
*
MAG =  
( k± √k2–1)  
MSG = |S21|/ |S12  
|
2
2
2
1 – |S11| – |S22| + |D|  
; D = S11S22 S12S21  
k =  
2 |S12||S21  
|
*
6
AT-41532 Typical Scattering Parameters, Common Emitter, ZO = 50 , VCE = 2.7 V, IC = 5 mA  
Freq.  
GHz  
S11  
S21  
S12  
S22  
Mag  
Ang  
dB  
Mag  
Ang  
dB  
Mag  
Ang  
Mag  
Ang  
0.5  
0.75  
1.0  
1.5  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
11.0  
12.0  
0.400  
0.312  
0.270  
0.247  
0.253  
0.280  
0.323  
0.379  
0.434  
0.480  
0.522  
0.557  
0.595  
0.662  
0.709  
-102  
-130  
-152  
175  
149  
112  
80  
55  
38  
24  
10  
17.03  
14.15  
11.97  
8.82  
6.67  
3.86  
7.106  
5.101  
3.969  
2.762  
2.154  
1.559  
1.269  
1.097  
0.986  
0.920  
0.871  
0.828  
0.779  
0.761  
0.664  
106  
91  
80  
64  
50  
-25.97  
-23.86  
-22.09  
-19.10  
-16.60  
-12.48  
-9.19  
-6.55  
-4.50  
-2.96  
-2.07  
-1.73  
-1.86  
-2.43  
-3.03  
0.050  
0.064  
0.079  
0.111  
0.148  
0.238  
0.347  
0.471  
0.595  
0.711  
0.788  
0.820  
0.808  
0.756  
0.705  
59  
60  
61  
63  
62  
55  
43  
27  
9
-11  
-32  
-53  
-73  
-92  
-107  
0.671  
0.615  
0.588  
0.564  
0.553  
0.535  
0.514  
0.472  
0.398  
0.309  
0.299  
0.366  
0.449  
0.533  
0.633  
-22  
-24  
-25  
-30  
-37  
-54  
-75  
-99  
-130  
-174  
131  
87  
26  
6
2.07  
0.80  
-12  
-28  
-43  
-58  
-72  
-87  
-99  
-115  
-0.13  
-0.72  
-1.20  
-1.64  
-2.17  
-2.38  
-3.56  
-5  
-19  
-29  
-39  
55  
27  
3
AT-41532 Typical Noise Parameters,  
Common Emitter, ZO = 50 , VCE = 2.7 V, IC = 5 mA  
25  
1.2  
1
Γopt  
Freq.  
GHz  
Fmin  
dB  
Rn  
ohms  
Gassoc  
dB  
20  
Mag  
Ang  
0.9  
1.8  
2.0  
2.5  
3.0  
3.5  
4.0  
1.2  
1.4  
1.5  
1.7  
1.9  
2.2  
2.5  
0.283  
0.41  
0.44  
0.53  
0.60  
0.67  
0.71  
106  
-165  
-151  
-126  
-106  
-86  
7.3  
3.9  
4.8  
14.0  
10.7  
9.8  
8.5  
7.5  
0.8  
0.6  
0.4  
0.2  
15  
10  
9.2  
5
18.4  
35.0  
58.0  
gmax  
dB(S|2,1|)  
k
0
6.6  
5.8  
-69  
-5  
0
6
0
1
2
3
4
5
gmax = maximum available gain ( MAG) if k > 1  
gmax = maximum stable gain ( MSG) if k < 1  
k = stability factor  
FREQUENCY (GHz)  
Figure 11. Gain vs. Frequency at  
2.7 V, 5 mA.  
S21  
MAG =  
( k± √k2–1)  
Note: dB( |S21|) = 20 log( |S21|)  
*
S12  
MSG = |S21|/ |S12  
|
2
2
2
1 – |S11| – |S22| + |D|  
; D = S11S22 S12S21  
k =  
2 |S12||S21  
|
*
7
AT-41532 Typical Scattering Parameters, Common Emitter, ZO = 50 , VCE = 2. 7 V, IC = 10 mA  
Freq.  
GHz  
S11  
S21  
S12  
S22  
Mag  
Ang  
dB  
Mag  
Ang  
dB  
Mag  
Ang  
Mag  
Ang  
0.5  
0.75  
1.0  
1.5  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
11.0  
12.0  
0.243  
0.199  
0.184  
0.186  
0.199  
0.232  
0.275  
0.334  
0.399  
0.462  
0.521  
0.566  
0.609  
0.678  
0.722  
-122  
-149  
-169  
161  
139  
107  
79  
56  
41  
27  
14  
18.39  
15.19  
12.88  
9.64  
7.44  
4.61  
2.84  
1.60  
0.66  
-0.02  
-0.67  
-1.26  
-1.88  
-2.97  
-3.38  
8.310  
5.751  
4.408  
3.034  
2.354  
1.700  
1.387  
1.202  
1.079  
0.997  
0.926  
0.865  
0.805  
0.711  
0.678  
97  
85  
76  
62  
49  
-26.90  
-23.99  
-21.74  
-18.35  
-15.79  
-11.93  
-9.00  
-6.66  
-4.79  
-3.30  
-2.34  
-1.89  
-1.92  
-2.32  
-3.02  
0.045  
0.063  
0.082  
0.121  
0.162  
0.253  
0.355  
0.465  
0.576  
0.684  
0.764  
0.805  
0.802  
0.766  
0.706  
68  
69  
69  
67  
63  
52  
39  
24  
7
-12  
-32  
-52  
-72  
-91  
-106  
0.586  
0.552  
0.536  
0.520  
0.510  
0.491  
0.467  
0.424  
0.349  
0.261  
0.251  
0.328  
0.422  
0.485  
0.620  
-21  
-21  
-23  
-28  
-35  
-52  
-72  
-95  
-125  
-167  
134  
88  
27  
6
-12  
-29  
-45  
-60  
-75  
-90  
-101  
-116  
-2  
-18  
-28  
-39  
56  
29  
3
gmax = maximum available gain ( MAG) if k > 1  
gmax = maximum stable gain ( MSG) if k < 1  
k = stability factor  
25  
1.25  
20  
15  
10  
1
S21  
S12  
MAG =  
( k± √k2–1)  
0.75  
0.5  
MSG = |S21|/ |S12  
|
2
2
2
1 – |S11| – |S22| + |D|  
k =  
; D = S11S22 S12S21  
2 |S12||S21  
|
*
5
0
0.25  
0
gmax  
dB(S|2,1|)  
k
0
1
2
3
4
5
6
FREQUENCY (GHz)  
Figure 12. Gain vs. Frequency at  
2.7 V, 10 mA.  
Note: dB( |S21|) = 20 log( |S21|)  
*
8
AT-41532 Typical Scattering Parameters, Common Emitter, ZO = 50 , VCE = 5 V, IC = 2 mA  
Freq.  
GHz  
S11  
S21  
S12  
S22  
Mag  
Ang  
dB  
Mag  
Ang  
dB  
Mag  
Ang  
Mag  
Ang  
0.5  
0.75  
1.0  
1.5  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
11.0  
12.0  
0.659  
0.540  
0.456  
0.387  
0.371  
0.387  
0.428  
0.472  
0.494  
0.490  
0.489  
0.506  
0.541  
0.634  
0.670  
-79  
-108  
-131  
-169  
162  
116  
79  
49  
28  
13  
2
13.43  
11.41  
9.64  
6.81  
4.74  
4.696  
3.720  
3.034  
2.190  
1.726  
1.247  
1.001  
0.860  
0.798  
0.799  
0.812  
0.810  
0.788  
0.754  
0.689  
121  
103  
89  
69  
53  
27  
7
-8  
-20  
-33  
-48  
-64  
-80  
-94  
-109  
-25.16  
-23.78  
-23.06  
-21.69  
-19.63  
-14.40  
-9.89  
-6.47  
-4.05  
-2.36  
-1.51  
-1.28  
-1.51  
-2.09  
-2.75  
0.055  
0.065  
0.070  
0.082  
0.104  
0.191  
0.320  
0.475  
0.627  
0.762  
0.840  
0.863  
0.841  
0.786  
0.729  
53  
48  
48  
55  
63  
67  
56  
38  
17  
0.836  
0.774  
0.738  
0.705  
0.694  
0.685  
0.673  
0.635  
0.556  
0.448  
0.388  
0.408  
0.462  
0.539  
0.625  
-18  
-22  
-24  
-30  
-37  
-54  
-75  
-100  
-131  
-170  
141  
96  
1.91  
0.01  
-1.31  
-1.96  
-1.95  
-1.81  
-1.84  
-2.07  
-2.46  
-3.23  
-5  
-29  
-51  
-71  
-90  
-105  
-10  
-22  
-33  
-39  
62  
35  
6
AT-41532 Typical Noise Parameters,  
Common Emitter, ZO = 50 , 5 V, IC = 2 mA  
25  
1.2  
1
Γopt  
Freq.  
GHz  
Fmin  
dB  
Rn  
ohms  
Gassoc  
dB  
20  
Mag  
Ang  
0.9  
1.8  
2.0  
2.5  
3.0  
3.5  
4.0  
1.2  
1.5  
1.6  
1.9  
2.2  
2.5  
2.9  
0.35  
0.48  
0.51  
0.60  
0.65  
0.70  
0.74  
100  
178  
-166  
-137  
-112  
-92  
8.5  
3.4  
3.7  
13.5  
10.6  
9.7  
8.8  
7.8  
0.8  
0.6  
0.4  
0.2  
15  
10  
8.8  
5
21.7  
44.6  
79.5  
gmax  
dB(S|2,1|)  
0
7.1  
6.0  
-73  
k
-5  
0
6
0
1
2
3
4
5
FREQUENCY (GHz)  
gmax = maximum available gain ( MAG) if k > 1  
gmax = maximum stable gain ( MSG) if k < 1  
k = stability factor  
Figure 13. Gain vs. Frequency at  
5 V, 2 mA.  
Note: dB(|S21|) = 20 log( |S21|)  
S21  
S12  
*
MAG =  
( k± √k2–1)  
MSG = |S21|/ |S12  
|
2
2
2
1 – |S11| – |S22| + |D|  
; D = S11S22 S12S21  
k =  
2 |S12||S21  
|
*
9
AT-41532 Typical Scattering Parameters, Common Emitter, ZO = 50 , VCE = 5 V, IC = 5 mA  
Freq.  
GHz  
S11  
S21  
S12  
S22  
Mag  
Ang  
dB  
Mag  
Ang  
dB  
Mag  
Ang  
Mag  
Ang  
0.5  
0.75  
1.0  
1.5  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
11.0  
12.0  
0.402  
0.304  
0.255  
0.225  
0.227  
0.256  
0.301  
0.359  
0.414  
0.457  
0.496  
0.531  
0.573  
0.633  
0.696  
-98  
-124  
-147  
178  
151  
111  
79  
53  
36  
22  
10  
17.27  
14.42  
12.25  
9.09  
6.92  
4.06  
7.303  
5.260  
4.095  
2.848  
2.218  
1.596  
1.291  
1.111  
0.997  
0.933  
0.891  
0.849  
0.805  
0.759  
0.682  
107  
92  
82  
65  
52  
-27.15  
-25.04  
-23.26  
-20.23  
-17.66  
-13.38  
-9.92  
0.044  
0.056  
0.069  
0.097  
0.131  
0.214  
0.319  
0.443  
0.577  
0.711  
0.809  
0.854  
0.847  
0.792  
0.739  
60  
61  
63  
66  
65  
59  
48  
33  
16  
0.713  
0.663  
0.640  
0.621  
0.613  
0.603  
0.592  
0.562  
0.498  
0.401  
0.344  
0.374  
0.441  
0.516  
0.624  
-19  
-21  
-23  
-28  
-34  
-51  
-69  
-92  
-120  
-156  
154  
105  
67  
28  
8
2.22  
0.92  
-10  
-26  
-40  
-55  
-70  
-85  
-95  
-113  
-7.07  
-0.02  
-0.60  
-1.00  
-1.42  
-1.89  
-2.40  
-3.32  
-4.78  
-2.97  
-1.84  
-1.37  
-1.44  
-2.03  
-2.63  
-4  
-26  
-49  
-69  
-88  
-105  
-4  
-19  
-28  
-38  
38  
8
AT-41532 Typical Noise Parameters,  
Common Emitter, ZO = 50 , VCE = 5 V, IC = 5 mA  
25  
1.2  
1
Γopt  
Freq.  
GHz  
Fmin  
dB  
Rn  
ohms  
Gassoc  
dB  
20  
Mag  
Ang  
0.9  
1.8  
2.0  
2.5  
3.0  
3.5  
4.0  
1.1  
1.4  
1.5  
1.7  
1.9  
2.2  
2.4  
0.29  
0.41  
0.44  
0.53  
0.60  
0.67  
0.71  
110  
-167  
-153  
-127  
-106  
-86  
7.0  
3.9  
4.7  
14.8  
11.3  
10.5  
9.3  
8.4  
7.5  
0.8  
0.6  
0.4  
0.2  
15  
10  
9.3  
5
18.6  
36.8  
59.5  
gmax  
dB(S|2,1|)  
0
-70  
6.7  
k
-5  
0
6
0
1
2
3
4
5
FREQUENCY (GHz)  
gmax = maximum available gain ( MAG) if k > 1  
gmax = maximum stable gain ( MSG) if k < 1  
k = stability factor  
Figure 14. Gain vs. Frequency at  
5 V, 5 mA.  
Note: dB( |S21|) = 20 log( |S21|)  
S21  
S12  
*
MAG =  
( k± √k2–1)  
MSG = |S21|/ |S12  
|
2
2
2
1 – |S11| – |S22| + |D|  
; D = S11S22 S12S21  
k =  
2 |S12||S21  
|
*
10  
AT-41532 Typical Scattering Parameters, Common Emitter, ZO = 50 , VCE = 5 V, IC = 10 mA  
Freq.  
GHz  
S11  
S21  
S12  
S22  
Mag  
Ang  
dB  
Mag  
Ang  
dB  
Mag  
Ang  
Mag  
Ang  
0.5  
0.75  
1.0  
1.5  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
11.0  
12.0  
0.239  
0.182  
0.160  
0.155  
0.167  
0.201  
0.246  
0.306  
0.369  
0.430  
0.489  
0.539  
0.588  
0.638  
0.713  
-113  
-140  
-162  
164  
140  
105  
76  
54  
40  
27  
14  
18.69  
15.51  
13.20  
9.95  
7.75  
4.87  
3.05  
1.79  
0.86  
0.23  
-0.35  
-0.91  
-1.58  
-3.09  
-3.24  
8.601  
5.966  
4.571  
3.144  
2.440  
1.751  
1.421  
1.229  
1.105  
1.027  
0.961  
0.900  
0.834  
0.701  
0.689  
98  
86  
78  
63  
51  
-28.05  
-25.18  
-22.94  
-19.50  
-16.89  
-12.90  
-9.80  
-7.24  
-5.11  
-3.33  
-2.11  
-1.49  
-1.45  
-1.93  
-2.58  
0.040  
0.055  
0.071  
0.106  
0.143  
0.226  
0.324  
0.434  
0.555  
0.682  
0.785  
0.842  
0.846  
0.801  
0.743  
69  
70  
71  
69  
66  
57  
45  
31  
14  
0.641  
0.611  
0.597  
0.585  
0.578  
0.566  
0.553  
0.523  
0.461  
0.366  
0.308  
0.342  
0.419  
0.501  
0.616  
-18  
-19  
-20  
-26  
-33  
-49  
-67  
-88  
-115  
-149  
161  
110  
70  
29  
9
-10  
-26  
-42  
-58  
-73  
-88  
-102  
-115  
-5  
-26  
-47  
-68  
-88  
-104  
-1  
-16  
-29  
-38  
40  
9
25  
1.25  
gmax = maximum available gain ( MAG) if k > 1  
gmax = maximum stable gain ( MSG) if k < 1  
k = stability factor  
20  
15  
10  
1
S21  
S12  
MAG =  
( k± √k2–1)  
0.75  
0.5  
MSG = |S21|/ |S12  
|
2
2
2
1 – |S11| – |S22| + |D|  
; D = S11S22 S12S21  
k =  
2 |S12||S21  
|
*
5
0
0.25  
0
gmax  
dB(S|2,1|)  
k
0
1
2
3
4
5
6
FREQUENCY (GHz)  
Figure 15. Gain vs. Frequency at  
5 V, 10 mA.  
Note: dB(|S21|) = 20 log( |S21|)  
*
11  
The input matching network uses  
a series inductor for the noise  
match. Some fine tuning for  
lowest noise figure and improved  
input VSWR can be accomplished  
by adding capacitance at C2. The  
shunt C is accomplished with an  
open circuited stub while a chip  
inductor is used for the series  
element. The output impedance  
matching network is a high pass  
structure consisting of a series  
capacitor and shunt inductor. A  
resistor is paralleled across the  
shunt inductor to enhance broad  
band stability through 10 GHz.  
Bias insertion is accomplished  
through the use of the shunt  
inductor appropriately bypassed.  
Surface mount Coilcraft induc-  
tors were chosen for their small  
size.  
C1,C4 10 pF chip capacitor  
AT-41532 Application  
Information  
The AT-41532 is described in a  
low noise amplifier for use in the  
800 to 900 MHz frequency range.  
The amplifier is designed for use  
with .032 inch thickness FR-4  
printed circuit board material.  
C2  
Open circuited stub – see  
text  
C3  
C5  
L1  
2.7 pF chip capacitor  
1000 pF chip capacitor  
8 nH chip inductor  
(Coilcraft 1008CS-080)  
L2  
L3  
Optional (see R1)  
15 nH chip inductor  
900 MHz LNA Design  
The amplifier is designed for a  
(Coilcraft 1008CS-150)  
Q1  
Agilent  
V
CE  
of 5 volts and I of 5 mA. and  
C
AT-41532 Silicon Bipolar  
Transistor  
a minimum power supply voltage  
of 5.25 volts. Higher power supply  
voltages will require an additional  
resistance to be inserted at the  
power supply terminal. The  
amplifier schematic is shown in  
Figure 16.  
R1  
10K chip resistor (may  
want to substitute a  
180 nH chip inductor and  
50 resistor for lower  
noise figure , better low  
freq stability, then  
A component list is shown in  
Figure 17. The artwork including  
component placement is shown  
in Figure 18.  
readjust R2)  
R2  
48 K chip resistor  
(adjust for rated Ic)  
Biasing  
R3  
R4  
R5  
R6  
3.32 K chip resistor  
3.32 K chip resistor  
51.1 chip resistor  
The bias network is designed for  
a nominal power supply voltage  
of 5.25 volts. Resistors R1 and R2  
are used to adjust collector  
current. Resistor R4 can be  
attached to the junction of R5 and  
C5 to improve bias point stability.  
OUTPUT  
o
C3  
C2  
C1  
Q1  
INPUT  
L1  
R2  
R6  
Z
1.1K chip resistor (see  
L3  
C4  
Z
o
text)  
L2  
R1  
R5  
C5  
Z
o
50 microstripline  
V
= 5.25 V  
CC  
R4  
R3  
C4  
Figure 17. Component Parts List.  
Performance  
The measured gain of the com-  
pleted amplifier is shown in  
Figure 19. The gain varies  
from 14 to 15 dB over the 800 to  
900 MHz frequency range. Noise  
figure versus frequency is shown  
in Figure 20. Best performance  
occurs at 850 MHz providing a  
near 1 dB noise figure.  
Figure 16. Schematic Diagram.  
AT-3XX32  
AT-4XX32  
01/98 AJW  
.062 FR-4  
OUT  
IN  
Vcc  
Figure 18. 1X Artwork showing  
Component Placement.  
12  
0
-2  
-4  
-6  
Measured input and output return  
loss is shown in Figure 21. The  
input return loss is 10 dB at  
850 MHz and can be improved  
with slight tuning at C2. Output  
return loss was measured at  
almost 10 dB at 850 MHz.  
27 range and has similar effects  
on circuit stability. A third  
alternative is to re-optimize the  
output match for power as  
opposed to matching for lowest  
output VSWR. This may make the  
output return loss less than 10 dB  
but it would enhance power  
output.  
-8  
-10  
16  
Input  
Output  
-12  
-14  
14  
Modifications to Original  
Demo Board  
500  
600  
700  
800  
900  
1000  
FREQUENCY (MHz)  
12  
10  
The original demo board dated  
01/98 requires some modification  
to work as described in this  
application note. The modifica-  
tion is to add resistor R6 in series  
with the collector lead. This is  
accomplished by cutting the etch  
at the output of Q1 such that  
resistor R6 can be placed on the  
circuit board as shown in  
Figure 17. Inductor L3 will then  
have be placed at a 90 degree  
angle with respect to its original  
intended location. L3 is then  
connected to the junction of R6  
and L4 with a small piece of wire  
or etch.  
Figure 21. Input/Output Return Loss.  
There is considerable tuning  
interaction between input and  
output matching networks in any  
single stage amplifier. Having a  
somewhat better input return loss  
coincident with low noise figure  
may necessitate a compromise in  
output return loss.  
8
6
500  
600  
700  
800  
900  
1000  
FREQUENCY (MHz)  
Figure 19. Gain vs Frequency.  
1.6  
1.5  
Output intercept point, IP , was  
measured at 850 MHz to be  
+12 dBm. Removing the 1.1 KΩ  
resistor at R6 increases IP to  
+13.6 dBm. Resistor R6 was  
originally added to enhance  
3
1.4  
3
1.3  
1.2  
stability; caution is urged when  
removing this resistor or increas-  
ing its value without careful  
analysis. Another alternative to  
the shunt resistor R6 would be to  
incorporate a resistor in series  
with the transistor collector lead.  
This resistor would be in the 10 to  
Using the AT-41532 at Other  
Frequencies  
The demo board and design  
techniques presented here can be  
used to build low noise amplifiers  
for other frequencies in the VHF  
through 1.9 GHz frequency range.  
1.1  
1
500  
600  
700  
800  
900  
1000  
FREQUENCY (MHz)  
Figure 20. Noise Figure vs Frequency.  
13  
Ordering Information  
Part Number  
Increment  
Comments  
AT-41532-BLK  
AT-41532-TR1  
AT-41532-TR2  
100  
3000  
10000  
Bulk  
7" Reel  
13" Reel  
Package Dimensions  
SOT-323 Plastic Package  
1.30 (0.051)  
REF.  
2.20 (0.087)  
2.00 (0.079)  
1.35 (0.053)  
1.15 (0.045)  
0.650 BSC (0.025)  
0.425 (0.017)  
TYP.  
2.20 (0.087)  
1.80 (0.071)  
0.10 (0.004)  
0.00 (0.00)  
0.30 REF.  
0.20 (0.008)  
0.10 (0.004)  
1.00 (0.039)  
0.80 (0.031)  
0.25 (0.010)  
0.15 (0.006)  
10°  
0.30 (0.012)  
0.10 (0.004)  
14  
Tape Dimensions and Product Orientation  
For Outline SOT-323 ( SC-70 3 Lead)  
P
P
D
2
P
0
E
F
W
C
D
1
t
(CARRIER TAPE THICKNESS)  
T (COVER TAPE THICKNESS)  
t
1
K
8° MAX.  
5° MAX.  
0
A
B
0
0
DESCRIPTION  
SYMBOL  
SIZE (mm)  
SIZE (INCHES)  
CAVITY  
LENGTH  
WIDTH  
DEPTH  
PITCH  
A
B
K
P
D
2.24 ± 0.10  
2.34 ± 0.10  
1.22 ± 0.10  
4.00 ± 0.10  
1.00 + 0.25  
0.088 ± 0.004  
0.092 ± 0.004  
0.048 ± 0.004  
0.157 ± 0.004  
0.039 + 0.010  
0
0
0
BOTTOM HOLE DIAMETER  
1
0
PERFORATION  
DIAMETER  
PITCH  
POSITION  
D
P
E
1.55 ± 0.05  
4.00 ± 0.10  
1.75 ± 0.10  
0.061 ± 0.002  
0.157 ± 0.004  
0.069 ± 0.004  
CARRIER TAPE WIDTH  
THICKNESS  
W
8.00 ± 0.30  
0.315 ± 0.012  
t
0.255 ± 0.013 0.010 ± 0.0005  
5.4 ± 0.10 0.205 ± 0.004  
0.062 ± 0.001 0.0025 ± 0.00004  
1
COVER TAPE  
WIDTH  
C
TAPE THICKNESS  
T
t
DISTANCE  
CAVITY TO PERFORATION  
(WIDTH DIRECTION)  
F
3.50 ± 0.05  
0.138 ± 0.002  
CAVITY TO PERFORATION  
(LENGTH DIRECTION)  
P
2
2.00 ± 0.05  
0.079 ± 0.002  
www.semiconductor.agilent.com  
Data subject to change.  
Copyright © 1999 Agilent Technologies  
5965-6167E (11/99)  

相关型号:

AT-41532-BLK

NPN SILICON TRANSISTOR
AGILENT

AT-41532-BLKG

RF Small Signal Bipolar Transistor, 0.05A I(C), 1-Element, S Band, Silicon, NPN, PLASTIC, SC-70, 3 PIN
AGILENT

AT-41532-TR1

NPN SILICON TRANSISTOR
AGILENT

AT-41532-TR1G

S BAND, Si, NPN, RF SMALL SIGNAL TRANSISTOR, ROHS COMPLIANT, PLASTIC, SC-70, 3 PIN
AVAGO

AT-41532-TR1G

RF Small Signal Bipolar Transistor, 0.05A I(C), 1-Element, S Band, Silicon, NPN, PLASTIC, SC-70, 3 PIN
AGILENT

AT-41532-TR2

TRANSISTOR | BJT | NPN | 12V V(BR)CEO | 50MA I(C) | SOT-323
ETC

AT-41532-TR2G

RF Small Signal Bipolar Transistor, 0.05A I(C), 1-Element, S Band, Silicon, NPN, PLASTIC, SC-70, 3 PIN
AGILENT

AT-41533

General Purpose, Low Noise NPN Silicon Bipolar Transistor
AGILENT

AT-41533

General Purpose, Low Noise NPN Silicon Bipolar Transistors Lead-free
AVAGO

AT-41533-BLK

General Purpose, Low Noise NPN Silicon Bipolar Transistor
AGILENT

AT-41533-BLKG

RF Small Signal Bipolar Transistor, 0.05A I(C), 1-Element, S Band, Silicon, NPN, PLASTIC, SMT, 3 PIN
AGILENT

AT-41533-TR1

General Purpose, Low Noise NPN Silicon Bipolar Transistor
AGILENT