S1D13A05B00B200 [EPCOS]

LCD/USB Companion Chip; LCD / USB辅助芯片
S1D13A05B00B200
型号: S1D13A05B00B200
厂家: EPCOS    EPCOS
描述:

LCD/USB Companion Chip
LCD / USB辅助芯片

CD
文件: 总184页 (文件大小:1122K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
S1D13A05 LCD/USB Companion Chip  
Hardware Functional Specification  
Document Number: X40A-A-001-07  
Status: Revision 7.7  
Issue Date: 2012/02/27  
© SEIKO EPSON CORPORATION 2002 - 2012. Inc. All Rights Reserved.  
Information in this document is subject to change without notice. You may download and use this document, but only for your own use in  
evaluating Seiko Epson/EPSON products. You may not modify the document. Epson Research and Development, Inc. disclaims any  
representation that the contents of this document are accurate or current. The Programs/Technologies described in this document may contain  
material protected under U.S. and/or International Patent laws.  
EPSON is a registered trademark of Seiko Epson Corporation. All other Trademarks are the property of their respective owners  
Page 2  
Epson Research and Development  
Vancouver Design Center  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 3  
Vancouver Design Center  
Table of Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
1.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
1.2 Overview Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1 Integrated Frame Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.2 CPU Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.3 Display Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.4 Display Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.5 Display Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.6 Clock Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.7 USB Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.8 2D Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
2.9 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3
4
Typical System Implementation Diagrams . . . . . . . . . . . . . . . . . . . . . . 11  
3.1 Typical System Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.2 USB Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
4.1 Pinout Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
4.1.1 PFBGA 121-pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
4.2 Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.2.1 Host Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4.2.2 LCD Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
4.2.3 Clock Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4.2.4 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4.2.5 Power And Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
4.3 Summary of Configuration Options . . . . . . . . . . . . . . . . . . . . . . 25  
4.4 Host Bus Interface Pin Mapping . . . . . . . . . . . . . . . . . . . . . . . 26  
4.5 LCD Interface Pin Mapping . . . . . . . . . . . . . . . . . . . . . . . . . 27  
5
6
D.C. Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
A.C. Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
6.1 Clock Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
6.1.1 Input Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
6.1.2 Internal Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
6.2 RESET# Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
6.3 CPU Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
6.3.1 Generic #1 Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 4  
Epson Research and Development  
Vancouver Design Center  
6.3.2 Generic #2 Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6.3.3 Hitachi SH-3 Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
6.3.4 Hitachi SH-4 Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
6.3.5 Motorola MC68K #1 Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . 40  
6.3.6 Motorola MC68K #2 Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . 42  
6.3.7 Motorola REDCAP2 Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . 44  
6.3.8 Motorola Dragonball Interface Timing with DTACK . . . . . . . . . . . . . . . . 46  
6.3.9 Motorola Dragonball Interface Timing w/o DTACK . . . . . . . . . . . . . . . . . 48  
6.4 LCD Power Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
6.4.1 Passive/TFT Power-On Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
6.4.2 Passive/TFT Power-Off Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
6.5 Display Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
6.5.1 Generic STN Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
6.5.2 Single Monochrome 4-Bit Panel Timing . . . . . . . . . . . . . . . . . . . . . . . 54  
6.5.3 Single Monochrome 8-Bit Panel Timing . . . . . . . . . . . . . . . . . . . . . . . 56  
6.5.4 Single Color 4-Bit Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
6.5.5 Single Color 8-Bit Panel Timing (Format 1) . . . . . . . . . . . . . . . . . . . . . 60  
6.5.6 Single Color 8-Bit Panel Timing (Format 2) . . . . . . . . . . . . . . . . . . . . . 62  
6.5.7 Single Color 16-Bit Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
6.5.8 Generic TFT Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
6.5.9 9/12/18-Bit TFT Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
6.5.10 Sharp HR-TFT Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
6.5.11 Casio TFT Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
6.5.12 TFT Type 2 Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
6.5.13 TFT Type 3 Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
6.5.14 TFT Type 4 Panel Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
6.6 USB Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83  
7
Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
7.1 Clock Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85  
7.1.1 BCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
7.1.2 MCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
7.1.3 PCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
7.1.4 PWMCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
7.2 Clock Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88  
7.3 Clocks versus Functions . . . . . . . . . . . . . . . . . . . . . . . . . . .89  
8
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
8.1 Register Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90  
8.2 Register Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91  
8.3 LCD Register Descriptions (Offset = 0h) . . . . . . . . . . . . . . . . . . . .93  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 5  
Vancouver Design Center  
8.3.1 Read-Only Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
8.3.2 Clock Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
8.3.3 Panel Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
8.3.4 Look-Up Table Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
8.3.5 Display Mode Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103  
8.3.6 Picture-in-Picture Plus (PIP+) Registers . . . . . . . . . . . . . . . . . . . . . . . 110  
8.3.7 Miscellaneous Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
8.3.8 Extended Panel Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
8.4 USB Registers (Offset = 4000h) . . . . . . . . . . . . . . . . . . . . . . . 135  
8.5 2D Acceleration (BitBLT) Registers (Offset = 8000h) . . . . . . . . . . . . . . 153  
8.6 2D Accelerator (BitBLT) Data Register Descriptions . . . . . . . . . . . . . . . 160  
9
2D Accelerator (BitBLT) Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
9.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
9.2 BitBLT Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161  
10 Frame Rate Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162  
11 Display Data Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163  
12 Look-Up Table Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
12.1 Monochrome Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
12.2 Color Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166  
13 SwivelView™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
13.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
13.2 90° SwivelView™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
13.2.1 Register Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171  
13.3 180° SwivelView™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
13.3.1 Register Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172  
13.4 270° SwivelView™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173  
13.4.1 Register Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174  
14 Picture-in-Picture Plus (PIP+) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
14.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175  
14.2 With SwivelView Enabled . . . . . . . . . . . . . . . . . . . . . . . . . 176  
14.2.1 SwivelView 90° . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
14.2.2 SwivelView 180° . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176  
14.2.3 SwivelView 270° . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177  
15 Power Save Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178  
16 USB Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
16.1 USB Oscillator Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 179  
17 Mechanical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180  
18 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 6  
Epson Research and Development  
Vancouver Design Center  
19 Sales and Technical Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 7  
Vancouver Design Center  
1 Introduction  
1.1 Scope  
This is the Hardware Functional Specification for the S1D13A05 LCD/USB Companion  
Chip. Included in this document are timing diagrams, AC and DC characteristics, register  
descriptions, and power management descriptions. This document is intended for two  
audiences: Video Subsystem Designers and Software Developers.  
This document is updated as appropriate. Please check for the latest revision of this  
document before beginning any development. The latest revision can be downloaded at  
www.erd.epson.com.  
We appreciate your comments on our documentation. Please contact us via email at  
documentation@erd.epson.com.  
1.2 Overview Description  
The S1D13A05 is an LCD/USB solution designed for seamless connection to a wide  
variety of microprocessors. The S1D13A05 integrates a USB slave controller and an LCD  
graphics controller with an embedded 256K byte SRAM display buffer. The LCD  
controller supports all standard panel types and multiple TFT types eliminating the need for  
an external timing control IC. The S1D13A05 includes a Hardware Acceleration Engine to  
greatly improve screen drawing functions and the built-in USB controller provides revision  
1.1 compliance for applications requiring a USB client. This high level of integration  
provides a low cost, low power, single chip solution to meet the demands of embedded  
markets requiring USB client support, such as Mobile Communications devices and Palm-  
size PCs.  
The S1D13A05 utilizes a guaranteed low-latency CPU architecture that provides support  
for microprocessors without READY/WAIT# handshaking signals. The 32-bit internal data  
path, write buffer and the Hardware Acceleration Engine provide high performance  
bandwidth into display memory allowing for fast display updates.  
TM  
Additionally, products requiring a rotated display can take advantage of the SwivelView  
feature which provides hardware rotation of the display memory transparent to the software  
application. The S1D13A05 also provides support for “Picture-in-Picture Plus” (a variable  
size Overlay window).  
®
The S1D13A05, with its integrated USB client, provides impressive support for Palm OS  
handhelds. However, its impartiality to CPU type or operating system makes it an ideal  
display solution for a wide variety of applications.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 8  
Epson Research and Development  
Vancouver Design Center  
2 Features  
2.1 Integrated Frame Buffer  
• Embedded 256K byte SRAM display buffer.  
2.2 CPU Interface  
• Direct support of the following interfaces:  
Hitachi SH-4 / SH-3.  
Motorola M68xxx (REDCAP2, DragonBall, ColdFire).  
Motorola DragonBall SZ Support (66MHz).  
Motorola “REDCAP2” - no WAIT# signal.  
Generic MPU bus interface with programmable ready (WAIT#).  
• “Fixed” low-latency CPU access times.  
• Registers are memory-mapped - M/R# input selects between memory and register  
address space.  
• The complete 256K byte display buffer is directly and contiguously available through  
the 18-bit address bus.  
2.3 Display Support  
• Single-panel, single drive passive displays.  
• 4/8-bit monochrome LCD interface.  
• 4/8/16-bit color LCD interface.  
• Active Matrix TFT interface.  
• 9/12/18-bit interface.  
• Extended TFT interfaces (Type 2, 3, 4)  
• ‘Direct’ support for 18-bit Sharp HR-TFT LCD (or compatible interfaces).  
• ‘Direct’ support for the Casio TFT LCD (or compatible interfaces).  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 9  
Vancouver Design Center  
2.4 Display Modes  
• 1/2/4/8/16 bit-per-pixel (bpp) color depths.  
• Up to 64 gray shades on monochrome passive LCD panels.  
• Up to 64K colors on passive panels.  
• Up to 64K colors on active matrix LCD panels.  
• Example resolutions:  
320x320 at a color depth of 16 bpp  
160x160 at a color depth of 16 bpp (2 pages)  
160x240 at a color depth of 16 bpp  
2.5 Display Features  
• SwivelView™: 90°, 180°, 270° counter-clockwise hardware rotation of display image.  
+
• Picture-in-Picture Plus (PIP ): displays a variable size window overlaid over back-  
ground image.  
• Pixel Doubling: independent control of both horizontal and vertical pixel doubling.  
• example usage: 160x160 8 bpp can be expanded to 320x320 8 bpp without any addi-  
tional memory.  
• supports all color depths.  
• Double Buffering/Multi-pages: provides smooth animation and instantaneous screen  
updates.  
2.6 Clock Source  
• Three independent clock inputs: CLKI, CLKI2 and USBCLK.  
• Flexible clock source selection:  
• internal Bus Clock (BCLK) selected from CLKI, CLKI/2, or CLKI2  
• internal Memory Clock (MCLK) selected from BCLK or BCLK divide ratio  
(REG[04h)  
• internal Pixel Clock (PCLK) selected from CLKI, CLKI2, MCLK, or BCLK. PCLK  
can also be divided down from source  
• Single clock input possible if USB support not required.  
2.7 USB Device  
• USB Client, revision 1.1 compliant.  
• Dedicated clock input: USBCLK.  
• 48MHz crystal oscillator for USBCLK.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 10  
Epson Research and Development  
Vancouver Design Center  
2.8 2D Acceleration  
• 2D BitBLT engine including:  
Write BitBLT  
Transparent Write BitBLT  
Move BitBLT  
Solid Fill BitBLT  
Transparent Move BitBLT  
Read BitBLT  
Pattern Fill BitBLT  
Move BitBLT with Color Expansion  
Color Expansion BitBLT  
2.9 Miscellaneous  
• Software initiated Video Invert.  
• Software initiated Power Save mode.  
• General Purpose Input/Output pins are available.  
• IO Operates at 3.3 volts 10%.  
• Core operates at 2.0 volts 10% or 2.5 volts 10%.  
• 121-pin PFBGA package.  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 11  
Vancouver Design Center  
3 Typical System Implementation Diagrams  
3.1 Typical System Diagrams.  
Oscillator  
Generic #1  
BUS  
IOVDD  
VSS  
BS#  
AB0  
16-bit  
Single  
LCD  
FPDAT[15:0]  
FPFRAME  
D[15:0]  
FPFRAME  
M/R#  
CS#  
A[27:18]  
CSn#  
Decoder  
Display  
FPLINE  
FPSHIFT  
DRDY  
FPLINE  
FPSHIFT  
MOD  
A[17:1]  
D[15:0]  
AB[17:1]  
DB[15:0]  
WE0#  
WE1#  
S1D13A05  
WE0#  
WE1#  
GPIO0  
RD0#  
RD1#  
RD#  
RD/WR#  
WAIT#  
WAIT#  
BUSCLK  
RESET#  
CLKI  
RESET#  
Figure 3-1: Typical System Diagram (Generic #1 Bus)  
.
Oscillator  
Generic #2  
BUS  
IOVDD  
BS#  
9-bit  
TFT  
Display  
RD/WR#  
FPDAT[8:0]  
D[8:0]  
M/R#  
A[27:18]  
Decoder  
FPFRAME  
FPFRAME  
CSn#  
CS#  
FPLINE  
FPSHIFT  
DRDY  
FPLINE  
FPSHIFT  
DRDY  
A[17:0]  
D[15:0]  
AB[17:0]  
DB[15:0]  
WE#  
S1D13A05  
WE0#  
WE1#  
BHE#  
GPIO0  
RD#  
RD#  
WAIT#  
WAIT#  
BUSCLK  
RESET#  
CLKI  
RESET#  
Figure 3-2: Typical System Diagram (Generic #2 Bus)  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 12  
Epson Research and Development  
Vancouver Design Center  
.
Oscillator  
SH-4  
BUS  
AB0  
VSS  
12-bit  
TFT  
Display  
FPDAT15  
D11  
D10  
A[25:18]  
CSn#  
M/R#  
CS#  
Decoder  
FPDAT12  
FPDAT[9:0]  
D[9:0]  
FPFRAME  
FPLINE  
FPFRAME  
FPLINE  
A[17:1]  
D[15:0]  
WE0#  
AB[17:1]  
DB[15:0]  
WE0#  
FPSHIFT  
DRDY  
FPSHIFT  
DRDY  
WE1#  
BS#  
WE1#  
S1D13A05  
BS#  
RD/WR#  
RD#  
GPIO0  
RD/WR#  
RD#  
RDY#  
WAIT#  
CKIO  
CLKI  
RESET#  
RESET#  
Figure 3-3: Typical System Diagram (Hitachi SH-4 Bus)  
.
Oscillator  
SH-3  
BUS  
AB0  
VSS  
18-bit  
TFT  
Display  
A[25:18]  
CSn#  
M/R#  
CS#  
FPDAT[17:0]  
FPFRAME  
Decoder  
D[17:0]  
FPFRAME  
A[17:1]  
D[15:0]  
AB[17:1]  
DB[15:0]  
FPLINE  
FPSHIFT  
DRDY  
FPLINE  
FPSHIFT  
DRDY  
WE0#  
WE1#  
BS#  
WE0#  
WE1#  
S1D13A05  
BS#  
RD/WR#  
RD#  
GPO0  
RD/WR#  
RD#  
WAIT#  
WAIT#  
CKIO  
CLKI  
RESET#  
RESET#  
Figure 3-4: Typical System Diagram (Hitachi SH-3 Bus)  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 13  
Vancouver Design Center  
.
Oscillator  
MC68K #1  
BUS  
IOVDD  
RD#  
FPDAT[17:0]  
FPFRAME  
FPLINE  
D[17:0]  
SPS  
18-bit  
HR-TFT  
Display  
WE0#  
A[23:18]  
FC0, FC1  
LP  
M/R#  
Decoder  
FPSHIFT  
CLK  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
PS  
CS#  
Decoder  
CLS  
REV  
SPL  
A[17:1]  
D[15:0]  
AB[17:1]  
DB[15:0]  
LDS#  
AB0  
S1D13A05  
UDS#  
AS#  
WE1#  
BS#  
R/W#  
RD/WR#  
WAIT#  
DTACK#  
CLK  
CLKI  
RESET#  
RESET#  
Figure 3-5: Typical System Diagram (MC68K # 1, Motorola 16-Bit 68000)  
.
Oscillator  
MC68K #2  
BUS  
A[31:18]  
FC0, FC1  
M/R#  
Decoder  
FPDAT[17:0]  
D[17:0]  
SPS  
18-bit  
HR-TFT  
Display  
CS#  
FPFRAME  
FPLINE  
Decoder  
LP  
A[17:0]  
AB[17:0]  
DB[15:0]  
FPSHIFT  
CLK  
D[31:16]  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
PS  
CLS  
REV  
SPL  
DS#  
AS#  
WE1#  
BS#  
S1D13A05  
R/W#  
SIZ1  
RD/WR#  
RD#  
SIZ0  
WE0#  
WAIT#  
DSACK1#  
CLK  
CLKI  
RESET#  
RESET#  
Figure 3-6: Typical System Diagram (MC68K #2, Motorola 32-Bit 68030)  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 14  
Epson Research and Development  
Vancouver Design Center  
.
Oscillator  
REDCAP2  
BUS  
IOVDD  
BS#  
4-bit  
Single  
LCD  
Display  
FPDAT[7:4]  
FPSHIFT  
D[3:0]  
M/R#  
CS#  
A[21:18]  
CSn  
Decoder  
FPSHIFT  
FPFRAME  
FPLINE  
DRDY  
FPFRAME  
FPLINE  
MOD  
A[17:1]  
D[15:0]  
AB[17:1]  
DB[15:0]  
S1D13A05  
R/W  
OE  
GPIO0  
RD/WR#  
RD#  
EB1  
WE0#  
WE1#  
EB0  
CLK  
CLKI  
RESET_OUT  
RESET#  
AB0  
VSS  
*Note: CSn# can be any of CS0-CS4  
Figure 3-7: Typical System Diagram (Motorola REDCAP2 Bus)  
.
Oscillator  
MC68EZ328/  
MC68VZ328  
IOVDD  
BS#  
DragonBall  
BUS  
8-bit  
Single  
LCD  
Display  
RD/WR#  
M/R#  
FPDAT[7:0]  
FPSHIFT  
D[7:0]  
FPSHIFT  
A[25:18]  
Decoder  
FPFRAME  
FPLINE  
DRDY  
FPFRAME  
FPLINE  
MOD  
CSX  
CS#  
A[17:1]  
D[15:0]  
AB[17:1]  
DB[15:0]  
S1D13A05  
GPIO0  
LWE  
WE0#  
WE1#  
UWE  
OE  
RD#  
DTACK  
WAIT#  
CLKO  
CLKI  
RESET  
RESET#  
AB0  
VSS  
Figure 3-8: Typical System Diagram (Motorola MC68EZ328/MC68VZ328 “DragonBall” Bus)  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 15  
Vancouver Design Center  
3.2 USB Interface  
USB Socket  
S1D13A05  
150kΩ  
VBus  
USBDETECT  
(GPIO5)  
300kΩ  
USBPUP  
(GPIO4)  
Full Speed Device  
IOVDD  
1.5kΩ  
20Ω  
20Ω  
USBDP  
(GPIO7)  
DP  
USBDM  
(GPIO6)  
DM  
300kΩ  
NNCD5.6LG  
Overvoltage  
Protection  
ESD  
Protection  
VSS  
GND  
Figure 3-9: USB Typical Implementation  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 16  
Epson Research and Development  
Vancouver Design Center  
4 Pins  
4.1 Pinout Diagrams  
4.1.1 PFBGA 121-pin  
L
K
J
H
G
F
E
D
C
B
A
1
2
3
4
5
6
7
8
9
10 11  
BOTTOM VIEW  
Figure 4-1: Pinout Diagram - PFBGA 121-pin  
Table 4-1: PFBGA 121-pin Mapping  
NC  
GPO0  
GPO1  
DB12  
WAIT#  
RESET#  
RD#  
IOVDD  
VSS  
DB7  
DB8  
DB3  
DB4  
DB0  
DB1  
GPIO7  
GPIO6  
GPO3  
IOVDD  
GPIO5  
GPO4  
AB13  
AB17  
AB16  
AB14  
AB15  
6
GPIO3  
GPIO2  
GPIO1  
GPIO4  
FPDAT5  
FPDAT8  
TESTEN  
CNF3  
GPIO0  
IRQ  
IOVDD  
DRDY  
COREVDD  
VSS  
NC  
L
K
J
GPO6  
DB9  
DB6  
DB5  
DB2  
USBCLK FPFRAME COREVDD  
GPO7  
DB11  
DB15  
VSS  
DB10  
DB14  
RD/WR#  
M/R#  
AB2  
DB13  
IOVDD  
WE1#  
CS#  
GPO2  
VSS  
CLKI  
WE0#  
AB12  
AB9  
GPO5  
FPLINE  
FPDAT2  
VSS  
FPSHIFT  
FPDAT3  
FPDAT7  
FPDAT0  
FPDAT4  
IOVDD  
H
G
F
FPDAT1  
FPDAT6  
FPDAT9  
BS#  
FPDAT12 FPDAT11 FPDAT10  
E
D
C
B
A
AB0  
AB1  
AB8  
FPDAT13 FPDAT16 FPDAT15 FPDAT14  
USBOSCO COREVDD  
AB3  
AB6  
CNF2  
CNF5  
CNF4  
NC  
CNF6  
CLKI2  
PWMOUT  
9
FPDAT17  
VSS  
GPO8  
GPO9  
NC  
USBOSCI  
VSS  
COREVDD  
2
AB5  
GPO10  
AB7  
AB10  
AB11  
5
CNF1  
NC  
AB4  
CNF0  
IOVDD  
10  
1
3
4
7
8
11  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 17  
Vancouver Design Center  
4.2 Pin Descriptions  
Key:  
I
=
=
=
=
=
=
=
=
=
=
=
=
=
Input  
O
Output  
IO  
Bi-Directional (Input/Output)  
Power pin  
P
CI  
CMOS input  
a
LI  
LVTTL input  
LB2A  
LB3P  
LO3  
LB3M  
T1  
LVTTL IO buffer (6mA/-6mA@3.3V)  
Low noise LVTTL IO buffer (6mA/-6mA@3.3V)  
Low noise LVTTL Output buffer (3mA/-3mA@3.3V)  
Low noise LVTTL IO buffer with input mask (3mA/-3mA@3.3V)  
Test mode control input with pull-down resistor (typical value of 50KΩ at 3.3V)  
High Impedance  
Hi-Z  
CUS  
Custom Cell Type  
a
LVTTL is Low Voltage TTL.  
4.2.1 Host Interface  
Table 4-2: Host Interface Pin Descriptions  
I/O type  
(see key  
above)  
PFBGA  
Pin #  
RESET#  
State  
Pin Name  
Description  
This input pin has multiple functions.  
• For Generic #1, this pin is not used and should be connected to VSS.  
• For Generic #2, this pin inputs system address bit 0 (A0).  
• For SH-3/SH-4, this pin is not used and should be connected to VSS.  
• For MC68K #1, this pin inputs the lower data strobe (LDS#).  
• For MC68K #2, this pin inputs system address bit 0 (A0).  
AB0  
D1  
LI  
• For REDCAP2, this pin is not used and should be connected to VSS.  
• For DragonBall, this pin is not used and should be connected to VSS.  
D6,C6,A6,  
B6,E6,D5,  
A5,B5,C5,  
D4,A4,C4,  
B3,A3,C3,  
D3,D2  
AB[17:1]  
CI  
System address bus bits 17-1.  
Input data from the system data bus.  
• For Generic #1, these pins are connected to D[15:0].  
• For Generic #2, these pins are connected to D[15:0].  
• For SH-3/SH-4, these pins are connected to D[15:0].  
• For MC68K #1, these pins are connected to D[15:0].  
G2, G3,  
H4, H1,  
H2, H3,  
DB[15:0] J2, K3, L3,  
J3, J4, K4,  
LB2A  
Hi-Z  
• For MC68K #2, these pins are connected to D[31:16] for a 32-bit device  
(e.g. MC68030) or D[15:0] for a 16-bit device (e.g. MC68340).  
L4, J5, K5,  
L5  
• For REDCAP2, these pins are connected to D[15:0].  
• For DragonBall, these pins are connected to D[15:0].  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 18  
Epson Research and Development  
Vancouver Design Center  
Table 4-2: Host Interface Pin Descriptions  
I/O type  
(see key  
above)  
PFBGA  
Pin #  
RESET#  
State  
Pin Name  
Description  
This input pin has multiple functions.  
• For Generic #1, this pin inputs the write enable signal for the lower data  
byte (WE0#).  
• For Generic #2, this pin inputs the write enable signal (WE#)  
• For SH-3/SH-4, this pin inputs the write enable signal for data byte 0  
(WE0#).  
WE0#  
E5  
LI  
• For MC68K #1, this pin must be tied to IO V  
DD  
• For MC68K #2, this pin inputs the bus size bit 0 (SIZ0).  
• For REDCAP2, this pin inputs the byte enable signal for the D[7:0] data  
byte (EB1).  
• For DragonBall, this pin inputs the byte enable signal for the D[7:0] data  
byte (LWE).  
This input pin has multiple functions.  
• For Generic #1, this pin inputs the write enable signal for the upper data  
byte (WE1#).  
• For Generic #2, this pin inputs the byte enable signal for the high data  
byte (BHE#).  
• For SH-3/SH-4, this pin inputs the write enable signal for data byte 1  
(WE1#).  
WE1#  
F4  
LI  
• For MC68K #1, this pin inputs the upper data strobe (UDS#).  
• For MC68K #2, this pin inputs the data strobe (DS#).  
• For REDCAP2, this pin inputs the byte enable signal for the D[15:8] data  
byte (EB0).  
• For DragonBall, this pin inputs the byte enable signal for the D[15:8]  
data byte (UWE).  
CS#  
E4  
E3  
CI  
LI  
Chip select input.  
This input pin is used to select between the display buffer and register  
address spaces of the S1D13A05. M/R# is set high to access the display  
buffer and low to access the registers.  
M/R#  
This input pin has multiple functions.  
• For Generic #1, this pin must be tied to IO V  
• For Generic #2, this pin must be tied to IO V  
.
DD  
.
DD  
• For SH-3/SH-4, this pin inputs the bus start signal (BS#).  
• For MC68K #1, this pin inputs the address strobe (AS#).  
• For MC68K #2, this pin inputs the address strobe (AS#).  
BS#  
E2  
LI  
• For REDCAP2, this pin must be tied to IO V  
.
DD  
• For DragonBall, this pin must be tied to IO V  
.
DD  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 19  
Vancouver Design Center  
Table 4-2: Host Interface Pin Descriptions  
I/O type  
(see key  
above)  
PFBGA  
Pin #  
RESET#  
State  
Pin Name  
Description  
This input pin has multiple functions.  
• For Generic #1, this pin inputs the read command for the upper data  
byte (RD1#).  
• For Generic #2, this pin must be tied to IO V  
.
DD  
• For SH-3/SH-4, this pin inputs the RD/WR# signal. The S1D13A05  
needs this signal for early decode of the bus cycle.  
RD/WR#  
F3  
LI  
• For MC68K #1, this pin inputs the R/W# signal.  
• For MC68K #2, this pin inputs the R/W# signal.  
• For REDCAP2, this pin inputs the R/W signal.  
• For DragonBall, this pin must be tied to IO V  
This input pin has multiple functions.  
.
DD  
• For Generic #1, this pin inputs the read command for the lower data  
byte (RD0#).  
• For Generic #2, this pin inputs the read command (RD#).  
• For SH-3/SH-4, this pin inputs the read signal (RD#).  
RD#  
E1  
LI  
• For MC68K #1, this pin must be tied to IO V  
.
DD  
• For MC68K #2, this pin inputs the bus size bit 1 (SIZ1).  
• For REDCAP2, this pin inputs the output enable (OE).  
• For DragonBall, this pin inputs the output enable (OE).  
During a data transfer, this output pin is driven active to force the system to  
insert wait states. It is driven inactive to indicate the completion of a data  
transfer. WAIT# is released to the high impedance state after the data  
transfer is complete. Its active polarity is configurable.  
• For Generic #1, this pin outputs the wait signal (WAIT#).  
• For Generic #2, this pin outputs the wait signal (WAIT#).  
• For SH-3 mode, this pin outputs the wait request signal (WAIT#).  
• For SH-4 mode, this pin outputs the device ready signal (RDY#).  
• For MC68K #1, this pin outputs the data transfer acknowledge signal  
(DTACK#).  
WAIT#  
G1  
LB2A  
Hi-Z  
• For MC68K #2, this pin outputs the data transfer and size acknowledge  
bit 1 (DSACK1#).  
• For REDCAP2, this pin is unused (Hi-Z).  
• For DragonBall, this pin outputs the data transfer acknowledge signal  
(DTACK).  
Note: This pin should be tied to the inactive voltage level as selected by  
CNF5, using a pull-up or pull-down resistor. If CNF5 = 1, the WAIT# pin  
should be tied low using a pull-down resistor. If CNF5 = 0, the WAIT# pin  
should be tied high using a pull-up resistor. If WAIT# is not used, this pin  
should be tied either high or low using a pull-up or pull-down resistor.  
Active low input to set all internal registers to the default state and to force all  
signals to their inactive states.  
RESET#  
F1  
LI  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 20  
Epson Research and Development  
Vancouver Design Center  
4.2.2 LCD Interface  
Table 4-3: LCD Interface Pin Descriptions  
I/O type  
RESET#  
Pin Name PFBGA Pin# (see key  
above)  
Description  
State  
C10,D9,D10,  
D11,D8,E9,  
E10,E11,  
FPDAT[17:0] E8,F7,F10,  
F8,G7,G11,  
LB3P  
LB3P  
LB3P  
LB3P  
0
Panel Data bits 17-0.  
G10,G9,G8,  
H11  
This output pin has multiple functions.  
• Frame Pulse  
• SPS for HR-TFT  
FPFRAME  
J9  
H9  
0
0
0
• GSRT for Casio  
• STV for TFT Type 2  
• STV for TFT Type 3  
This output pin has multiple functions.  
• Line Pulse  
• LP for HR-TFT  
FPLINE  
• GPCK for Casio  
• STB for TFT Type 2  
• LP for TFT Type 3  
This output pin has multiple functions.  
• Shift Clock  
• DCLK for HR-TFT  
• CLK for Casio  
FPSHIFT  
H10  
• CLK for TFT Type 2  
• CPH for TFT Type 3  
This output pin has multiple functions.  
• LCD backplane bias signal (MOD) for all other LCD panels  
• 2nd shift clock (FPSHIFT2) for passive LCD with Format 1 interface  
• Display enable (DRDY) for TFT panels  
• INV for TFT Type 2/3  
DRDY  
K9  
LO3  
0
• DRDY for TFT Type 4  
• General Purpose Output  
GPO0  
GPO1  
K1  
J1  
LO3  
LO3  
0
0
This is a general purpose output  
This output pin has multiple functions.  
• When in TFT Type 3 mode, operates as VCOM  
• General purpose output bit otherwise  
This output pin has multiple functions.  
GPO2  
GPO3  
H5  
J6  
LO3  
LO3  
0
0
• When in TFT Type 3 mode, operates as XOEV  
• General purpose output bit otherwise  
This output pin has multiple functions.  
• When in TFT Type 3 mode, operates as CMD  
• General purpose output bit otherwise  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 21  
Vancouver Design Center  
Table 4-3: LCD Interface Pin Descriptions  
I/O type  
RESET#  
Pin Name PFBGA Pin# (see key  
above)  
Description  
State  
This output pin has multiple functions.  
GPO4  
GPO5  
GPO6  
GPO7  
GPO8  
GPO9  
GPO10  
F6  
H8  
LO3  
LO3  
LO3  
LO3  
LO3  
LO3  
LO3  
0
• When in TFT Type 3 mode, operates as PCLK1  
• General purpose output bit otherwise  
This output pin has multiple functions.  
0
0
0
0
0
0
• When in TFT Type 3 mode, operates as PCLK2  
• General purpose output bit otherwise  
This output pin has multiple functions.  
K11  
J11  
C11  
B11  
B4  
• When in TFT Type 3 mode, operates as XRESH  
• General purpose output bit otherwise  
This output pin has multiple functions.  
• When in TFT Type 3 mode, operates as XRESV  
• General purpose output bit otherwise  
This output pin has multiple functions.  
• When in TFT Type 3 mode, operates as XOHV  
• General purpose output bit otherwise  
This output pin has multiple functions.  
• When in TFT Type 3 mode, operates as XSTBY  
• General purpose output bit otherwise  
This output pin has multiple functions.  
• When in TFT Type 3 mode, operates as PMDE  
• General purpose output bit otherwise  
This pin has multiple functions.  
• PS for HR-TFT  
• POL for Casio  
• VCLK for TFT Type 2  
• CPV for TFT Type 3  
GPIO0  
L8  
LB3M  
• General purpose IO pin 0 (GPIO0)  
When this pin is used for the above display modes, it must be configured  
as an output using REG[64h] after every RESET. Otherwise, it defaults to  
a Hi-Z state after every RESET and must either be configured as an  
output or be pulled high or low externally to avoid unnecessary current  
drain.  
This pin has multiple functions.  
• CLS for HR-TFT  
• GRES for Casio  
• AP for TFT Type 2  
• OE for TFT Type 3  
GPIO1  
J7  
LB3M  
• General purpose IO pin 1 (GPIO1)  
When this pin is used for the above display modes, it must be configured  
as an output using REG[64h] after every RESET. Otherwise, it defaults to  
a Hi-Z state after every RESET and must either be configured as an  
output or be pulled high or low externally to avoid unnecessary current  
drain.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 22  
Epson Research and Development  
Vancouver Design Center  
Table 4-3: LCD Interface Pin Descriptions  
I/O type  
RESET#  
Pin Name PFBGA Pin# (see key  
above)  
Description  
State  
This pin has multiple functions.  
• REV for HR-TFT  
• FRP for Casio  
• POL for TFT Type 2/3  
• General purpose IO pin 2 (GPIO2)  
GPIO2  
K7  
LB3M  
When this pin is used for the above display modes, it must be configured  
as an output using REG[64h] after every RESET. Otherwise, it defaults to  
a Hi-Z state after every RESET and must either be configured as an  
output or be pulled high or low externally to avoid unnecessary current  
drain.  
This pin has multiple functions.  
• SPL for HR-TFT  
• STH for Casio  
• STH for TFT Type 2  
• EIO for TFT Type 3  
GPIO3  
L7  
LB3M  
• General purpose IO pin 3 (GPIO3)  
When this pin is used for the above display modes, it must be configured  
as an output using REG[64h] after every RESET. Otherwise, it defaults to  
a Hi-Z state after every RESET and must either be configured as an  
output or be pulled high or low externally to avoid unnecessary current  
drain.  
This pin has multiple functions.  
• USBPUP  
• General purpose IO pin 4 (GPIO4)  
GPIO4  
GPIO5  
H7  
G6  
LB3M  
LB3M  
This pin is Hi-Z after every RESET and must either be configured as an  
output using REG[64h] or be pulled high or low externally to avoid  
unnecessary current drain.  
This pin has multiple functions.  
• USBDETECT  
• General purpose IO pin 5 (GPIO5)  
This pin always defaults as an input. When not used as a USBDETECT  
pin, it must either be configured as an output using REG[64h] or be pulled  
high or low externally to avoid unnecessary current drain.  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 23  
Vancouver Design Center  
Table 4-3: LCD Interface Pin Descriptions  
I/O type  
RESET#  
Pin Name PFBGA Pin# (see key  
above)  
Description  
State  
This pin has multiple functions.  
• USBDM  
• General purpose IO pin 6 (GPIO6)  
GPIO6  
GPIO7  
K6  
L6  
CUS  
CUS  
When not used as a USB connection, this pin defaults to a Hi-Z state after  
every RESET and must either be configured as an output using REG[64h]  
or be pulled high or low externally to avoid unnecessary current drain.  
This pin has multiple functions.  
• USBDP  
• General purpose IO pin 7  
When not used as a USB connection, this pin defaults to a Hi-Z state after  
every RESET and must either be configured as an output using REG[64h]  
or be pulled high or low externally to avoid unnecessary current drain.  
This output pin is the IRQ pin for USB. When IRQ is activated, an active  
high pulse is generated and stays high until the IRQ is serviced by  
software at REG[404Ah] or REG[404Ch].  
IRQ  
K8  
A9  
LO3  
LO3  
0
0
This pin has multiple functions.  
• PWM Clock output  
PWMOUT  
• General purpose output  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 24  
Epson Research and Development  
Vancouver Design Center  
4.2.3 Clock Input  
Table 4-4: Clock Input Pin Descriptions  
I/O type  
(see key  
above)  
PFBGA  
Pin Name  
RESET#  
State  
Description  
Pin#  
CLKI  
F5  
B9  
CI  
CI  
Typically used as input clock source for bus clock and memory clock  
Optionally used as input clock source for pixel clock  
Used as input clock source for USB.  
CLKI2  
USBCLK  
J8  
CI  
Note: If this pin is not connected to an input clock source, this pin  
must be connected to VSS.  
USB Crystal Oscillator feedback input from crystal.  
For an example implementation circuit using a crystal oscillator, see  
Section 16.1, “USB Oscillator Circuit” on page 179.  
USBOSCI  
B1  
C1  
I
Note: If this pin is not connected to a USB Crystal Oscillator, this pin  
must be connected to VSS.  
USB Crystal Oscillator output to crystal.  
For an example implementation circuit using a crystal oscillator, see  
Section 16.1, “USB Oscillator Circuit” on page 179.  
USBOSCO  
O
4.2.4 Miscellaneous  
Table 4-5: Miscellaneous Pin Descriptions  
PFBGA  
Pin Name  
I/O type (see RESET#  
Description  
Pin#  
key above)  
State  
These inputs are used to configure the S1D13A05 - see Table 4-7:  
“Summary of Power-On/Reset Options,” on page 25.  
C9,C8,B8,  
D7,C7,B7,  
A7  
CNF[6:0]  
TESTEN  
CI  
Note: These pins are used for configuration of the S1D13A05 and  
must be connected directly to IO V or V  
.
DD  
SS  
Test Enable input used for production test only (has type 1 pull-down  
resistor with a typical value of 50KΩ at 3.3V).  
E7  
T1  
Note: This pin must be left un-connected.  
4.2.5 Power And Ground  
Table 4-6: Power And Ground Pin Descriptions  
I/O type  
(see key  
above)  
PFBGA  
Pin#  
RESET#  
State  
Pin Name  
Description  
L2,G4,H6,  
L9,A10,F11  
IOVDD  
P
IO power supply.  
A2,C2,L10,  
J10  
COREVDD  
P
P
Core power supply.  
B2,F2,K2,  
G5,F9,B10,  
K10  
VSS  
GND for IOVDD and COREVDD.  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 25  
Vancouver Design Center  
4.3 Summary of Configuration Options  
These pins are used for configuration of the S1D13A05 and must be connected directly to  
IOV or V . The state of CNF[6:0] are latched on the rising edge of RESET#. Changing  
DD  
SS  
state at any other time has no effect.  
Table 4-7: Summary of Power-On/Reset Options  
S1D13A05  
Configuration  
Input  
Power-On/Reset State  
1 (connected to IO V  
)
0 (connected to V  
)
DD  
SS  
Select host bus interface as follows:  
CNF4 CNF2 CNF1 CNF0  
Host Bus  
1
0
1
0
1
0
1
0
1
0
1
0
1
0
X
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
SH-4/SH-3 interface, Big Endian  
SH-4/SH-3 interface, Little Endian  
MC68K #1, Big Endian  
Reserved  
MC68K #2, Big Endian  
Reserved  
Generic #1, Big Endian  
Generic #1, Little Endian  
Reserved  
Generic #2, Little Endian  
REDCAP2, Big Endian  
Reserved  
CNF4,CNF[2:0]  
DragonBall (MC68EZ328/VZ328/SZ328), Big Endian  
Reserved  
Reserved  
CNF3  
Reserved. Must be set to 1.  
WAIT# is active high  
CNF5  
(see note)  
WAIT# is active low  
CNF6  
CLKI to BCLK divide ratio 2:1  
CLKI to BCLK divide ratio 1:1  
Note  
If CNF5 = 1, the WAIT# pin should be tied low using a pull-down resistor. If CNF5 = 0,  
the WAIT# pin should be tied high using a pull-up resistor. If WAIT# is not used, this  
pin should be tied either high or low using a pull-up or pull-down resistor.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 26  
Epson Research and Development  
Vancouver Design Center  
4.4 Host Bus Interface Pin Mapping  
Table 4-8: Host Bus Interface Pin Mapping  
Motorola  
S1D13A05  
Pin Name  
Hitachi  
SH-3 /SH-4  
Motorola  
MC68K #1  
Motorola  
MC68K #2  
Motorola  
REDCAP2  
MC68EZ328/  
MC68VZ328  
DragonBall  
Generic #1  
Generic #2  
AB[17:1]  
AB0  
A[17:1]  
A[17:1]  
A0  
A[17:1]  
A[17:1]  
LDS#  
A[17:1]  
A0  
A[17:1]  
A[17:1]  
1
1
1
1
A0  
A0  
A0  
A0  
2
DB[15:0]  
CS#  
D[15:0]  
D[15:0]  
D[15:0]  
CSn#  
D[15:0]  
D[15:0]  
D[15:0]  
CSn  
D[15:0]  
CSX  
External Decode  
External Decode  
M/R#  
CLKI  
External Decode  
BUSCLK  
BUSCLK  
CKIO  
BS#  
CLK  
AS#  
CLK  
AS#  
CLK  
CLKO  
BS#  
Connected to IOV  
Connected to IOV  
DD  
DD  
Connected to  
IOV  
Connected to  
RD/WR#  
RD#  
RD1#  
RD0#  
RD/WR#  
RD#  
R/W#  
R/W#  
SIZ1  
R/W  
OE  
IOV  
DD  
DD  
Connected to  
RD#  
OE  
IOV  
DD  
Connected to  
IOV  
WE0#  
WE1#  
WE0#  
WE1#  
WE#  
BHE#  
WE0#  
WE1#  
SIZ0  
DS#  
EB1  
EB0  
LWE  
UWE  
DD  
UDS#  
WAIT#/  
RDY#  
WAIT#  
RESET#  
WAIT#  
RESET#  
WAIT#  
RESET#  
DTACK#  
RESET#  
DSACK1#  
RESET#  
N/A  
DTACK  
RESET  
RESET#  
RESET_OUT  
Note  
1
A0 for these busses is not used internally by the S1D13A05 and should be connected  
to V .  
SS  
2
If the target MC68K bus is 32-bit, then these signals should be connected to D[31:16].  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 27  
Vancouver Design Center  
4.5 LCD Interface Pin Mapping  
Table 4-9: LCD Interface Pin Mapping  
Monochrome Passive  
Panel  
Color Passive Panel  
Single  
Color TFT Panel  
1
1
Pin Name  
Sharp  
HR-TFT  
Casio  
TFT Type 2  
TFT Type 3  
TFT Type 4  
USB  
Single  
Generic TFT (TFT Type 1)  
1
1
TFT  
Format 1  
8-bit  
Format 2  
8-bit  
4-bit  
16-Bit  
3
4-bit  
8-bit  
9-bit  
12-bit  
18-bit  
18-bit  
SPS  
LP  
18-bit  
GSRT  
GPCK  
CLK  
18-bit  
STV  
STB  
CLK  
18-bit  
STV  
LP  
18-bit  
FPFRAME  
FPLINE  
FPFRAME  
FPLINE  
FPFRAME  
FPLINE  
FPSHIFT  
FPSHIFT  
DCLK  
CPH  
FPSHIFT  
FPSHIFT  
2
DRDY  
MOD  
MOD  
DRDY  
driven 0  
no connect  
INV  
INV  
DRDY  
2
2
2
2
FPDAT0  
FPDAT1  
FPDAT2  
FPDAT3  
FPDAT4  
FPDAT5  
FPDAT6  
FPDAT7  
FPDAT8  
FPDAT9  
FPDAT10  
FPDAT11  
FPDAT12  
FPDAT13  
FPDAT14  
FPDAT15  
FPDAT16  
FPDAT17  
GPIO0  
driven 0  
driven 0  
driven 0  
driven 0  
D0  
D0  
driven 0  
driven 0  
driven 0  
driven 0  
D0 (B5)  
D0 (G3)  
D0 (R6)  
R2  
R3  
R2  
R5  
R4  
R5  
R4  
R5  
R4  
R5  
R4  
R5  
R4  
R5  
R4  
2
2
D1  
D1 (R5)  
D1 (R3)  
D1 (G5)  
R1  
2
2
2
2
2
2
D2  
D2 (G4)  
D2 (B2)  
D2 (B4)  
D3 (R4)  
D8 (B5)  
D9 (R5)  
R0  
R1  
R3  
R3  
R3  
R3  
R3  
R3  
2
2
D3  
D3 (B3)  
D3 (G2)  
G2  
G3  
G5  
G5  
G5  
G5  
G5  
G5  
2
2
2
D4  
D0 (R2)  
D1 (B1)  
D4 (R3)  
D4 (R2)  
G1  
G2  
G4  
G4  
G4  
G4  
G4  
G4  
2
2
2
2
D1  
D5  
D5 (G2)  
D5 (B1)  
G0  
G1  
G3  
G3  
G3  
G3  
G3  
G3  
2
2
2
D2  
D6  
D2 (G1)  
D3 (R1)  
D6 (B1)  
D6 (G1)  
D10 (G4)  
B2  
B3  
B5  
B5  
B5  
B5  
B5  
B5  
2
2
2
2
D3  
D7  
D7 (R1)  
D7 (R1)  
D11 (B3)  
B1  
B2  
B4  
B4  
B4  
B4  
B4  
B4  
2
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
D4 (G3)  
B0  
B1  
B3  
B3  
B3  
B3  
B3  
B3  
2
D5 (B2)  
D6 (R2)  
D7 (G1)  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
driven 0  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
R0  
R2  
R2  
R2  
R2  
R2  
R2  
2
driven 0  
driven 0  
G0  
R1  
R1  
R1  
R1  
R1  
R1  
2
R0  
R0  
R0  
R0  
R0  
R0  
2
2
D12 (R3)  
G2  
G2  
G2  
G2  
G2  
G2  
D13 (G2)  
driven 0  
driven 0  
B0  
G1  
G1  
G1  
G1  
G1  
G1  
2
D14 (B1)  
D15 (R1)  
driven 0  
driven 0  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
G0  
G0  
G0  
G0  
G0  
G0  
2
B2  
B2  
B2  
B2  
B2  
B2  
driven 0  
driven 0  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
B1  
B1  
B1  
B1  
B1  
B1  
B0  
B0  
B0  
B0  
B0  
B0  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
PS  
POL  
GRES  
FRP  
STH  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
VCLK  
AP  
CPV  
OE  
GPIO0  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO1  
CLS  
REV  
SPL  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO2  
POL  
STH  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
POL  
EIO  
GPIO4  
GPIO5  
GPIO6  
GPIO7  
GPIO3  
GPIO4  
USBPUP  
GPIO5  
USBDETECT  
GPIO6  
USBDM  
GPIO7  
USBDP  
GPO0  
GPO0 (General Purpose Output)  
GPO1  
GPO1  
VCOM  
XOEV  
GPO1  
GPO2  
GPO3  
GPO4  
GPO5  
GPO6  
GPO7  
GPO8  
GPO9  
GPO10  
GPO2  
GPO2  
GPO3  
GPO4  
GPO5  
GPO6  
GPO7  
GPO8  
GPO9  
GPO3  
CMD  
GPO4  
PCLK1  
PCLK2  
XRESH  
XRESV  
XOHV  
XSTBY  
PMDE  
GPO5  
GPO6  
GPO7  
GPO8  
GPO9  
GPO10  
PWMOUT  
GPO10  
PWMOUT  
Note  
1
GPIO pins which are used by the HR-TFT, Casio, TFT Type 2, and TFT Type  
3 interfaces, must be configured as outputs using REG[64h] bits 23-16 after every  
RESET or power-up.  
2
These pin mappings use signal names commonly used for each panel type, however  
signal names may differ between panel manufacturers. The values shown in brackets  
represent the color components as mapped to the corresponding FPDATxx signals at  
the first valid edge of FPSHIFT. For further FPDATxx to LCD interface mapping, see  
Section 6.5, “Display Interface” on page 52.  
3
The S1D13A05 also supports the 9-bit and 12-bit variations of the Type 4 TFT panel.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 28  
Epson Research and Development  
Vancouver Design Center  
5 D.C. Characteristics  
Note  
When applying Supply Voltages to the S1D13A05, Core V must be applied to the  
DD  
chip before, or simultaneously with IO V , or damage to the chip may result.  
DD  
Table 5-1: Absolute Maximum Ratings  
Symbol  
Core V  
Parameter  
Supply Voltage  
Rating  
Units  
V
V
V
V
V
- 0.3 to 3.0  
- 0.3 to 4.0  
DD  
DD  
SS  
SS  
SS  
SS  
IO V  
Supply Voltage  
V
V
V
T
Input Voltage  
- 0.3 to IO V + 0.5  
V
IN  
OUT  
DD  
Output Voltage  
- 0.3 to IO V + 0.5  
V
DD  
Storage Temperature  
Solder Temperature/Time  
-65 to 150  
° C  
° C  
STG  
SOL  
T
260 for 10 sec. max at lead  
Table 5-2: Recommended Operating Conditions  
Symbol  
Core V  
Parameter  
Supply Voltage  
Condition  
= 0 V  
Min  
Typ  
Max  
Units  
V
V
V
1.8 (note 1) 2.0 (note 1) 2.2 (note 1)  
V
V
V
V
SS  
SS  
SS  
DD  
DD  
= 0 V  
2.25  
3.0  
2.5  
3.3  
2.75  
3.6  
IO V  
Supply Voltage  
= 0 V  
V
V
IO V  
SS  
SS  
DD  
V
Input Voltage  
IN  
CORE V  
85  
DD  
T
Operating Temperature  
-40  
25  
° C  
OPR  
1. When Core VDD is 2.0V 10%, the MCLK must be less than or equal to 30MHz (MCLK 30MHz)  
Table 5-3: Electrical Characteristics for VDD = 3.3V typical  
Symbol  
Parameter  
Quiescent Current  
Condition  
Quiescent Conditions  
Min  
Typ  
Max  
170  
Units  
I
I
I
μA  
μA  
μA  
DDS  
Input Leakage Current  
Output Leakage Current  
-1  
-1  
1
1
IZ  
OZ  
VDD = min  
V
High Level Output Voltage  
Low Level Output Voltage  
I
=
-3mA (Type 1)  
-6mA (Type 2)  
V - 0.4  
DD  
V
OH  
OL  
OH  
VDD = min  
I
V
=
3mA (Type 1)  
6mA (Type 2)  
0.4  
V
OL  
V
V
High Level Input Voltage  
Low Level Input Voltage  
Pull Down Resistance  
LVTTL Level, V = max 2.0  
V
IH  
DD  
LVTTL Level, V = min  
0.8  
120  
10  
V
IL  
DD  
R
C
C
C
V
= V  
DD  
20  
50  
kΩ  
pF  
pF  
pF  
PD  
IN  
Input Pin Capacitance  
I
Output Pin Capacitance  
Bi-Directional Pin Capacitance  
10  
O
10  
IO  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 29  
Vancouver Design Center  
6 A.C. Characteristics  
Conditions: IO V = 3.3V ± 10%  
DD  
T = -40° C to 85° C  
A
T
and T for all inputs must be < 5 nsec (10% ~ 90%)  
rise  
fall  
C = 50pF (Bus/MPU Interface)  
L
C = 0pF (LCD Panel Interface)  
L
6.1 Clock Timing  
6.1.1 Input Clocks  
Clock Input Waveform  
t
t
PWH  
PWL  
90%  
V
IH  
V
IL  
10%  
t
t
r
f
T
OSC  
Figure 6-1: Clock Input Requirements  
Table 6-1: Clock Input Requirements for CLKI when CLKI to BCLK divide > 1  
Symbol  
Parameter  
Min  
Max  
Units  
f
Input Clock Frequency (CLKI)  
Input Clock period (CLKI)  
100  
MHz  
ns  
OSC  
T
1/f  
OSC  
OSC  
t
Input Clock Pulse Width High (CLKI)  
Input Clock Pulse Width Low (CLKI)  
Input Clock Fall Time (10% - 90%)  
Input Clock Rise Time (10% - 90%)  
4.5  
4.5  
ns  
PWH  
t
ns  
PWL  
t
5
5
ns  
f
t
ns  
r
Note  
Maximum internal requirements for clocks derived from CLKI must be considered  
when determining the frequency of CLKI. See Section 6.1.2, “Internal Clocks” on page  
31 for internal clock requirements.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 30  
Epson Research and Development  
Vancouver Design Center  
Table 6-2: Clock Input Requirements for CLKI when CLKI to BCLK divide = 1  
Symbol  
Parameter  
Min  
Max  
Units  
MHz  
ns  
f
Input Clock Frequency (CLKI)  
Input Clock period (CLKI)  
66  
OSC  
T
t
1/f  
OSC  
OSC  
Input Clock Pulse Width High (CLKI)  
Input Clock Pulse Width Low (CLKI)  
Input Clock Fall Time (10% - 90%)  
Input Clock Rise Time (10% - 90%)  
3
3
ns  
PWH  
t
ns  
PWL  
t
5
5
ns  
f
t
ns  
r
Note  
Maximum internal requirements for clocks derived from CLKI must be considered  
when determining the frequency of CLKI. See Section 6.1.2, “Internal Clocks” on page  
31 for internal clock requirements.  
Table 6-3: Clock Input Requirements for CLKI2  
Symbol  
Parameter  
Min  
Max  
Units  
MHz  
ns  
f
Input Clock Frequency (CLKI2)  
Input Clock period (CLKI2)  
66  
OSC  
T
1/f  
OSC  
OSC  
t
Input Clock Pulse Width High (CLKI2)  
Input Clock Pulse Width Low (CLKI2)  
Input Clock Fall Time (10% - 90%)  
Input Clock Rise Time (10% - 90%)  
3
3
ns  
PWH  
t
ns  
PWL  
t
5
5
ns  
f
t
ns  
r
Note  
Maximum internal requirements for clocks derived from CLKI2 must be considered  
when determining the frequency of CLKI2. See Section 6.1.2, “Internal Clocks” on page  
31 for internal clock requirements.  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 31  
Vancouver Design Center  
6.1.2 Internal Clocks  
Table 6-4: Internal Clock Requirements  
Symbol  
Parameter  
Min  
Max  
66  
Units  
MHz  
MHz  
MHz  
MHz  
MHz  
f
Bus Clock frequency  
BCLK  
COREVDD = 2.0V  
COREVDD = 2.5V  
30  
f
Memory Clock frequency (see note 1)  
MCLK  
50  
f
Pixel Clock frequency  
PWM Clock frequency  
50  
PCLK  
f
66  
PWMCLK  
1. MCLK is derived from BCLK, therefore when BCLK is greater than 50MHz, MCLK must be divided using  
REG[04h] bits 5-4.  
Note  
For further information on internal clocks, refer to Section 7, “Clocks” on page 85.  
6.2 RESET# Timing  
t1  
RESET#  
Figure 6-2 S1D13A05 RESET# Timing  
Table 6-5 S1D13A05 RESET# Timing  
Symbol  
Parameter  
Active Reset Pulse Width  
Min  
Max  
Units  
t1  
1
CLKI  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 32  
Epson Research and Development  
Vancouver Design Center  
6.3 CPU Interface Timing  
6.3.1 Generic #1 Interface Timing  
T
CLK  
CLK  
A[16:1], M/R#  
t5  
t1  
t6  
t2  
CS#  
t15  
t7  
t8  
t3  
WE0#, WE1#, RD0#, RD1#  
WAIT#  
t9  
t10  
t12  
t14  
t4  
t11  
valid  
D[15:0] (write)  
D[15:0] (read)  
t13  
valid  
Figure 6-3: Generic #1 Interface Timing  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 33  
Vancouver Design Center  
Table 6-6: Generic #1 Interface Timing  
Symbol  
Parameter  
Min  
Max  
Unit  
f
Bus clock frequency  
Bus clock period  
50  
MHz  
ns  
CLK  
T
1/f  
CLK  
CLK  
A[16:1], M/R# setup to first CLK rising edge where CS# = 0 and  
either RD0#, RD1# = 0 or WE0#, WE1# = 0  
t1  
0
ns  
t2  
t3  
t4  
CS# setup to CLK rising edge  
0
0
3
ns  
ns  
ns  
RD0#, RD1#, WE0#, WE1# setup to CLK rising edge  
RD0#, RD1# or WE0#, WE1# state change to WAIT# driven low  
8
A[16:1], M/R# and CS# hold from RD0#, RD1#, WE0#, WE1# rising  
edge  
t5  
0
ns  
t6  
t7  
t8  
t9  
CS# deasserted to reasserted  
0
0
1
5
ns  
ns  
WAIT# rising edge to RD0#, RD1#, WE0#, WE1# rising edge  
WE0#, WE1#, RD0#, RD1# deasserted to reasserted  
CLK rising edge to WAIT# rising edge  
T
CLK  
14  
5
ns  
Rising edge of either RD0#, RD1# or WE0#, WE1# to WAIT# high  
impedance  
t10  
t11  
ns  
D[15:0] setup to 4th rising CLK edge after CS#=0 and WE0#,  
WE1#=0  
1
T
CLK  
t12  
t13  
t14  
t15  
D[15:0] hold from WE0#, WE1# rising edge (write cycle)  
D[15:0] valid to WAIT# rising edge (read cycle)  
D[15:0] hold from RD0#, RD1# rising edge (read cycle)  
Cycle Length  
0
0.5  
2
ns  
T
CLK  
ns  
6
T
CLK  
Table 6-7: Generic #1 Interface Truth Table for Little Endian  
WE0#  
WE1#  
RD0#  
RD1#  
D[15:8]  
valid  
-
D[7:0]  
valid  
valid  
-
Comments  
0
0
1
1
1
1
0
1
0
1
1
1
1
1
1
0
0
1
1
1
1
0
1
0
16-bit write  
1
8-bit write; data on low byte (even byte address )  
1
valid  
valid  
-
8-bit write; data on high byte (odd byte address )  
valid  
valid  
-
16-bit read  
1
8-bit read; data on low byte (even byte address )  
1
valid  
8-bit read; data on high byte (odd byte address )  
Table 6-8: Generic #1 Interface Truth Table for Big Endian  
WE0#  
WE1#  
RD0#  
RD1#  
D[15:8]  
valid  
-
D[7:0]  
valid  
valid  
-
Comments  
0
0
1
1
1
1
0
1
0
1
1
1
1
1
1
0
0
1
1
1
1
0
1
0
16-bit write  
8-bit write; data on low byte (odd byte address )  
1
1
valid  
valid  
-
8-bit write; data on high byte (even byte address )  
16-bit read  
valid  
valid  
-
1
8-bit read; data on low byte (odd byte address )  
1
valid  
8-bit read; data on high byte (even byte address )  
1. Because A0 is not used internally, all addresses are seen by the S1D13A05 as even addresses (16-bit word  
address aligned on even byte addresses).  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 34  
Epson Research and Development  
Vancouver Design Center  
6.3.2 Generic #2 Interface Timing  
T
BUSCLK  
BUSCLK  
A[16:0], M/R#, BHE#  
CS#  
t5  
t1  
t6  
t2  
t15  
t7  
t8  
t3  
WE#, RD#  
t9  
t10  
t12  
t14  
t4  
WAIT#  
t11  
valid  
D[15:0] (write)  
D[15:0] (read)  
t13  
valid  
Figure 6-4: Generic #2 Interface Timing  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 35  
Vancouver Design Center  
Table 6-9: Generic #2 Interface Timing  
Symbol  
Parameter  
Min  
Max  
Unit  
f
Bus clock frequency  
Bus clock period  
50  
MHz  
ns  
BUSCLK  
T
1/f  
BUSCLK  
BUSCLK  
A[16:0], M/R#, BHE# setup to first BUSCLK rising edge where CS# =  
0 and either RD# = 0 or WE# = 0  
t1  
0
ns  
t2  
t3  
CS# setup to BUSCLK rising edge  
0
0
3
0
0
0
1
5
ns  
ns  
ns  
ns  
ns  
ns  
RD#, WE# setup to BUSCLK rising edge  
t4  
RD# or WE# state change to WAIT# driven low  
A[16:0], M/R#, BHE# and CS# hold from RD#, WE# rising edge  
CS# deasserted to reasserted  
9
t5  
t6  
t7  
WAIT# rising edge to RD#, WE# rising edge  
WE#, RD# deasserted to reasserted  
t8  
T
BUSCLK  
t9  
WAIT# rising edge after BUSCLK rising edge  
Rising edge of either RD# or WE# to WAIT# high impedance  
D[15:0] setup to 4th rising BUSCLK edge after CS#=0 and WE#=0  
D[15:0] hold from WE# rising edge (write cycle)  
D[15:0] valid to WAIT# rising edge setup (read cycle)  
D[15:0] hold from RD# rising edge (read cycle)  
Cycle Length  
14  
7
ns  
t10  
t11  
t12  
t13  
t14  
t15  
ns  
1
0
T
T
T
BUSCLK  
ns  
0.5  
2
BUSCLK  
ns  
6
BUSCLK  
Table 6-10: Generic #2 Interface Truth Table for Little Endian  
WE#  
RD#  
BHE#  
A0  
0
D[15:8]  
valid  
-
D[7:0]  
valid  
valid  
-
Comments  
0
0
0
1
1
1
1
1
1
0
0
0
0
1
0
0
1
0
16-bit write  
0
8-bit write at even address  
8-bit write at odd address  
16-bit read  
1
valid  
valid  
-
0
valid  
valid  
-
0
8-bit read at even address  
8-bit read at odd address  
1
valid  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 36  
Epson Research and Development  
Vancouver Design Center  
6.3.3 Hitachi SH-3 Interface Timing  
T
CKIO  
CKIO  
A[16:1], M/R#, RD/WR#  
BS#  
t1  
t8  
t17  
t9  
t2  
t4  
t3  
CSn#  
t10  
t11  
t5  
WEn#, RD#  
WAIT#  
t13  
t12  
t15  
t6  
t14  
t7  
D[15:0] (write)  
D[15:0] (read)  
t16  
Figure 6-5: Hitachi SH-3 Interface Timing  
Note  
A minimum of one software wait state is required.  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 37  
Vancouver Design Center  
Table 6-11: Hitachi SH-3 Interface Timing  
Symbol  
Parameter  
Min  
Max  
Unit  
f
Bus clock frequency  
Bus clock period  
66  
MHz  
ns  
CKIO  
T
1/f  
CKIO  
CKIO  
t1  
A[16:1], RD/WR# setup to CKIO  
BS# setup  
0
ns  
t2  
t3  
t4  
t5  
t6  
0
9
0
0
4
ns  
BS# hold  
ns  
CSn# setup  
ns  
WEn#, RD# setup to next CKIO after BS# low  
Falling edge CSn# to WAIT# driven low  
ns  
9
ns  
D[15:0] setup to 3rd CKIO rising edge after BS# deasserted  
(write cycle)  
t7  
1
0
ns  
t8  
t9  
WE#, RD# deasserted to A[16:1], M/R#, RD/WR# deasserted  
Rising edge of WAIT# to BS# falling  
ns  
ns  
T
+ 16  
CKIO  
CKIO rising edge before WAIT# deasserted to WEn#, RD# asserted  
for next cycle  
t10  
2
T
CKIO  
t11  
t12  
t13  
t14  
t15  
t16  
t17  
Rising edge of WAIT# to WE#, RD# deasserted  
WAIT# rising edge after CKIO rising edge  
Rising edge of CSn# to WAIT# high impedance  
D[15:0] hold from WEn# deasserted (write cycle)  
D[15:0] setup to WAIT# rising edge (read cycle)  
Rising edge of RD# to D[15:0] high impedance (read cycle)  
Cycle Length  
0
5
ns  
ns  
ns  
ns  
14  
6
0
0.5  
3
T
T
CKIO  
7
ns  
5
CKIO  
1. The S1D13A05 requires 2ns of write data hold time.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 38  
Epson Research and Development  
Vancouver Design Center  
6.3.4 Hitachi SH-4 Interface Timing  
T
CKIO  
CKIO  
A[16:1], RD/WR#, M/R#  
BS#  
t1  
t8  
t18  
t9  
t2  
t4  
t3  
CSn#  
t10  
t11  
t5  
WEn#, RD#  
RDY  
t14  
t13  
t12  
t6  
t7  
t15  
D[15:0] (write)  
D[15:0] (read)  
t16  
t17  
Figure 6-6: Hitachi SH-4 Interface Timing  
Note  
A minimum of one software wait state is required.  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 39  
Vancouver Design Center  
Table 6-12: Hitachi SH-4 Interface Timing  
Symbol  
Parameter  
Min  
Max  
Unit  
f
Bus clock frequency  
Bus clock period  
66  
MHz  
ns  
CKIO  
T
1/f  
CKIO  
CKIO  
t1  
A[16:1], M/R#, RD/WR# setup to CKIO  
0
ns  
t2  
t3  
t4  
t5  
t6  
BS# setup  
0
9
0
0
3
ns  
BS# hold  
ns  
CSn# setup  
ns  
WEn#, RD# setup to 1st CKIO rising edge after BS# low  
Falling edge CSn# to RDY driven high  
ns  
7
ns  
D[15:0] setup to 3rd CKIO rising edge after BS# deasserted  
(write cycle)  
t7  
1
0
ns  
t8  
t9  
WE#,RD# deasserted to A[16:1],M/R#,RD/WR# deasserted  
RDY falling edge to BS# falling  
ns  
ns  
T
+ 11  
CKIO  
CKIO rising edge before RDY deasserted to WEn#, RD# asserted  
for next cycle  
t10  
2
T
CKIO  
t11  
t12  
t13  
t14  
t15  
t16  
t17  
t18  
RDY falling edge to WE#,RD# deasserted  
RDY falling edge after CKIO rising edge  
Rising edge CSn# to RDY rising edge  
CKIO falling edge to RDY tristate  
0
5
ns  
ns  
ns  
ns  
ns  
14  
10  
12  
4
4
D[15:0] hold from WEn# deasserted (write cycle)  
D[15:0] valid setup to RDY falling edge (read cycle)  
Rising edge of RD# to D[15:0] high impedance (read cycle)  
Cycle Length  
0
0.5  
2
T
T
CKIO  
7
ns  
4
CKIO  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 40  
Epson Research and Development  
Vancouver Design Center  
6.3.5 Motorola MC68K #1 Interface Timing  
T
CLK  
CLK  
A[16:1], R/W#, M/R#  
CS#  
t3  
t3  
t1  
t13  
t1  
t1  
t1  
t4  
AS#  
t5  
UDS#, LDS#, (A0)  
DTACK#  
t8  
t6  
t2  
t7  
t9  
t10  
D[15:0] (write)  
D[15:0] (read)  
t11  
t12  
Figure 6-7: Motorola MC68K #1 Interface Timing  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 41  
Vancouver Design Center  
Table 6-13: Motorola MC68K#1 Interface Timing  
Symbol  
Parameter  
Min  
Max  
Unit  
f
Bus clock frequency  
Bus clock period  
50  
MHz  
ns  
CLK  
T
1/f  
CLK  
CLK  
A[16:1], M/R#, R/W# and CS# and AS# and UDS#, LDS# setup to  
first CLK rising edge  
t1  
1
ns  
t2  
t3  
t4  
t5  
t6  
t7  
CS# and AS# asserted to DTACK# driven  
A[16:1], M/R#, R/W# and CS# hold from AS# rising edge  
AS# rising edge to CLK falling edge  
2
0
1
0
5
3
7
ns  
ns  
ns  
ns  
ns  
ns  
DTACK# falling edge to UDS#, LDS# rising edge  
CLK rising edge to DTACK# falling edge  
AS# rising edge to DTACK# rising edge  
14  
9
1st CLK falling edge after AS# deasserted to DTACK# high  
impedance  
0.5 T  
+
CLK  
t8  
t9  
ns  
12  
D[15:0] valid to 4th CLK rising edge where CS# = 0, AS# = 0 and  
either UDS# = 0 or LDS# = 0 (write cycle)  
1
T
CLK  
t10  
t11  
t12  
t13  
D[15:0] hold from DTACK# falling edge (write cycle)  
D[15:0] valid setup time to DTACK# goes low (read cycle)  
UDS#, LDS# rising edge to D[15:0] high impedance (read cycle)  
Cycle Length  
0
0.5  
2
ns  
T
CLK  
ns  
7
T
CLK  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 42  
Epson Research and Development  
Vancouver Design Center  
6.3.6 Motorola MC68K #2 Interface Timing  
T
CLK  
CLK  
t3  
t4  
t1  
A[16:1], M/R#, R/W#, SIZ[1:0]  
t15  
t1  
CS#  
AS#  
t5  
t6  
t1  
t1  
t7  
DS#  
t10  
t9  
t8  
t2  
DSACK1#  
D[31:16] (write)  
D[31:16] (read)  
t11  
t12  
t13  
t14  
Figure 6-8: Motorola MC68K #2 Interface Timing  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 43  
Vancouver Design Center  
Table 6-14: Motorola MC68K#2 Interface Timing  
Symbol  
Parameter  
Min  
Max  
Unit  
f
Bus clock frequency  
Bus clock period  
50  
MHz  
ns  
CLK  
T
1/f  
CLK  
CLK  
A[16:0], M/R#, R/W#, SIZ[1:0] and CS# and AS# and DS# setup to  
first CLK rising edge  
t1  
0
ns  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
CS# and AS# asserted low to DSACK1# driven  
A[16:1], M/R#, R/W#, SIZ[1:0] hold from AS# rising edge  
CS# hold from AS# rising edge  
2
0
0
0
1
0
5
3
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DS# rising edge to AS# rising edge  
AS# setup to CLK falling edge  
DSACK1# falling edge to DS# rising edge  
CLK rising edge to DSACK1# falling edge  
AS# rising edge to DSACK1# rising edge  
14  
9
1st CLK falling edge after AS# deasserted to DSACK1# high  
impedance  
t10  
t11  
T
+ 3  
ns  
CLK  
D[15:0] setup to 4th CLK rising edge after CS#=0, AS#=0, DS#=0,  
and DSACK1#=0  
1
T
CLK  
t12  
t13  
t14  
t15  
D[15:0] hold from DSACK1# falling edge  
D[15:0] valid setup to DSACK1# falling edge (read cycle)  
DS# rising edge to D[15:0] high impedance (read cycle)  
Cycle Length  
0
0.5  
2
ns  
T
CLK  
9
ns  
7
T
CLK  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 44  
Epson Research and Development  
Vancouver Design Center  
6.3.7 Motorola REDCAP2 Interface Timing  
T
CKO  
CKO  
A[16:1], R/W#, CS#  
EBO#, EB1# (write)  
D[15:0] (write)  
t8  
t1  
t12  
t9  
t2  
t4  
t3  
valid  
t10  
t5  
t7  
EB0#, EB1#, OE# (read)  
D[15:0] (read)  
t6  
t11  
valid  
Figure 6-9: Motorola Redcap2 Interface Timing  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 45  
Vancouver Design Center  
Table 6-15: Motorola Redcap2 Interface Timing  
Symbol  
Parameter  
Min  
Max  
Unit  
f
Bus clock frequency  
Bus clock period  
17  
MHz  
ns  
CKO  
T
1/f  
CKO  
CKO  
t1  
A[16:1], R/W, CSn# setup to CKO rising edge  
EB0,EB1 setup to CKO rising edge (write)  
0
ns  
t2  
0
ns  
D[15:0] input setup to 4th CKO rising edge after CSn# and EB0 or  
EB1 asserted low (write cycle)  
t3  
1
T
CKO  
D[15:0] input hold from 4th CKO rising edge after CSn# and EB0 or  
EB1 asserted low (write cycle)  
t4  
t5  
7
0
ns  
ns  
ns  
EB0,EB1,OE setup to CKO rising edge (read cycle)  
1st CKO rising edge after CSn#, EB0 or EB1,OE asserted low to  
D[15:0] valid for MCLK = BCLK (read cycle)  
t6a  
t6b  
t6c  
t6d  
6T  
9T  
+17  
CKO  
1st CKO rising edge after CSn#, EB0 or EB1,OE asserted low to  
+17  
ns  
ns  
ns  
CKO  
D[15:0] valid for MCLK = BCLK  
1st CKO rising edge after CSn#, EB0 or EB1,OE asserted low to  
D[15:0] valid for MCLK = BCLK 3 (read cycle)  
1st CKO rising edge after CSn#, EB0 or EB1,OE asserted low to  
D[15:0] valid for MCLK = BCLK 4 (read cycle)  
÷
2 (read cycle)  
12T  
15T  
+17  
+17  
CKO  
÷
CKO  
÷
t7  
t8  
EB0,EB1,OE falling edge to D[15:0] driven (read cycle)  
A[16:1], R/W, CSn hold from CKO rising edge  
EB0, EB1 setup to CKO rising edge (write cycle)  
CKO falling edge to EB0, EB1, OE deasserted (read)  
OE, EB0, EB1 deasserted to D[15:0] output high impedance (read)  
Cycle Length (note 1)  
2
0
1
0
2
9
ns  
ns  
ns  
ns  
ns  
t9  
t10  
t11  
t12  
8
T
CKO  
1. The cycle length for the REDCAP interface is fixed at 10 TCKO  
.
2. The Read and Write 2D BitBLT functions are not available when using the REDCAP interface.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 46  
Epson Research and Development  
Vancouver Design Center  
6.3.8 Motorola Dragonball Interface Timing with DTACK  
T
CLKO  
CLKO  
A[16:1]  
t1  
t3  
t13  
t1  
t1  
t1  
t4  
CSX#  
t5  
t4  
UWE#, LWE# (write)  
OE# (read)  
t6  
t7  
D[15:0] (write)  
D[15:0] (read)  
DTACK#  
Valid  
t8  
t9  
Valid  
t12  
t2  
t10  
t11  
Figure 6-10: Motorola Dragonball Interface Timing with DTACK  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 47  
Vancouver Design Center  
Table 6-16: Motorola Dragonball Interface Timing with DTACK  
Symbol  
Parameter  
Min  
Max  
Unit  
f
66 (note 1)  
MHz  
ns  
Clock frequency  
Clock period  
CLKO  
T
1/f  
CLKO  
CLKO  
t1  
t2  
t3  
t4  
t5  
1
ns  
A[16:1], CSX, UWE, LWE, OE setup to CLKO rising edge  
CSX asserted low to DTACK driven  
2
0
0
1
7
ns  
ns  
A[16:1] hold from CSX rising edge  
ns  
DTACK falling edge to UWE, LWE and CSX rising edge  
UWE, LWE deasserted to reasserted  
T
CLKO  
D[15:0] valid to fourth CLKO rising edge where CSX = 0 and UWE  
= 0 or LWE = 0 (write cycle)  
t6  
1
T
CLKO  
t7  
t8  
0
0.5  
2
ns  
D[15:0] hold from DTACK falling edge (write cycle)  
D[15:0] valid setup to DTACK falling edge (read cycle)  
T
CLKO  
ns  
t9  
6
14  
9
CSX rising edge to D[15:0] high impedance (read cycle)  
CLKO rising edge to DTACK# falling edge  
t10  
t11  
5
ns  
3
ns  
CSX rising edge to DTACK rising edge  
First CLKO falling edge after deassertion of CSX# to DTACK#  
high impedance  
t12  
t13  
0.5T  
+ 4 0.5T  
+ 8  
CLKO  
ns  
CLKO  
Cycle Length  
8
T
CLKO  
1. The MC68SZ328 with a maximum clock frequency of 66MHz is supported.  
The MC68VZ328 with a maximum clock frequency of 33MHz is supported.  
The MC68EZ328 with a maximum clock frequency of 16MHz is supported.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 48  
Epson Research and Development  
Vancouver Design Center  
6.3.9 Motorola Dragonball Interface Timing w/o DTACK  
T
CLKO  
CLKO  
A[16:1]  
t1  
t1  
t5  
t7  
CSX#  
t1  
t1  
t5  
t5  
UWE#, LWE# (write)  
OE#  
t2  
t5  
D[15:0] (write)  
D[15:0] (read)  
t4  
t6  
t3  
Figure 6-11: Motorola Dragonball Interface Timing w/o DTACK  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 49  
Vancouver Design Center  
Table 6-17: Motorola Dragonball Interface Timing w/o DTACK  
Symbol  
Parameter  
Min  
Max  
Unit  
f
Bus clock frequency  
Bus clock period  
33 (note 1)  
MHz  
ns  
CLKO  
T
1/f  
CLKO  
CLKO  
A[16:1] and CSX# and UWE#, LWE# and OE# setup to CLKO  
rising edge  
t1  
1
ns  
D[15:0] valid to 4th CLK rising edge where CSX# = 0 and UWE# =  
0 or LWE# = 0 (write cycle)  
t2  
t3  
1
2
T
CLKO  
CSX# and OE# asserted low to D[15:0] driven (read cycle)  
8
7
ns  
1st CLKO rising edge after CSX# and OE# asserted to D[15:0]  
valid for MCLK=BCLK (read cycle)  
t4a  
T
T
T
CLKO  
CLKO  
1st CLKO rising edge after CSX# and OE# asserted to D[15:0]  
valid for MCLK=BCLK ÷ 2 (read cycle)  
t4b  
t4c  
t5  
10  
13  
1st CLKO rising edge after CSX# and OE# asserted to D[15:0]  
valid for MCLK=BCLK ÷ 3 (read cycle) (see note 2)  
CLKO  
A[16:1] and UWE#, LWE# and OE# and D[15:0] (write) hold from  
CSX# rising edge  
0
2
ns  
t6  
t7  
CSX# rising edge to D[15:0] high impedance  
Cycle Length (see note 3)  
8
ns  
T
CLKO  
1. The MC68VZ328 with a maximum clock frequency of 33MHz is supported.  
The MC68EZ328 with a maximum clock frequency of 16MHz is supported.  
2. The MC68EZ328 does not support the MCLK = BCLK  
The MC68VZ328 does not support the MCLK = BCLK  
÷
÷
3 and MCLK = BCLK  
4 option.  
÷ 4 options.  
3. The cycle length for the Dragonball w/o DTACK interface is fixed at 10 TCLKO  
.
4. The Read and Write 2D BitBLT functions are not available when using the Dragonball w/o DTACK interface.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 50  
Epson Research and Development  
Vancouver Design Center  
6.4 LCD Power Sequencing  
6.4.1 Passive/TFT Power-On Sequence  
GPIO0*  
t1  
Power Save Mode Enable**  
(REG[14h] bit 4)  
t2  
LCD Signals***  
*It is recommended to use the general purpose IO pin GPIO0 to control the LCD bias power.  
**The LCD power-on sequence is activated by programming the Power Save Mode Enable bit (REG[14h] bit 4) to 0.  
***LCD Signals include: FPDAT[17:0], FPSHIFT, FPLINE, FPFRAME, and DRDY.  
Figure 6-12: Passive/TFT Power-On Sequence Timing  
Table 6-18: Passive/TFT Power-On Sequence Timing  
Symbol  
Parameter  
LCD signals active to LCD bias active  
Min  
Note 1  
0
Max  
Note 1  
1
Units  
t1  
t2  
BCLK  
Power Save Mode disabled to LCD signals active  
1. t1 is controlled by software and must be determined from the bias power supply delay requirements of the panel  
connected.  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 51  
Vancouver Design Center  
6.4.2 Passive/TFT Power-Off Sequence  
t1  
GPIO0*  
Power Save Mode Enable**  
(REG[14h] bit 4)  
t2  
LCD Signals***  
*It is recommended to use the general purpose IO pin GPIO0 to control the LCD bias power.  
**The LCD power-off sequence is activated by programming the Power Save Mode Enable bit (REG[14h] bit 4) to 1.  
***LCD Signals include: FPDAT[17:0], FPSHIFT, FPLINE, FPFRAME, and DRDY.  
Figure 6-13: Passive/TFT Power-Off Sequence Timing  
Table 6-19: Passive/TFT Power-Off Sequence Timing  
Symbol  
Parameter  
Min  
Note 1  
0
Max  
Note 1  
1
Units  
t1  
t2  
LCD bias deactivated to LCD signals inactive  
Power Save Mode enabled to LCD signals low  
BCLK  
1. t1 is controlled by software and must be determined from the bias power supply delay requirements of the panel  
connected.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 52  
Epson Research and Development  
Vancouver Design Center  
6.5 Display Interface  
The timing parameters required to drive a flat panel display are shown below. Timing  
details for each supported panel type are provided in the remainder of this section.  
HT  
HDPS  
HPS  
HPW  
VPS  
VDPS  
VPW  
HDP  
VDP  
VT  
Figure 6-14: Panel Timing Parameters  
Table 6-20: Panel Timing Parameter Definition and Register Summary  
Symbol  
Description  
Derived From  
((REG[20h] bits 6-0) + 1) x 8  
Units  
HT  
Horizontal Total  
1
1
HDP  
Horizontal Display Period  
((REG[24h] bits 6-0) + 1) x 8  
For STN panels: ((REG[28h] bits 9-0) + 22)  
For TFT panels: ((REG[28h] bits 9-0) + 5)  
(REG[2Ch] bits 9-0) + 1  
HDPS  
Horizontal Display Period Start Position  
Ts  
HPS  
HPW  
VT  
FPLINE Pulse Start Position  
FPLINE Pulse Width  
(REG[2Ch] bits 22-16) + 1  
(REG[30h] bits 9-0) + 1  
Vertical Total  
VDP  
VDPS  
VPS  
VPW  
Vertical Display Period  
(REG[34h] bits 9-0) + 1  
Vertical Display Period Start Position  
FPFRAME Pulse Start Position  
FPFRAME Pulse Width  
REG[38h] bits 9-0  
Lines (HT)  
REG[3Ch] bits 9-0  
(REG[3Ch] bits 18-16) + 1  
1. For passive panels, the HDP must be a minimum of 32 pixels and must be increased by multiples of 16.  
For TFT panels, the HDP must be a minimum of 8 pixels and must be increased by multiples of 8.  
2. The following formulas must be valid for all panel timings:  
HDPS + HDP < HT  
VDPS + VDP < VT  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 53  
Vancouver Design Center  
6.5.1 Generic STN Panel Timing  
VT (= 1 Frame)  
VPW  
FPFRAME  
VDP  
FPLINE  
1
MOD (DRDY)  
FPDAT[17:0]  
HT (= 1 Line)  
HPS  
HPW  
FPLINE  
FPSHIFT  
1 PCLK  
2
MOD (DRDY)  
HDPS  
HDP  
FPDAT[17:0]  
Figure 6-15: Generic STN Panel Timing  
VT  
= Vertical Total  
= [(REG[30h] bits 9-0) + 1] lines  
VPS  
VPW  
VDPS  
VDP  
HT  
HPS  
HPW  
HDPS  
HDP  
= FPFRAME Pulse Start Position  
= FPFRAME Pulse Width  
= Vertical Display Period Start Position = 0 lines, because REG[38h] bits 9-0 = 0  
= Vertical Display Period  
= Horizontal Total  
= FPLINE Pulse Start Position  
= FPLINE Pulse Width  
= 0 lines, because REG[3Ch] bits 9-0 = 0  
= [(REG[3Ch] bits 18-16) + 1] lines  
= [(REG[34h] bits 9-0) + 1] lines  
= [((REG[20h] bits 6-0) + 1) x 8] pixels  
= [(REG[2Ch] bits 9-0) + 1] pixels  
= [(REG[2Ch] bits 22-16) + 1] pixels  
= Horizontal Display Period Start Position= 22 pixels, because REG[28h] bits 9-0 = 0  
= Horizontal Display Period = [((REG[24h] bits 6-0) + 1) x 8] pixels  
*For passive panels, the HDP must be a minimum of 32 pixels and must be increased by multiples of 16.  
*HPS should comply with the following formula:  
HPS > HDP + 22  
HPS + HPW < HT  
*Panel Type Bits (REG[0Ch] bits 1-0) = 00b (STN)  
*FPFRAME Pulse Polarity Bit (REG[3Ch] bit 23) = 1 (active high)  
*FPLINE Polarity Bit (REG[2Ch] bit 23) = 1 (active high)  
*MOD1 is the MOD signal when REG[0Ch] bits 21-16 = 0 (MOD toggles every FPFRAME)  
*MOD2 is the MOD signal when REG[0Ch] bits 21-16 = n (MOD toggles every n FPLINE)  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 54  
Epson Research and Development  
Vancouver Design Center  
6.5.2 Single Monochrome 4-Bit Panel Timing  
VDP  
VNDP  
FPFRAME  
FPLINE  
DRDY (MOD)  
Invalid  
LINE1  
LINE2  
LINE3  
LINE4  
LINE239 LINE240  
LINE1  
LINE2  
Invalid  
FPDAT[7:4]  
FPLINE  
DRDY (MOD)  
HDP  
HNDP  
FPSHIFT  
FPDAT7  
Invalid  
1-317  
1-318  
1-319  
1-320  
1-1  
1-2  
1-3  
1-4  
1-5  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
1-6  
FPDAT6  
FPDAT5  
1-7  
1-8  
Invalid  
Invalid  
FPDAT4  
* Diagram drawn with 2 FPLINE vertical blank period  
Example timing for a 320x240 panel  
Figure 6-16: Single Monochrome 4-Bit Panel Timing  
= Vertical Display Period  
VDP  
= (REG[34h] bits 9:0) + 1 Lines  
= Vertical Non-Display Period  
VNDP  
= VT - VDP  
= (REG[30h] bits 9:0) - (REG[34h] bits 9:0) Lines  
= Horizontal Display Period  
HDP  
= ((REG[24h] bits 6:0) + 1) x 8Ts  
= Horizontal Non-Display Period  
= HT - HDP  
HNDP  
= (((REG[20h] bits 6:0) + 1) x 8Ts) - (((REG[24h] bits 6:0) + 1) x 8Ts)  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 55  
Vancouver Design Center  
t2  
t1  
Sync Timing  
FPFRAME  
t4  
t3  
FPLINE  
t5  
DRDY (MOD)  
Data Timing  
FPLINE  
t6  
t8  
t9  
t14  
t11 t10  
t7  
FPSHIFT  
t12 t13  
1
2
FPDAT[7:4]  
Figure 6-17: Single Monochrome 4-Bit Panel A.C. Timing  
Table 6-21: Single Monochrome 4-Bit Panel A.C. Timing  
Symbol  
t1  
Parameter  
Min  
note 2  
note 3  
note 4  
note 5  
note 6  
note 7  
t6 + t4  
t14 + 2  
4
Typ  
Max  
Units  
Ts (note 1)  
FPFRAME setup to FPLINE falling edge  
FPFRAME hold from FPLINE falling edge  
FPLINE period  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
t10  
t11  
t12  
t13  
t14  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
FPLINE pulse width  
MOD transition to FPLINE rising edge  
FPSHIFT falling edge to FPLINE rising edge  
FPSHIFT falling edge to FPLINE falling edge  
FPLINE falling edge to FPSHIFT falling edge  
FPSHIFT period  
FPSHIFT pulse width low  
FPSHIFT pulse width high  
2
2
1
2
FPDAT[7:4] setup to FPSHIFT falling edge  
FPDAT[7:4] hold to FPSHIFT falling edge  
FPLINE falling edge to FPSHIFT rising edge  
note 8  
1. Ts  
= pixel clock period  
2. t1min = HPS + t4min  
3. t2min = t3min - (HPS + t4min  
4. t3min = HT  
)
5. t4min = HPW  
6. t5min = HPS - 1  
7. t6min = HPS - (HDP + HDPS) + 2, if negative add t3min  
8. t14min = HDPS - (HPS + t4min), if negative add t3min  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 56  
Epson Research and Development  
Vancouver Design Center  
6.5.3 Single Monochrome 8-Bit Panel Timing  
VDP  
VNDP  
FPFRAME  
FPLINE  
DRDY (MOD)  
LINE1  
LINE2  
LINE3  
LINE4  
LINE479 LINE480  
LINE1  
LINE2  
Invalid  
Invalid  
FPDAT[7:0]  
FPLINE  
DRDY (MOD)  
HDP  
HNDP  
FPSHIFT  
Invalid  
1-633  
1-634  
1-635  
1-636  
1-637  
1-638  
1-639  
1-640  
FPDAT7  
FPDAT6  
FPDAT5  
FPDAT4  
FPDAT3  
FPDAT2  
FPDAT1  
FPDAT0  
1-1  
1-2  
1-3  
1-4  
1-5  
1-9  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
1-10  
1-11  
1-12  
1-13  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
1-6  
1-7  
1-8  
1-14  
1-15  
1-16  
Invalid  
Invalid  
Invalid  
* Diagram drawn with 2 FPLINE vertical blank period  
Example timing for a 640x480 panel  
Figure 6-18: Single Monochrome 8-Bit Panel Timing  
VDP  
= Vertical Display Period  
= (REG[34h] bits 9:0) + 1 Lines  
= Vertical Non-Display Period  
VNDP  
= VT - VDP  
= (REG[30h] bits 9:0) - (REG[34h] bits 9:0) Lines  
= Horizontal Display Period  
HDP  
= ((REG[24h] bits 6:0) + 1) x 8Ts  
= Horizontal Non-Display Period  
= HT - HDP  
HNDP  
= (((REG[20h] bits 6:0) + 1) x 8Ts) - (((REG[24h] bits 6:0) + 1) x 8Ts)  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 57  
Vancouver Design Center  
t2  
t1  
Sync Timing  
FPFRAME  
t4  
t3  
FPLINE  
t5  
DRDY (MOD)  
Data Timing  
FPLINE  
t6  
t8  
t9  
t14  
t11 t10  
t7  
FPSHIFT  
t12  
t13  
1
2
FPDAT[7:0]  
Figure 6-19: Single Monochrome 8-Bit Panel A.C. Timing  
Table 6-22: Single Monochrome 8-Bit Panel A.C. Timing  
Symbol  
t1  
Parameter  
FPFRAME setup to FPLINE falling edge  
FPFRAME hold from FPLINE falling edge  
FPLINE period  
Min  
note 2  
note 3  
note 4  
note 5  
note 6  
note 7  
t6 + t4  
t14 + 4  
8
Typ  
Max  
Units  
Ts (note 1)  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
t10  
t11  
t12  
t13  
t14  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
FPLINE pulse width  
MOD transition to FPLINE rising edge  
FPSHIFT falling edge to FPLINE rising edge  
FPSHIFT falling edge to FPLINE falling edge  
FPLINE falling edge to FPSHIFT falling edge  
FPSHIFT period  
FPSHIFT pulse width low  
FPSHIFT pulse width high  
FPDAT[7:0] setup to FPSHIFT falling edge  
FPDAT[7:0] hold to FPSHIFT falling edge  
FPLINE falling edge to FPSHIFT rising edge  
4
4
4
4
note 8  
1. Ts  
= pixel clock period  
2. t1min = HPS + t4min  
3. t2min = t3min - (HPS + t4min  
4. t3min = HT  
)
5. t4min = HPW  
6. t5min = HPS - 1  
7. t6min = HPS - (HDP + HDPS) + 4, if negative add t3min  
8. t14min = HDPS - (HPS + t4min), if negative add t3min  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 58  
Epson Research and Development  
Vancouver Design Center  
6.5.4 Single Color 4-Bit Panel Timing  
VNDP  
VDP  
FPFRAME  
FPLINE  
DRDY (MOD)  
LINE1  
LINE2  
LINE3  
LINE4  
LINE239 LINE240  
LINE1  
LINE2  
Invalid  
Invalid  
FPDAT[7:4]  
FPLINE  
DRDY (MOD)  
HDP  
HNDP  
.5Ts .5Ts  
.5Ts  
.5Ts  
.5Ts  
.5Ts  
.5Ts  
.5Ts  
.5Ts  
.5Ts .5Ts  
.5Ts  
.5Ts  
FPSHIFT  
.5Ts  
.5Ts  
.5Ts  
.5Ts  
.5Ts  
2.5Ts  
Invalid  
Invalid  
1-R1 1-G2 1-B3  
Invalid  
Invalid  
1-B319  
FPDAT7  
FPDAT6  
FPDAT5  
FPDAT4  
1-R320  
1-G320  
1-B320  
1-G1 1-B2  
1-R4  
1-G4  
Invalid  
Invalid  
1-B1  
1-R2  
1-R3  
Invalid  
Invalid  
1-G3 1-B4  
Notes:  
- FPSHIFT uses extended low states in order to process 8 pixels in 6 FPSHIFT clocks  
- Ts = Pixel clock period (PCLK)  
- Diagram drawn with 2 FPLINE vertical blank period  
- Example timing for a 320x240 panel  
Figure 6-20: Single Color 4-Bit Panel Timing  
= Vertical Display Period  
VDP  
= (REG[34h] bits 9:0) + 1 Lines  
= Vertical Non-Display Period  
VNDP  
= VT - VDP  
= (REG[30h] bits 9:0) - (REG[34h] bits 9:0) Lines  
= Horizontal Display Period  
HDP  
= ((REG[24h] bits 6:0) + 1) x 8Ts  
= Horizontal Non-Display Period  
= HT - HDP  
HNDP  
= (((REG[20h] bits 6:0) + 1) x 8Ts) - (((REG[24h] bits 6:0) + 1) x 8Ts)  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 59  
Vancouver Design Center  
t2  
t1  
Sync Timing  
FPFRAME  
t4  
t3  
FPLINE  
t5  
DRDY (MOD)  
Data Timing  
FPLINE  
t6  
t8  
t9  
t14  
t7  
t11 t10  
FPSHIFT  
t12 t13  
1
2
FPDAT[7:4]  
Figure 6-21: Single Color 4-Bit Panel A.C. Timing  
Table 6-23: Single Color 4-Bit Panel A.C. Timing  
Symbol  
t1  
Parameter  
Min  
note 2  
note 3  
note 4  
note 5  
note 6  
note 7  
t6 + t4  
t14 + 0.5  
1
Typ  
Max  
Units  
Ts (note 1)  
FPFRAME setup to FPLINE falling edge  
FPFRAME hold from FPLINE falling edge  
FPLINE period  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
t10  
t11  
t12  
t13  
t14  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
FPLINE pulse width  
MOD transition to FPLINE rising edge  
FPSHIFT falling edge to FPLINE rising edge  
FPSHIFT falling edge to FPLINE falling edge  
FPLINE falling edge to FPSHIFT falling edge  
FPSHIFT period  
FPSHIFT pulse width low  
FPSHIFT pulse width high  
0.5  
0.5  
0.5  
0.5  
FPDAT[7:4] setup to FPSHIFT falling edge  
FPDAT[7:4] hold to FPSHIFT falling edge  
FPLINE falling edge to FPSHIFT rising edge  
note 8  
1. Ts  
= pixel clock period  
2. t1min = HPS + t4min  
3. t2min = t3min - (HPS + t4min  
4. t3min = HT  
)
5. t4min = HPW  
6. t5min = HPS - 1  
7. t6min = HPS - (HDP + HDPS) + 1.5), if negative add t3min  
8. t14min = HDPS - (HPS + t4min) + 1, if negative add t3min  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 60  
Epson Research and Development  
Vancouver Design Center  
6.5.5 Single Color 8-Bit Panel Timing (Format 1)  
VNDP  
VDP  
FPFRAME  
FPLINE  
LINE1  
LINE2  
LINE3  
LINE4  
LINE239 LINE240  
Invalid  
LINE1  
LINE2  
FPDAT[7:0]  
Invalid  
FPLINE  
HDP  
2Ts  
HNDP  
2Ts 2Ts  
2Ts  
4Ts  
4Ts  
2Ts  
2Ts 2Ts  
2Ts  
2Ts  
2Ts  
FPSHIFT  
2Ts  
2Ts  
4Ts  
4Ts  
2Ts  
2Ts  
2Ts  
2Ts  
4Ts  
4Ts  
2Ts  
2Ts  
4Ts  
4Ts  
2Ts  
2Ts  
1-  
R316  
2Ts  
2Ts  
FPSHIFT2  
2Ts  
2Ts  
2Ts  
2Ts  
2Ts  
1-  
R316  
1-R1 1-G1  
1-B1 1-R2  
1-G2 1-B2  
1-G6  
1-B6  
1-B11 1-R12  
Invalid  
FPDAT7  
FPDAT6  
Invalid  
1-  
B316  
1-R7  
1-B7  
1-G7 1-G12 1-B12  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
1-  
G317  
1-R8  
1-B8  
1-R13 1-G13  
1-B13 1-R14  
FPDAT5  
FPDAT4  
FPDAT3  
1-  
R318  
1-R3 1-G3  
1-B3 1-R4  
1-G8  
1-R9  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
1-  
B318  
1-G9 1-G14 1-B14  
1-R10 1-R15 1-G15  
1-B10 1-B15 1-R16  
1-G11 1-G16 1-B16  
1-  
G319  
1-G4 1-B4  
1-R5 1-G5  
1-B5 1-R6  
1-B9  
1-G10  
1-R11  
FPDAT2  
1-  
R320  
FPDAT1  
FPDAT0  
1-  
B320  
Notes:  
- The duty cycle of FPSHIFT changes in order to process 16 pixels in 6 FPSHIFT/FPSHIFT2 rising edges  
- Ts = Pixel clock period (PCLK)  
- Diagram drawn with 2 FPLINE vertical blank period  
- Example timing for a 320x240 panel  
Figure 6-22: Single Color 8-Bit Panel Timing (Format 1)  
= Vertical Display Period  
VDP  
= (REG[34h] bits 9:0) + 1 Lines  
= Vertical Non-Display Period  
VNDP  
= VT - VDP  
= (REG[30h] bits 9:0) - (REG[34h] bits 9:0) Lines  
= Horizontal Display Period  
HDP  
= ((REG[24h] bits 6:0) + 1) x 8Ts  
= Horizontal Non-Display Period  
= HT - HDP  
HNDP  
= (((REG[20h] bits 6:0) + 1) x 8Ts) - (((REG[24h] bits 6:0) + 1) x 8Ts)  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 61  
Vancouver Design Center  
t2  
t1  
Sync Timing  
FPFRAME  
t4  
t3  
FPLINE  
FPLINE  
Data Timing  
t6a  
t6b  
t8  
t9  
t14  
t7a  
t11 t10  
FPSHIFT  
t7b  
FPSHIFT2  
t12 t13 t12  
t13  
2
1
FPDAT[7:0]  
Figure 6-23: Single Color 8-Bit Panel A.C. Timing (Format 1)  
Table 6-24: Single Color 8-Bit Panel A.C. Timing (Format 1)  
Symbol  
Parameter  
FPFRAME setup to FPLINE falling edge  
FPFRAME hold from FPLINE falling edge  
FPLINE period  
Min  
note 2  
note 3  
note 4  
note 5  
note 6  
note 7  
t6a + t4  
t6b + t4  
t14 + 2  
4
Typ  
Max  
Units  
Ts (note 1)  
t1  
t2  
t3  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
t4  
FPLINE pulse width  
t6a  
t6b  
t7a  
t7b  
t8  
FPSHIFT falling edge to FPLINE rising edge  
FPSHIFT2 falling edge to FPLINE rising edge  
FPSHIFT falling edge to FPLINE falling edge  
FPSHIFT2 falling edge to FPLINE falling edge  
FPLINE falling edge to FPSHIFT rising, FPSHIFT2 falling edge  
FPSHIFT2, FPSHIFT period  
t9  
6
t10  
t11  
t12  
t13  
t14  
FPSHIFT2, FPSHIFT pulse width low  
2
2
1
1
FPSHIFT2, FPSHIFT pulse width high  
FPDAT[7:0] setup to FPSHIFT2, FPSHIFT falling edge  
FPDAT[7:0] hold from FPSHIFT2, FPSHIFT falling edge  
FPLINE falling edge to FPSHIFT rising edge  
note 8  
1. Ts  
= pixel clock period  
2. t1min = HPS + t4min  
3. t2min = t3min - (HPS + t4min  
4. t3min = HT  
)
5. t4min = HPW  
6. t6amin = HPS - (HDP + HDPS), if negative add t3min  
7. t6bmin = HPS - (HDP + HDPS) + 2, if negative add t3min  
8. t14min = HDPS - (HPS + t4min), if negative add t3min  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 62  
Epson Research and Development  
Vancouver Design Center  
6.5.6 Single Color 8-Bit Panel Timing (Format 2)  
VDP  
VNDP  
FPFRAME  
FPLINE  
DRDY (MOD)  
FPDAT[7:0]  
Invalid  
LINE1  
LINE2  
LINE3  
LINE4  
LINE239 LINE240  
LINE1  
LINE2  
Invalid  
FPLINE  
DRDY (MOD)  
HDP  
HNDP  
2Ts  
Ts  
2Ts  
2Ts  
Ts  
Ts  
2Ts  
2Ts  
Ts  
2Ts  
FPSHIFT  
Ts  
1-R1  
Ts  
Ts  
Ts  
Ts  
Ts  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
1-B3  
1-G6  
1-G318  
Invalid  
FPDAT7  
FPDAT6  
FPDAT5  
FPDAT4  
FPDAT3  
1-B318  
1-R319  
1-G1  
1-B1  
1-R2  
1-G2  
1-B2  
1-R4  
1-G4  
1-B4  
1-R5  
1-G5  
1-B6  
1-R7  
1-G7  
1-B7  
1-R8  
1-G8  
1-B8  
Invalid  
Invalid  
1-G319  
1-B319  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
1-R320  
1-G320  
1-B320  
FPDAT2  
FPDAT1  
FPDAT0  
1-R3 1-B5  
1-G3 1-R6  
Invalid  
Notes:  
- The duty cycle of FPSHIFT changes in order to process 8 pixels in 3 FPSHIFT rising clocks  
- Ts = Pixel clock period (PCLK)  
- Diagram drawn with 2 FPLINE vertical blank period  
- Example timing for a 320x240 panel  
Figure 6-24: Single Color 8-Bit Panel Timing (Format 2)  
= Vertical Display Period  
VDP  
= (REG[34h] bits 9:0) + 1 Lines  
= Vertical Non-Display Period  
VNDP  
= VT - VDP  
= (REG[30h] bits 9:0) - (REG[34h] bits 9:0) Lines  
= Horizontal Display Period  
HDP  
= ((REG[24h] bits 6:0) + 1) x 8Ts  
= Horizontal Non-Display Period  
= HT - HDP  
HNDP  
= (((REG[20h] bits 6:0) + 1) x 8Ts) - (((REG[24h] bits 6:0) + 1) x 8Ts)  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 63  
Vancouver Design Center  
t1  
t2  
Sync Timing  
FPFRAME  
t4  
t3  
FPLINE  
t5  
DRDY (MOD)  
Data Timing  
FPLINE  
t6  
t8  
t9  
t7  
t14  
t11 t10  
FPSHIFT  
t12 t13  
1
2
FPDAT[7:0]  
Figure 6-25: Single Color 8-Bit Panel A.C. Timing (Format 2)  
Table 6-25: Single Color 8-Bit Panel A.C. Timing (Format 2)  
Symbol  
t1  
Parameter  
FPFRAME setup to FPLINE falling edge  
FPFRAME hold from FPLINE falling edge  
FPLINE period  
Min  
note 2  
note 3  
note 4  
note 5  
note 6  
note 7  
t6 + t4  
t14 + 2  
2
Typ  
Max  
Units  
Ts (note 1)  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
t10  
t11  
t12  
t13  
t14  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
FPLINE pulse width  
MOD transition to FPLINE rising edge  
FPSHIFT falling edge to FPLINE rising edge  
FPSHIFT falling edge to FPLINE falling edge  
FPLINE falling edge to FPSHIFT falling edge  
FPSHIFT period  
FPSHIFT pulse width low  
FPSHIFT pulse width high  
FPDAT[7:0] setup to FPSHIFT falling edge  
FPDAT[7:0] hold to FPSHIFT falling edge  
FPLINE falling edge to FPSHIFT rising edge  
1
1
1
1
note 8  
1. Ts  
= pixel clock period  
2. t1min = HPS + t4min  
3. t2min = t3min - (HPS + t4min  
4. t3min = HT  
)
5. t4min = HPW  
6. t5min = HPS - 1  
7. t6min = HPS - (HDP + HDPS) + 1, if negative add t3min  
8. t14min = HDPS - (HPS + t4min), if negative add t3min  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 64  
Epson Research and Development  
Vancouver Design Center  
6.5.7 Single Color 16-Bit Panel Timing  
VDP  
VNDP  
FPFRAME  
FPLINE  
DRDY (MOD)  
FPDAT[15:0]  
LINE1  
LINE2  
LINE3  
LINE4  
LINE479 LINE480  
Invalid  
Invalid  
LINE1  
LINE2  
FPLINE  
DRDY (MOD)  
HDP  
3Ts  
HNDP  
3Ts  
3Ts  
2Ts  
2Ts  
3Ts  
3Ts  
3Ts  
2Ts  
3Ts  
3Ts  
2Ts  
3Ts  
FPSHIFT  
3Ts  
3Ts  
3Ts  
3Ts  
2Ts  
3Ts  
2Ts  
Invalid  
1-G6  
1-R7  
1-B7  
1-G635  
1-B11  
1 R1  
-
Invalid  
Invalid  
Invalid  
FPDAT15  
FPDAT14  
FPDAT13  
FPDAT12  
FPDAT7  
FPDAT6  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
1-G12  
1-G636  
1-B1  
1-R13  
1-R637  
1-B637  
1-G638  
1-R639  
1-G2  
1-R3  
1-B3  
1-G4  
1-G8 1-B13  
1-R9 1-G14  
Invalid  
Invalid  
Invalid  
1-B9  
1-R15  
1-G10 1-B15  
1-R5  
1-B5  
1-G1  
1-B639  
1-G640  
Invalid  
Invalid  
Invalid  
Invalid  
FPDAT5  
FPDAT4  
1-G16  
1-R11  
1-B6  
1-G7  
1-R8  
1-B8  
1-R12  
1-B12  
1-R636  
1-B636  
1-G637  
1-R638  
1-B638  
1-G639  
1-R640  
1-B640  
FPDAT11  
FPDAT10  
FPDAT9  
FPDAT8  
FPDAT3  
FPDAT2  
1-R2  
1-B2  
1-G3  
1-G13  
1-R14  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
Invalid  
1-R4  
1-B4  
1-G5  
1-R6  
1-G9  
1-B14  
Invalid  
Invalid  
Invalid  
Invalid  
1-R10 1-G15  
1-B10  
1-R16  
FPDAT1  
1-G11 1-B16  
FPDAT0  
Notes:  
- The duty cycle of FPSHIFT changes in order to process 16 pixels in 3 FPSHIFT rising clocks  
- Ts = Pixel clock period (PCLK)  
- Diagram drawn with 2 FPLINE vertical blank period  
- Example timing for a 640x480 panel  
Figure 6-26: Single Color 16-Bit Panel Timing  
VDP  
= Vertical Display Period  
= (REG[34h] bits 9:0) + 1 Lines  
VNDP  
= Vertical Non-Display Period  
= VT - VDP  
= (REG[30h] bits 9:0) - (REG[34h] bits 9:0) Lines  
= Horizontal Display Period  
HDP  
= ((REG[24h] bits 6:0) + 1) x 8Ts  
= Horizontal Non-Display Period  
= HT - HDP  
HNDP  
= (((REG[20h] bits 6:0) + 1) x 8Ts) - (((REG[24h] bits 6:0) + 1) x 8Ts)  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 65  
Vancouver Design Center  
t2  
t1  
Sync Timing  
FPFRAME  
t4  
t3  
FPLINE  
t5  
DRDY (MOD)  
Data Timing  
FPLINE  
t6  
t8  
t9  
t7  
t14  
t11 t10  
FPSHIFT  
t12 t13  
1
2
FPDAT[15:0]  
Figure 6-27: Single Color 16-Bit Panel A.C. Timing  
Table 6-26: Single Color 16-Bit Panel A.C. Timing  
Symbol  
Parameter  
Min  
note 2  
note 3  
note 4  
note 5  
note 6  
note 7  
t6 + t4  
t14 + 3  
5
Typ  
Max  
Units  
Ts (note 1)  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
t10  
t11  
t12  
t13  
t14  
FPFRAME setup to FPLINE falling edge  
FPFRAME hold from FPLINE falling edge  
FPLINE period  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
FPLINE pulse width  
MOD transition to FPLINE rising edge  
FPSHIFT falling edge to FPLINE rising edge  
FPSHIFT falling edge to FPLINE falling edge  
FPLINE falling edge to FPSHIFT falling edge  
FPSHIFT period  
FPSHIFT pulse width low  
FPSHIFT pulse width high  
2
2
2
2
FPDAT[15:0] setup to FPSHIFT rising edge  
FPDAT[15:0] hold to FPSHIFT rising edge  
FPLINE falling edge to FPSHIFT rising edge  
note 8  
1. Ts  
= pixel clock period  
2. t1min = HPS + t4min  
3. t2min = t3min - (HPS + t4min  
4. t3min = HT  
)
5. t4min = HPW  
6. t5min = HPS - 1  
7. t6min = HPS - (HDP + HDPS) + 2, if negative add t3min  
8. t14min = HDPS - (HPS + t4min), if negative add t3min  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 66  
Epson Research and Development  
Vancouver Design Center  
6.5.8 Generic TFT Panel Timing  
VT (= 1 Frame)  
VPS  
VPW  
FPFRAME  
VDP  
VDPS  
FPLINE  
DRDY  
FPDAT[17:0]  
HT (= 1 Line)  
HPS  
HPW  
FPLINE  
FPSHIFT  
DRDY  
FPDAT[17:0]  
HDPS  
invalid  
HDP  
invalid  
Figure 6-28: Generic TFT Panel Timing  
VT  
= Vertical Total  
= FPFRAME Pulse Start Position  
= FPFRAME Pulse Width  
= Vertical Display Period Start Position= (REG[38h] bits 9-0) lines  
= Vertical Display Period  
= Horizontal Total  
= FPLINE Pulse Start Position  
= FPLINE Pulse Width  
= Horizontal Display Period Start Position= [(REG[28h] bits 9-0) + 5] pixels  
= Horizontal Display Period = [((REG[24h] bits 6-0) + 1) x 8] pixels  
= [(REG[30h] bits 9-0) + 1] lines  
= (REG[3Ch] bits 9-0) lines  
= [(REG[3Ch] bits 18-16) + 1] lines  
VPS  
VPW  
VDPS  
VDP  
HT  
HPS  
HPW  
HDPS  
HDP  
= [(REG[34h] bits 9-0) + 1] lines  
= [((REG[20h] bits 6-0) + 1) x 8] pixels  
= [(REG[2Ch] bits 9-0) + 1] pixels  
= [(REG[2Ch] bits 22-16) + 1] pixels  
*For TFT panels, the HDP must be a minimum of 8 pixels and must be increased by multiples of 8.  
*Panel Type Bits (REG[0Ch] bits 1-0) = 01 (TFT)  
*FPLINE Pulse Polarity Bit (REG[2Ch] bit 23) = 0 (active low)  
*FPFRAME Polarity Bit (REG[3Ch] bit 23) = 0 (active low)  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 67  
Vancouver Design Center  
6.5.9 9/12/18-Bit TFT Panel Timing  
VNDP2  
VDP  
VNDP1  
FPFRAME  
FPLINE  
LINE240  
LINE1  
LINE480  
FPDAT[17:0]  
DRDY  
FPLINE  
HDP  
HNDP1  
HNDP2  
FPSHIFT  
DRDY  
1-1  
1-2  
1-320  
invalid  
invalid  
FPDAT[17:0]  
Note: DRDY is used to indicate the first pixel  
Example Timing for 18-bit 320x240 panel  
Figure 6-29: 18-Bit TFT Panel Timing  
VDP  
= Vertical Display Period  
= VDP Lines  
VNDP  
= Vertical Non-Display Period  
= VNDP1 + VNDP2  
= VT - VDP Lines  
VNDP1 = Vertical Non-Display Period 1  
= VNDP - VNDP2 Lines  
VNDP2 = Vertical Non-Display Period 2  
= VDPS - VPS Lines  
if negative add VT  
HDP  
= Horizontal Display Period  
= HDP Ts  
HNDP  
= Horizontal Non-Display Period  
= HNDP1 + HNDP2  
= HT - HDP Ts  
HNDP1 = Horizontal Non-Display Period 1  
= HDPS - HPS Ts  
HNDP2 = Horizontal Non-Display Period 2  
= HPS - (HDP + HDPS) Ts  
if negative add HT  
if negative add HT  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 68  
Epson Research and Development  
Vancouver Design Center  
t1  
t2  
FPFRAME  
t3  
FPLINE  
t4  
FPLINE  
DRDY  
t5  
t8  
t7  
t6  
t9  
t12  
t13  
t14  
t11  
t10  
FPSHIFT  
t15 t16  
1
invalid  
2
319  
320  
invalid  
FPDAT[17:0]  
Note: DRDY is used to indicate the first pixel  
Figure 6-30: TFT A.C. Timing  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 69  
Vancouver Design Center  
Table 6-27: TFT A.C. Timing  
Symbol  
Parameter  
Min  
VT  
VPW  
HPS  
HT  
HPW  
note 2  
HDP  
note 3  
1
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
Typ  
Max  
Units  
Lines  
Lines  
FPFRAME cycle time  
FPFRAME pulse width low  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
t9  
t10  
t11  
t12  
t13  
t14  
t15  
t16  
FPFRAME falling edge to FPLINE falling edge phase difference  
FPLINE cycle time  
Ts (note 1)  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
FPLINE pulse width low  
FPLINE Falling edge to DRDY active  
DRDY pulse width  
DRDY falling edge to FPLINE falling edge  
FPSHIFT period  
250  
FPSHIFT pulse width high  
FPSHIFT pulse width low  
FPLINE setup to FPSHIFT falling edge  
DRDY to FPSHIFT falling edge setup time  
DRDY hold from FPSHIFT falling edge  
Data setup to FPSHIFT falling edge  
Data hold from FPSHIFT falling edge  
1. Ts  
= pixel clock period  
2. t6min = HDPS - HPS  
3. t8min = HPS - (HDP + HDPS)  
if negative add HT  
if negative add HT  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 70  
Epson Research and Development  
Vancouver Design Center  
6.5.10 Sharp HR-TFT Panel Timing  
t1  
t2  
FPSHIFT  
(DCLK)  
Ts  
t3  
FPDAT[17:0]  
(OB[5:0],  
OG[5:0],  
1
2
3
last  
OR[5:0])  
t4  
GPIO3  
(SPL)  
t5  
t6  
FPLINE  
(LP)  
t7  
GPIO1  
(CLS)  
t8  
PS1  
t10  
t9  
t9  
t9  
t9  
t9  
GPIO0  
(PS)  
PS2  
PS3  
t11  
t12  
t12  
GPIO2  
(REV)  
Figure 6-31: Sharp HR-TFT Panel Horizontal Timing  
Table 6-28: Sharp HR-TFT Panel Horizontal Timing  
Symbol  
Parameter  
Min  
8
9
Typ  
note 2  
note 3  
note 4  
1
note 5  
note 6  
note 7  
note 8  
note 9  
note 10  
note 11  
note 12  
Max  
1024  
1025  
1024  
Units  
Ts (note 1)  
Horizontal total period  
FPSHIFT (DCLK) active  
Horizontal display period  
GPIO3 (SPL) pulse width  
FPLINE (LP) pulse width  
t1  
t2  
t3  
t4  
t5  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
8
1
2
0
0
0
0
0
0
256  
-
511  
63  
127  
255  
127  
31  
t6  
FPLINE (LP) falling edge to GPIO3 (SPL) rising edge  
GPIO1 (CLS) pulse width  
GPIO1 (CLS) falling edge to GPIO0 (PS1) rising edge  
GPIO0 (PS2) toggle width  
GPIO0 (PS2) first falling edge to GPIO0 (PS2) first rising edge  
GPIO0 (PS3) pulse width  
GPIO2 (REV) toggle position to FPLINE (LP) rising edge  
t7  
t8  
t9  
t10  
t11  
t12  
1. Ts  
= pixel clock period  
2. t1typ  
3. t2typ  
4. t3typ  
= [(REG[20h] bits 6-0) + 1] * 8  
= [((REG[24h] bits 6-0) + 1) * 8] + 1  
= [(REG[24h] bits 6-0) + 1] * 8  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 71  
Vancouver Design Center  
5. t5typ  
6. t6typ  
7. t7typ  
8. t8typ  
9. t9typ  
= (REG[2Ch] bits 22-16) + 1  
= (REG[28h] bits 9-0) - (REG[2Ch] bits 22-16) + 2  
= (REG[A0h] bits 8-0)  
= (REG[A4h] bits 5-0)  
= (REG[ACh] bits 6-0)  
10. t10typ = (REG[A8h] bits 7-0)  
11. t11typ = (REG[B0h] bits 6-0)  
12. t12typ = (REG[B4h] bits 4-0)  
t1  
t2  
FPFRAME  
(SPS)  
t3  
t4  
t3  
t4  
t5  
t3  
FPLINE  
(LP)  
t6  
Vertical Display Period  
t7  
FPDAT[17:0]  
(OB[5:0],  
Line 1  
Last  
OG[5:0],  
OR[5:0])  
Driving period for PS3  
Driving period for PS3  
Driving period for PS1 or PS2  
Figure 6-32: Sharp HR-TFT Panel Vertical Timing  
Table 6-29: Sharp HR-TFT Panel Vertical Timing  
Symbol  
Parameter  
FPFRAME (SPS) pulse width  
Min  
1
Typ  
Max  
8
Units  
Lines  
(note 1)  
Lines  
note 3  
t1  
t2  
Vertical total period  
1
note 4  
1
1024  
FPFRAME (SPS) rising/falling edge to FPLINE (LP) rising edge  
Ts (note 2)  
t3  
t4  
(note 5)  
note 5  
note 6  
note 7  
note 8  
FPLINE (LP) rising edge to FPFRAME (SPS) rising/falling edge  
Vertical display start position  
Vertical display period  
0
0
1
0
1023  
1023  
1024  
7
Ts  
Lines  
Lines  
Lines  
t5  
t6  
t7  
Extra driving period for GPIO0 (PS1/2)  
1. Lines  
= 1 Horizontal Line  
2. Ts  
= pixel clock period  
3. t1typ  
4. t2typ  
5. t3typ  
= (REG[3Ch] bits 18-16) + 1  
= (REG[30h] bits 9-0) + 1  
The FPFRAME (SPS) rising/falling edge can occur before or after FPLINE (LP) rising edge depending  
on the value stored in the FPLINE Pulse Start Position bits (REG[2Ch] bits 9-0). To obtain the case  
indicated by t3, set the FPLINE Pulse Start Position bits to 0 and the FPFRAME (SPS) rising/falling  
edge will occur 1 Ts before the FPLINE (LP) rising edge. To obtain the case indicated by t4, set the  
FPLINE Pulse Start Position bits to a value between 1 and the Horizontal Total - 1. Then t4 = (Horizontal  
Total Period - 1) - (REG[2Ch] bits 9-0)  
6. t5typ  
7. t6typ  
8. t7typ  
= (REG[38h] bits 9-0)  
= (REG[34h] bits 9-0) + 1  
= (REG[B8h] bits 2-0)  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 72  
Epson Research and Development  
Vancouver Design Center  
6.5.11 Casio TFT Panel Timing  
Vertical Timing  
FPFRAME  
(GSRT)  
t1  
FPLINE  
(GPCK)  
t2  
Horizontal Timing  
t3  
FPLINE  
(GPCK)  
t4  
t6  
FPSHIFT  
(CLK)  
t5  
FPDAT[17:0]  
t7  
t8  
GPIO3  
(STH)  
GPIO0  
(POL)  
t10  
t9  
GPIO1  
(GRES)  
t11  
GPIO2  
(FRP)  
Figure 6-33: Casio TFT Horizontal Timing  
Table 6-30: Casio TFT Horizontal Timing  
Symbol  
Parameter  
Horizontal pulse start position  
Min  
Typ  
note 2  
note 3  
note 4  
note 5  
note 6  
note 7  
note 8  
1
Max  
1024  
1024  
128  
Units  
Ts (note 1)  
1
8
1
t1  
t2  
t3  
t4  
t5  
Horizontal total  
Horizontal pulse width  
Pixel clock period  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Horizontal display period start position  
Horizontal display period  
FPLINE (GPCK) rising edge to GPIO3 (STH) rising edge  
GPIO3 (STH) pulse width  
FPLINE (GPCK) rising edge to GPIO1 (GRES) falling edge  
GPIO1 (GRES) falling edge to FPLINE (GPCK) rising edge  
FPLINE (GPCK) rising edge to GPIO2 (FRP) toggle point  
4
8
0
1027  
1024  
63  
t6  
t7  
t8  
t9  
t10  
t11  
0
1
0
note 9  
note 10  
note 11  
63  
64  
127  
1. Ts  
= pixel clock period  
2. t1typ = [(REG[2Ch] bits 9-0) + 1)  
3. t2typ = [(REG[20h] bits 6-0) + 1) * 8  
4. t3typ = [(REG[2Ch] bits 22-16) + 1  
5. t4typ = depends on the pixel clock (PCLK)  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 73  
Vancouver Design Center  
6. t5typ = (REG[28h] bits 9-0) + 4  
7. t6typ = [(REG[24h] bits 6-0) + 1] * 8  
8. t7typ = (REG[C0h] bits 29-24)  
9. t9typ = (REG[C0h] bits 5-0)  
10. t10typ = (REG[C0h] bits 13-8) + 1  
11. t11typ = (REG[C0h] bits 22-16)  
t3  
FPFRAME  
(GSRT)  
t2  
t1  
FPLINE  
(GPCK)  
GPIO1  
(GRES)  
GPIO2  
(FRP)  
GPIO0  
(POL)  
t4  
t5  
FPDAT[17:0]  
Figure 6-34: Casio TFT Vertical Timing  
Table 6-31: Casio TFT Vertical Timing  
Symbol  
Parameter  
Min  
Typ  
Max  
1024  
1023  
8
1024  
1024  
Units  
lines (note 1)  
lines  
Vertical total  
Vertical pulse start  
Vertical pulse width  
1
0
1
1
1
note 2  
note 3  
note 4  
note 5  
note 6  
t1  
t2  
t3  
t4  
t5  
lines  
lines  
lines  
Vertical display period start position  
Vertical display period  
1. Lines = 1 Horizontal Line  
2. t1typ = (REG[30h] bits 9-0) + 1  
3. t2typ = (REG[3Ch] bits 9-0)  
4. t3typ = (REG[3Ch] bits 18-16) + 1  
5. t4typ = (REG[38h] bits 9-0) + 1  
6. t5typ = (REG[34h] bits 9-0) + 1  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 74  
Epson Research and Development  
Vancouver Design Center  
6.5.12 TFT Type 2 Panel Timing  
t1  
t2  
FPLINE  
(STB)  
t3  
t4  
GPIO0  
(VCLK)  
t5  
t6  
GPIO3  
(STH)  
FPSHIFT  
(CLK)  
t7  
t8  
D[17:0]  
1
2
Last  
DRDY  
(INV)  
t9  
t11  
t10  
GPIO1  
(AP)  
t12  
GPIO2  
(POL)  
Figure 6-35: TFT Type 2 Horizontal Timing  
Table 6-32: TFT Type 2 Horizontal Timing  
Symbol  
Parameter  
Min  
1
Typ  
note 2  
5
note 3  
note 4  
note 5  
1
Max  
1024  
Units  
Ts (note 1)  
Horizontal total period  
FPLINE (STB) pulse width  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
GPIO0 (VCLK) rising edge to FPLINE (STB) rising edge  
FPLINE (STB) rising edge to GPIO0 (VCLK) falling edge  
FPLINE (STB) rising edge to GPIO3 (STH) rising edge  
GPIO3 (STH) pulse width  
7
7
16  
16  
Data setup time  
Data hold time  
Horizontal display period  
0.5  
0.5  
8
40  
20  
note 6  
note 7  
note 8  
10  
1024  
90  
270  
t9  
t10  
t11  
t12  
FPLINE (STB) rising edge to GPIO1 (AP) rising edge  
GPIO1 (AP) pulse width  
FPLINE (STB) rising edge to GPIO2 (POL) toggle position  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 75  
Vancouver Design Center  
1. Ts  
= pixel clock period  
2. t1typ = [(REG[20h] bits 6-0) + 1] * 8  
3. t3typ = (REG[BCh] bits 1-0)  
Selected from 7, 9, 12 or 16 Ts  
4. t4typ = (REG[BCh] bits 4-3)  
Selected from 7, 9, 12 or 16 Ts  
5. t5typ = (REG[28h] bits 9-0) + 3 Ts  
6. t9typ = [(REG[24h] bits 6-0) + 1] * 8  
7. t10typ = (REG[BCh] bits 9-8)  
Selected from 40, 52, 68 or 90 Ts  
8. t11typ = (REG[BCh] bits 13-11)  
Selected from 20, 40, 80, 120, 150, 190, 240 or 270 Ts  
t1  
t2  
FPFRAME  
(STV)  
t3  
GPIO3  
(STH)  
t4  
t5  
D[17:0]  
Line1  
Line2  
Last  
GPIO2  
(POL)  
(Odd Frame)  
GPIO2  
(POL)  
(Even Frame)  
GPIO2  
(POL)  
(Alternate Timing)  
Figure 6-36: TFT Type 2 Vertical Timing  
Table 6-33: TFT Type 2 Vertical Timing  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Vertical total period  
FPFRAME (STV) pulse width  
GPIO3 (STH) rising edge to FPFRAME (STV) rising edge  
Vertical display start position  
Vertical display period  
8
1024  
Lines  
Lines  
Ts (note 1)  
Lines (note 2)  
Ts  
t1  
t2  
t3  
t4  
t5  
1
0
0
1
note 3  
note 4  
1024  
1024  
1. Ts  
= pixel clock period  
2. Lines = 1 Horizontal Line  
3. t4typ = (REG[38h] bits 9-0)  
4. t5typ = (REG[34h] bits 9-0)  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 76  
Epson Research and Development  
Vancouver Design Center  
6.5.13 TFT Type 3 Panel Timing  
t1  
t2  
FPLINE  
(LP)  
t3  
t4  
GPIO3  
(EIO)  
FPSHIFT  
(CPH)  
t7  
t6  
t5  
t8  
D[17:0]  
DRDY  
(INV)  
1
2
t9  
t10  
GPIO1  
(OE)  
t11  
GPIO2  
(POL)  
t12  
GPO1  
(VCOM)  
t13  
t14  
GPIO0  
(CPV)  
Figure 6-37: TFT Type 3 Horizontal Timing  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 77  
Vancouver Design Center  
Table 6-34: TFT Type 3 Horizontal Timing  
Symbol  
Parameter  
Min  
8
1
Typ  
Max  
1024  
256  
Units  
Ts (note 1)  
Horizontal total period  
FPLINE (LP) pulse width  
t1  
t2  
t3  
t4  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
FPLINE (LP) rising edge to GPIO3 (EIO) rising edge  
GPIO3 (EIO) pulse width  
GPIO3 (EIO) rising edge to 1st data  
Data setup time  
1
1
t5  
t6  
t7  
t8  
t9  
t10  
t11  
t12  
t13  
t14  
0.5  
0.5  
8
0
0
Data hold time  
Horizontal display period  
1024  
512  
512  
512  
512  
FPLINE (LP) rising edge to GPIO1 (OE) rising edge  
GPIO1 (OE) pulse width  
FPLINE (LP) rising edge to GPIO2 (POL) toggle position  
FPLINE (LP) rising edge to GPO1 (VCOM) toggle position  
FPLINE (LP) rising edge to GPIO0 (CPV) rising edge  
GPIO0 (CPV) pulse width  
0
0
0
0
512  
1. Ts  
= pixel clock period  
2. t1typ = [(REG[20h] bits 6-0) + 1] * 8  
3. t2typ = (REG[2Ch] bits 22-16) + 1  
3. t3typ = (REG[28h] bits 9-0) + 4 Ts  
4. t4typ = Selected from 0, 1, 2 Ts  
6. t8typ = [(REG[24h] bits 6-0) + 1] * 8  
7. t9typ = (REG[D8h] bits 15-8) * 2  
8. t10typ = (REG[D8h] bits 23-16) * 2  
9. t11typ = (REG[D8h] bits 31-24) * 2  
10. t12typ = (REG[DCh] bits 7-0) * 2  
7. t14typ = (REG[DCh] bits 15-8) * 2  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 78  
Epson Research and Development  
Vancouver Design Center  
t1  
t2  
FPFRAME  
(STV)  
t3  
t3  
GPIO0  
(CPV)  
FPLINE  
(LP)  
t4  
t5  
Line1  
Line2  
Last  
D[17:0]  
t5  
GPIO1  
(OE)  
t6 t7  
GPO2  
(XOEV)  
GPIO2  
(POL)  
(Odd Frame)  
GPO1  
(VCOM)  
(Odd Frame)  
GPIO2  
(POL)  
(Even Frame)  
GPO1  
(VCOM)  
(Even Frame)  
Figure 6-38: TFT Type 3 Vertical Timing  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 79  
Vancouver Design Center  
Table 6-35: TFT Type 3 Vertical Timing  
Symbol  
Parameter  
Min  
Typ  
Max  
Units  
Vertical total period  
FPFRAME (STV) pulse width  
GPIO0 (CPV) rising edge to FPFRAME (STV) rising (falling) edge  
Vertical display start position  
Vertical display period  
1
1024  
Lines  
Lines  
Lines  
Lines  
Lines  
Ts  
t1  
t2  
t3  
t4  
1
0.5  
1
1
0
0
1024  
512  
512  
t5  
t6  
t7  
GPO2 (XOEV) rising edge to GPIO0 (CPV) rising edge  
GPIO0 (CPV) rising edge to GPO2 (XOEV) falling edge  
Ts  
1. Ts  
= pixel clock period  
2. t4typ = (REG[38h] bits 9-0)  
2. t5typ = (REG[34h] bits 9-0) + 1  
3. t6typ = (REG[DCh] bits 23-16) * 2  
4. t7typ = (REG[DCh] bits 31-24) * 2  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 80  
Epson Research and Development  
Vancouver Design Center  
6.5.14 TFT Type 4 Panel Timing  
VNDP2  
VDP  
VNDP1  
FPFRAME  
FPLINE  
LINE480  
LINE1  
LINE480  
FPDAT[17:0]  
DRDY  
FPLINE  
HDP  
HNDP1  
HNDP2  
FPSHIFT  
DRDY  
1-1  
1-2  
1-640  
invalid  
invalid  
FPDAT[17:0]  
Note: DRDY is used to indicate the first pixel  
Example Timing for 12-bit 640x480 panel  
Figure 6-39: TFT Type 4 Panel Timing  
VDP  
= Vertical Display Period  
= VDP Lines  
VNDP  
= Vertical Non-Display Period  
= VNDP1 + VNDP2  
= VT - VDP Lines  
VNDP1 = Vertical Non-Display Period 1  
= VNDP - VNDP2 Lines  
VNDP2 = Vertical Non-Display Period 2  
= VDPS - VPS Lines  
if negative add VT  
HDP  
= Horizontal Display Period  
= HDP Ts  
HNDP  
= Horizontal Non-Display Period  
= HNDP1 + HNDP2  
= HT - HDP Ts  
HNDP1 = Horizontal Non-Display Period 1  
= HDPS - (HPS + 1) + 5 Ts  
HNDP2 = Horizontal Non-Display Period 2  
= (HPS + 1) - (HDP + HDPS + 5) Ts  
if negative add HT  
if negative add HT  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 81  
Vancouver Design Center  
t1  
t2  
FPFRAME  
FPLINE  
t3  
t4  
FPLINE  
t5  
t6  
t9  
t7  
t8  
DRDY  
t10  
t12  
t13  
t15  
t14  
t11  
FPSHIFT  
t16 t17  
1
invalid  
2
639  
640  
invalid  
FPDAT[17:0]  
Note: DRDY is used to indicate the first pixel  
Figure 6-40: TFT Type 4 A.C. Timing  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 82  
Epson Research and Development  
Vancouver Design Center  
Table 6-36: TFT Type 4 A.C. Timing  
Symbol  
Parameter  
Min  
VT  
VPW  
Typ  
Max  
Units  
Lines  
Lines  
FPFRAME cycle time  
FPFRAME pulse width low  
t1  
t2  
t3  
t4  
t5  
FPFRAME falling edge to FPLINE falling edge phase difference HPS + 1  
Ts (note 1)  
FPLINE cycle time  
FPLINE pulse width low  
HT  
HPW  
note 2  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
Ts  
FPLINE Falling edge to DRDY active  
DRDY active to data setup  
250  
t6  
t7  
8
DRDY pulse width  
HDP  
note 3  
1
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
t8  
t9  
DRDY falling edge to FPLINE falling edge  
FPSHIFT period  
t10  
t11  
t12  
t13  
t14  
t15  
t16  
t17  
FPSHIFT pulse width high  
FPSHIFT pulse width low  
FPLINE setup to FPSHIFT falling edge  
DRDY to FPSHIFT falling edge setup time  
DRDY hold from FPSHIFT falling edge  
Data setup to FPSHIFT falling edge  
Data hold from FPSHIFT falling edge  
0.5  
1. Ts  
= pixel clock period  
2. t6min = HDPS - (HPS + 1) + 5  
3. t8min = (HPS + 1) - (HDP + HDPS + 5)  
if negative add HT  
if negative add HT  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 83  
Vancouver Design Center  
6.6 USB Timing  
Data Signal Rise and Fall Time  
Figure 6-41 Data Signal Rise and Fall Time  
Figure 6-42 Differential Data Jitter  
Figure 6-43 Differential to EOP Transition Skew and EOP Width  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 84  
Epson Research and Development  
Vancouver Design Center  
Figure 6-44 Receiver Jitter Tolerance  
Table 6-37 USB Interface Timing  
Symbol  
Parameter  
Conditions  
Waveform  
Min  
Typ  
Max  
Unit  
USB  
USB Clock Frequency  
48  
MHz  
FREQ  
1
T
USB Clock Period  
Rise & Fall Times  
Figure 6-41  
-------------------------  
USBFREQ  
PERIOD  
T
T
T
4
4
20  
20  
ns  
C = 50 pF  
Notes 1,2  
R
F
L
Figure 6-41  
Figure 6-41  
Rise/Fall time matching  
Output Signal Crossover Voltage  
Driver Output Resistance  
Data Rate  
(T / T )  
90  
110  
2.0  
%
V
RFM  
R
F
V
Z
1.3  
Note 5  
CRS  
Steady State Drive  
28  
44  
Ω
DRV  
T
11.97  
12  
0
12.03  
Mbs  
DRATE  
Source Differential Driver Jitter to  
Next Transition  
T
Notes 3,4.  
Notes 3,4  
Figure 6-42  
Figure 6-42  
-3.5  
3.5  
4.0  
ns  
ns  
DDJ1  
DDJ2  
Source Differential Driver Jitter for  
Paired Transitions  
T
-4.0  
0
Differential to EOP Transition  
Skew  
T
T
T
Note 4  
Note 4  
Note 4  
Figure 6-43  
Figure 6-43  
Figure 6-44  
-2  
0
167  
0
5
ns  
ns  
ns  
DEOP  
EOPT  
JR1  
Source EOP Width  
160  
175  
18.5  
Receiver Data Jitter Tolerance to  
Next Transition  
-18.5  
Receiver Data Jitter Tolerance for  
Paired Transitions  
T
T
T
Note 4  
Note 4  
Note 4  
Figure 6-44  
Figure 6-43  
Figure 6-43  
-9  
40  
80  
0
9
ns  
ns  
ns  
JR2  
EOP Width at Receiver;  
Must reject as EOP  
EOPR1  
EOPR2  
EOP Width at Receiver;  
Must accept as EOP  
1
Measured from 10% to 90% of the data signal.  
2
3
4
5
The rising and falling edges should be smoothly transitioning (monotonic).  
Timing difference between the differential data signals.  
Measured at crossover point of differential data signals.  
20 Ω is placed in series to meet this USB specification. The actual driver output impedance is 15 Ω.  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 85  
Vancouver Design Center  
7 Clocks  
7.1 Clock Descriptions  
7.1.1 BCLK  
BCLK is an internal clock derived from CLKI or CLKI2 (see REG[04h] bit 0). If CLKI is  
selected as the source, BCLK can be a divided version (÷1, ÷2) of CLKI. CLKI is typically  
derived from the host CPU bus clock.  
The source clock options for BCLK may be selected as in the following table.  
Table 7-1: BCLK Clock Selection  
Source Clock Options  
BCLK Selection  
CNF6 = 0  
CLKI  
CLKI  
÷
2
CNF6 = 1  
Note  
For synchronous bus interfaces, it is recommended that BCLK be set the same as the  
CPU bus clock (not a divided version of CLKI) e.g. SH-3, SH-4.  
7.1.2 MCLK  
MCLK provides the internal clock required to access the embedded SRAM. The  
S1D13A05 is designed with efficient power saving control for clocks (clocks are turned off  
when not used); reducing the frequency of MCLK does not necessarily save more power.  
Furthermore, reducing the MCLK frequency relative to the BCLK frequency increases the  
CPU cycle latency and so reduces screen update performance. For a balance of power  
saving and performance, the MCLK should be configured to have a high enough frequency  
setting to provide sufficient screen refresh as well as acceptable CPU cycle latency.  
Note  
The maximum frequency of MCLK is 50MHz (30MHz if running CORE V at 2.0V ±  
DD  
10%). As MCLK is derived from BCLK, when BCLK is greater than 50MHz, MCLK  
must be divided using REG[04h] bits 5-4.  
The source clock options for MCLK may be selected as in the following table.  
Table 7-2: MCLK Clock Selection  
Source Clock Options  
MCLK Selection  
BCLK  
REG[04h] bits 5-4 = 00  
REG[04h] bits 5-4 = 01  
REG[04h] bits 5-4 = 10  
REG[04h] bits 5-4 = 11  
BCLK  
BCLK  
BCLK  
÷
÷
÷
2
3
4
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 86  
Epson Research and Development  
Vancouver Design Center  
7.1.3 PCLK  
PCLK is the internal clock used to control the panel. It should be chosen to match the  
optimum frame rate of the panel. See Section 10, “Frame Rate Calculation” on page 162  
for details on the relationship between PCLK and frame rate.  
Some flexibility is possible in the selection of PCLK. Firstly, panels typically have a range  
of permissible frame rates. Secondly, it may be possible to choose a higher PCLK  
frequency and tailor the horizontal non-display period to bring down the frame-rate to its  
optimal value.  
The source clock options for PCLK may be selected as in the following table.  
Table 7-3: PCLK Clock Selection  
Source Clock Options  
PCLK Selection  
MCLK  
REG[08h] bits 7-0 = 00h  
REG[08h] bits 7-0 = 10h  
REG[08h] bits 7-0 = 20h  
REG[08h] bits 7-0 = 30h  
REG[08h] bits 7-0 = 40h  
REG[08h] bits 7-0 = 01h  
REG[08h] bits 7-0 = 11h  
REG[08h] bits 7-0 = 21h  
REG[08h] bits 7-0 = 31h  
REG[08h] bits 7-0 = 41h  
REG[08h] bits 7-0 = 02h  
REG[08h] bits 7-0 = 12h  
REG[08h] bits 7-0 = 22h  
REG[08h] bits 7-0 = 32h  
REG[08h] bits 7-0 = 42h  
REG[08h] bits 7-0 = 03h  
REG[08h] bits 7-0 = 13h  
REG[08h] bits 7-0 = 23h  
RREG[08h] bits 7-0 = 33h  
REG[08h] bits 7-0 = 43h  
MCLK  
MCLK  
MCLK  
MCLK  
÷
÷
÷
÷
2
3
4
8
BCLK  
BCLK  
BCLK  
BCLK  
BCLK  
÷
÷
÷
÷
2
3
4
8
CLKI  
CLKI  
CLKI  
CLKI  
CLKI  
÷
2
÷3  
÷4  
÷8  
CLKI2  
CLKI2  
÷
÷
÷
÷
2
3
4
8
CLKI2  
CLKI2  
CLKI2  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 87  
Vancouver Design Center  
There is a relationship between the frequency of MCLK and PCLK that must be  
maintained.  
Table 7-4: Relationship between MCLK and PCLK  
SwivelView Orientation  
Color Depth (bpp)  
MCLK to PCLK Relationship  
16  
f
f  
MCLK PCLK  
8
f
f
f
f  
÷
÷
÷
2
4
8
MCLK  
MCLK  
MCLK  
PCLK  
PCLK  
PCLK  
SwivelView 0° and 180°  
4
f  
f  
f  
2
1
f
÷
16  
MCLK  
PCLK  
SwivelView 90° and 270°  
16/8/4/2/1  
f
≥ 1.25f  
MCLK  
PCLK  
7.1.4 PWMCLK  
PWMCLK is the internal clock used by the Pulse Width Modulator for output to the panel.  
The source clock options for PWMCLK may be selected as in the following table.  
Table 7-5: PWMCLK Clock Selection  
Source Clock Options  
PWMCLK Selection  
REG[70h] bits 2-1 = 00  
REG[70h] bits 2-1 = 01  
REG[70h] bits 2-1 = 10  
REG[70h] bits 2-1 = 11  
CLKI  
CLKI2  
MCLK  
PCLK  
For further information on controlling PWMCLK, see “PWM Clock Configuration  
Register” on page 121..  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 88  
Epson Research and Development  
Vancouver Design Center  
7.2 Clock Selection  
The following diagram provides a logical representation of the S1D13A05 internal clocks  
used for the LCD controller.  
CLKI  
0
0
1
BCLK  
÷
2
1
1
CNF6  
REG[04h] bit 0  
REG[04h] bits 5-4  
00  
01  
÷2  
÷3  
÷4  
MCLK  
10  
11  
00  
01  
000  
001  
10  
11  
÷2  
÷3  
÷4  
÷8  
CLKI2  
010  
011  
1xx  
PCLK  
REG[08h] bits 1,0  
00  
01  
REG[08h] bits 6-4  
PWMCLK  
10  
11  
REG[70h] bits 2-1  
Figure 7-1: Clock Selection  
Note  
1
CNF6 must be set at RESET#.  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 89  
Vancouver Design Center  
7.3 Clocks versus Functions  
Table 7-6: “S1D13A05 Internal Clock Requirements”, lists the internal clocks required for  
the following S1D13A05 functions.  
Table 7-6: S1D13A05 Internal Clock Requirements  
Bus Clock  
(BCLK)  
Memory Clock  
(MCLK)  
Pixel Clock  
(PCLK)  
PWM Clock  
(PWMCLK)  
USB Clock  
(USBCLK)  
Function  
1
1
Register Read/Write  
Memory Read/Write  
Required  
Required  
Not Required  
Required  
Not Required  
Not Required  
Not Required  
Not Required  
Not Required  
Not Required  
Look-Up Table Register  
Read/Write  
1
Required  
Required  
Not Required  
Not Required  
Not Required  
1
Software Power Save  
LCD Output  
Required  
Required  
Required  
Not Required  
Required  
Not Required  
Required  
Not Required  
Not Required  
Not Required  
Not Required  
Required  
1
USB Register Read/Write  
Not Required  
Not Required  
Not Required  
Note  
1
PWMCLK is an optional clock (see Section 7.1.4, “PWMCLK” on page 87).  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 90  
Epson Research and Development  
Vancouver Design Center  
8 Registers  
This section discusses how and where to access the S1D13A05 registers. It also provides  
detailed information about the layout and usage of each register.  
8.1 Register Mapping  
The S1D13A05 registers are memory-mapped. When the system decodes the input pins as  
CS# = 0 and M/R# = 0, the registers may be accessed. The register space is decoded by  
AB[17:0] and is mapped as follows.  
Table 8-1: S1D13A05 Register Mapping  
M/R#  
Address  
Size  
256K bytes  
Function  
1
0
0
0
0
00000h to 40000h  
0000h to 00E3h  
4000h to 4054h  
8000h to 8019h  
10000h to 1FFFEh  
SRAM memory  
227 bytes  
Configuration registers  
USB registers  
84 bytes  
25 bytes  
2D Acceleration Registers  
2D Accelerator Data Port  
65536 bytes (64K bytes)  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 91  
Vancouver Design Center  
8.2 Register Set  
The S1D13A05 register set is as follows.  
Table 8-2: S1D13A05 Register Set  
Register  
Pg  
Register  
Pg  
LCD Register Descriptions (Offset = 0h)  
Read-Only Configuration Registers  
93  
REG[00h] Product Information Register  
Clock Configuration Registers  
REG[04h] Memory Clock Configuration Register  
94  
REG[08h] Pixel Clock Configuration Register  
95  
97  
Panel Configuration Registers  
REG[0Ch] Panel Type & MOD Rate Register  
REG[14h] Power Save Configuration Register  
96  
REG[10h] Display Settings Register  
100  
Look-Up Table Registers  
REG[18h] Look-Up Table Write Register  
101  
REG[1Ch] Look-Up Table Read Register  
102  
Display Mode Registers  
REG[20h] Horizontal Total Register  
103  
104  
105  
106  
108  
108  
REG[24h] Horizontal Display Period Register  
103  
104  
106  
107  
108  
REG[28h] Horizontal Display Period Start Position Register  
REG[30h] Vertical Total Register  
REG[2Ch] FPLINE Register  
REG[34h] Vertical Display Period Register  
REG[3Ch] FPFRAME Register  
REG[38h] Vertical Display Period Start Position Register  
REG[40h] Main Window Display Start Address Register  
REG[48h] Extended Panel Type Register  
REG[44h] Main Window Line Address Offset Register  
+
Picture-in-Picture Plus (PIP ) Registers  
+
+
REG[50h] PIP Window Display Start Address Register  
110  
111  
REG[54h] PIP Window Line Address Offset Register  
110  
113  
+
+
REG[58h] PIP Window X Positions Register  
REG[5Ch] PIP Window Y Positions Register  
Miscellaneous Registers  
REG[60h] Reserved  
115  
119  
122  
123  
REG[64h] GPIO Status and Control Register  
115  
121  
123  
123  
REG[68h] GPO Status and Control Register  
REG[74h] PWMOUT Duty Cycle Register  
REG[84h] Scratch Pad B Register  
REG[70h] PWM Clock Configuration Register  
REG[80h] Scratch Pad A Register  
REG[88h] Scratch Pad C Register  
Extended Panel Registers  
REG[A0h] HR-TFT CLS Width Register  
REG[A8h] HR-TFT PS2 Rising Edge Register  
REG[B0h] HR-TFT PS3 Signal Width Register  
REG[B8h] HR-TFT PS1/2 End Register  
REG[C0h] Casio TFT Timing Register  
124  
124  
125  
126  
129  
129  
REG[A4h] HR-TFT PS1 Rising Edge Register  
124  
125  
125  
126  
128  
130  
132  
133  
134  
REG[ACh] HR-TFT PS2 Toggle Width Register  
REG[B4h] HR-TFT REV Toggle Point Register  
REG[BCh] Type 2 TFT Configuration Register  
REG[D8h] Type 3 TFT Configuration 0 Register  
REG[E0h] Type 3 TFT PCLK Divide Register  
REG[E8h] Type 3 TFT Partial Area 0 Positions Register  
REG[F0h] Type 3 TFT Partial Area 2 Positions Register  
REG[F8h] Type 3 TFT Miscellaneous Register  
REG[DCh] Type 3 TFT Configuration 1 Register  
REG[E4h] Type 3 TFT Partial Mode Display Control Register 131  
REG[ECh] Type 3 TFT Partial Area 1 Positions Register  
REG[F4h] Type 3 TFT Command Store Register  
132  
133  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 92  
Epson Research and Development  
Vancouver Design Center  
Table 8-2: S1D13A05 Register Set  
Register  
Pg  
Register  
Pg  
USB Register Descriptions (Offset = 4000h)  
REG[4000h] Control Register  
135  
137  
138  
139  
140  
140  
141  
141  
142  
142  
144  
144  
145  
145  
145  
REG[4002h] Interrupt Enable Register 0  
136  
138  
139  
139  
140  
140  
141  
142  
142  
143  
144  
144  
145  
145  
145  
REG[4004h] Interrupt Status Register 0  
REG[4006h] Interrupt Enable Register 1  
REG[4008h] Interrupt Status Register 1  
REG[4010h] Endpoint 1 Index Register  
REG[4012h] Endpoint 1 Receive Mailbox Data Register  
REG[401Ah] Endpoint 2 Transmit Mailbox Data Register  
REG[4020h] Endpoint 3 Receive FIFO Data Register  
REG[4024h] Endpoint 3 Receive FIFO Status Register  
REG[4028h] Endpoint 4 Transmit FIFO Data Register  
REG[402Ch] Endpoint 4 Transmit FIFO Status Register  
REG[4030h] Endpoint 4 Maximum Packet Size Register  
REG[4034h] Frame Counter MSB Register  
REG[4038h] Extended Register Index  
REG[4018h] Endpoint 2 Index Register  
REG[401Ch] Endpoint 2 Interrupt Polling Interval Register  
REG[4022h] Endpoint 3 Receive FIFO Count Register  
REG[4026h] Endpoint 3 Maximum Packet Size Register  
REG[402Ah] Endpoint 4 Transmit FIFO Count Register  
REG[402Eh] Endpoint 4 Maximum Packet Size Register  
REG[4032h] USB Status Register  
REG[4036h] Frame Counter LSB Register  
REG[403Ah] Extended Register Data  
REG[403Ah], Index[00h] Vendor ID MSB  
REG[403Ah], Index[01h] Vendor ID LSB  
REG[403Ah], Index[02h] Product ID MSB  
REG[403Ah], Index[03h] Product ID LSB  
REG[403Ah], Index[04h] Release Number MSB  
REG[403Ah], Index[05h] Release Number LSB  
REG[403Ah], Index[06h] Receive FIFO Almost Full Threshold 146  
REG[403Ah], Index[07h] Transmit FIFO Almost Empty Threshold 146  
REG[403Ah], Index[08h] USB Control  
146  
147  
148  
149  
149  
150  
152  
152  
REG[403Ah], Index[09h] Maximum Power Consumption  
REG[403Ah], Index[0Bh] Reserved  
146  
148  
148  
149  
150  
151  
152  
152  
REG[403Ah], Index[0Ah] Packet Control  
REG[403Ah], Index[0Ch] FIFO Control  
REG[4040h] USBFC Input Control Register  
REG[4042h] Reserved  
REG[4044h] Pin Input Status / Pin Output Data Register  
REG[4048h] Interrupt Control Enable Register 1  
REG[404Ch] Interrupt Control Status/Clear Register 1  
REG[4050h] Interrupt Control Masked Status Register 1  
REG[4054h] USB Wait State Register  
REG[4046h] Interrupt Control Enable Register 0  
REG[404Ah] Interrupt Control Status/Clear Register 0  
REG[404Eh] Interrupt Control Masked Status Register 0  
REG[4052h] USB Software Reset Register  
2D Acceleration (BitBLT) Register Descriptions (Offset = 8000h)  
REG[8000h] BitBLT Control Register  
153  
155  
157  
158  
159  
REG[8004h] BitBLT Status Register  
154  
157  
158  
158  
159  
REG[8008h] BitBLT Command Register  
REG[8010h] BitBLT Destination Start Address Register  
REG[8018h] BitBLT Width Register  
REG[800Ch] BitBLT Source Start Address Register  
REG[8014h] BitBLT Memory Address Offset Register  
REG[801Ch] BitBLT Height Register  
REG[8020h] BitBLT Background Color Register  
REG[8024h] BitBLT Foreground Color Register  
2D Acceleration (BitBLT) Data Register Descriptions (Offset = 10000h)  
AB16-AB0 = 10000h-1FFFEh, 2D Accelerator (BitBLT) Data Memory Mapped Region Register  
160  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 93  
Vancouver Design Center  
8.3 LCD Register Descriptions (Offset = 0h)  
Unless specified otherwise, all register bits are set to 0 during power-on.  
8.3.1 Read-Only Configuration Registers  
Product Information Register  
REG[00h]  
Default = 2Dxx402Dh  
Read Only  
Revision Code  
bits 1-0  
Product Code bits 5-0  
n/a  
23  
CNF[6:0] Status  
19  
31  
30  
29  
28  
27  
26  
10  
25  
24  
22  
6
21  
20  
18  
2
17  
16  
Revision Code  
bits 1-0  
Display Buffer Size bits 7-0  
Product Code bits 5-0  
15  
14  
13  
12  
11  
9
8
7
5
4
3
1
0
bits 31-26  
bits 25-24  
bits 22-16  
Product Code  
These read-only bits indicate the product code. The product code is 001011 (0Bh).  
Revision Code  
These are read-only bits that indicates the revision code. The revision code is 01.  
CNF[6:0] Status  
These read-only status bits return the status of the configuration pins CNF[6:0]. CNF[6:0]  
are latched at the rising edge of RESET#.  
Note  
For a functional description of each configuration bit (CNF[6:0]), see Section 4.3,  
“Summary of Configuration Options” on page 25.  
bits 15-8  
Display Buffer Size Bits [7:0]  
This is a read-only register that indicates the size of the SRAM display buffer measured in  
4K byte increments. The S1D13A05 display buffer is 256K bytes and therefore this regis-  
ter returns a value of 64 (40h).  
Value of this register = display buffer size ÷ 4K bytes  
= 256K bytes ÷ 4K bytes  
= 64 (40h)  
bits 7-2  
bits 1-0  
Product Code  
These read-only bits indicate the product code. The product code is 001011 (0Bh).  
Revision Code  
These are read-only bits that indicates the revision code. The revision code is 01.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 94  
Epson Research and Development  
Vancouver Design Center  
8.3.2 Clock Configuration Registers  
Memory Clock Configuration Register  
REG[04h]  
Default = 00000000h  
Read/Write  
n/a  
31  
30  
29  
13  
28  
27  
26  
25  
9
24  
8
23  
7
22  
6
21  
20  
19  
3
18  
17  
16  
BCLK  
Source  
Select  
MCLK Divide  
Select bits 1-0  
n/a  
n/a  
15  
14  
12  
11  
10  
5
4
2
1
0
bits 5-4  
MCLK Divide Select Bits [1:0]  
These bits determine the divide used to generate the Memory Clock (MCLK) from the  
Bus Clock (BCLK).  
Table 8-3: MCLK Divide Selection  
MCLK Divide Select Bits  
BCLK to MCLK Frequency Ratio  
00  
01  
10  
11  
1:1  
2:1  
3:1  
4:1  
bit 0  
BCLK Source Select  
When this bit = 0, the source of the Bus Clock (BCLK) is input pin CLKI or a divided  
down version of CLKI. CLKI may be divided down using the CLKI to BCLK divide  
select configuration pin CNF6.  
When this bit = 1, the source of the Bus Clock (BCLK) is input pin CLKI2.  
Note  
Changing this bit allows the BCLK source to be switched in a glitch-free manner.  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 95  
Vancouver Design Center  
Pixel Clock Configuration Register  
REG[08h]  
Default = 00000000h  
Read/Write  
n/a  
31  
30  
29  
13  
28  
12  
27  
26  
10  
25  
9
24  
8
23  
7
22  
21  
20  
19  
3
18  
2
17  
16  
PCLK Source  
Select bits 1-0  
n/a  
PCLK Divide Select bits 2-0  
n/a  
15  
14  
11  
6
5
4
1
0
bits 6-4  
PCLK Divide Select Bits [1:0]  
These bits determine the divide used to generate the Pixel Clock (PCLK) from the Pixel  
Clock Source.  
Table 8-4: PCLK Divide Selection  
PCLK Divide Select Bits  
PCLK Source to PCLK Frequency Ratio  
000  
001  
010  
011  
1XX  
1:1  
2:1  
3:1  
4:1  
8:1  
bits 1-0  
PCLK Source Select Bits [1:0]  
These bits determine the source of the Pixel Clock (PCLK).  
Table 8-5: PCLK Source Selection  
PCLK Source Select Bits  
PCLK Source  
00  
01  
10  
11  
MCLK  
BCLK  
CLKI  
CLKI2  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 96  
Epson Research and Development  
Vancouver Design Center  
8.3.3 Panel Configuration Registers  
Panel Type & MOD Rate Register  
REG[0Ch]  
Default = 00000000h  
Read/Write  
FPSHIFT  
Invert  
n/a  
n/a  
MOD Rate bits 5-0  
31  
30  
29  
13  
28  
27  
26  
25  
9
24  
23  
22  
21  
20  
19  
18  
17  
16  
Panel  
Data  
Format  
Select  
Color/  
Mono  
Panel  
Select  
HR-TFT  
PS  
Mode  
Panel Data Width Reserv  
Panel Type  
bits 1-0  
n/a  
n/a  
bits 1-0  
ed  
3
15  
14  
12  
11  
10  
8
7
6
5
4
2
1
0
bit 24  
FPSHIFT Invert  
This bit inverts the FPSHIFT signal used by active panels. For passive panels, this bit has  
no effect.  
When this bit is 0, FPSHIFT is unchanged.  
When this bit is 1, FPSHIFT is inverted.  
bits 21-16  
bit 8  
MOD Rate Bits [5:0]  
These bits are for passive LCD panels only.  
When these bits are all 0, the MOD output signal (DRDY) toggles every FPFRAME.  
For a non-zero value n, the MOD output signal (DRDY) toggles every n FPLINE.  
HR-TFT PS Mode  
This bit is for HR-TFT panels only.  
This bit selects the timing used for the PS signal. The alternate PS timings (PS1, PS2,  
PS3) result in additional power savings on the HR-TFT Panel.  
When this bit = 0, the PS signal uses PS1 timing.  
When this bit = 1, the PS signal uses PS2 timing.  
bit 7  
Panel Data Format Select  
When this bit = 0, 8-bit single color passive LCD panel data format 1 is selected. For AC  
timing see Section 6.5.5, “Single Color 8-Bit Panel Timing (Format 1)” on page 60.  
When this bit = 1, 8-bit single color passive LCD panel data format 2 is selected. For AC  
timing see Section 6.5.6, “Single Color 8-Bit Panel Timing (Format 2)” on page 62.  
bit 6  
Color/Mono Panel Select  
When this bit = 0, a monochrome LCD panel is selected.  
When this bit = 1, a color LCD panel is selected.  
bits 5-4  
Panel Data Width Bits [1:0]  
These bits select the data width size of the LCD panel.  
Table 8-6: Panel Data Width Selection  
Passive Panel Data Width  
Panel Data Width Bits [1:0]  
Active Panel Data Width Size  
Size  
00  
01  
10  
11  
4-bit  
9-bit  
12-bit  
8-bit  
16-bit  
18-bit  
Reserved  
Reserved  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 97  
Vancouver Design Center  
bit 3  
Reserved.  
This bit must be set to 0.  
bits 1-0  
Panel Type Bits[1:0]  
These bits select the panel type.  
Table 8-7: LCD Panel Type Selection  
Panel Type Bits [1:0]  
Panel Type  
STN  
00  
01  
10  
11  
TFT  
Reserved  
HR-TFT  
Display Settings Register  
REG[10h]  
Default = 00000000h  
Read/Write  
Display  
Blank  
Polarity  
SW  
Video Window  
PIP+  
Pixel  
Pixel  
Display Dithering  
SwivelView Mode  
Select  
n/a  
n/a  
18  
Doubling Doubling  
Blank  
Disable  
Invert  
Enable  
Vertical  
25  
Horiz.  
24  
31  
30  
29  
13  
28  
12  
27  
11  
26  
10  
23  
22  
21  
5
20  
19  
17  
16  
0
Bits-per-pixel Select  
(actual value: 1, 2, 4, 8 or 16 bpp)  
n/a  
15  
14  
9
8
7
6
4
3
2
1
bit 25  
Pixel Doubling Vertical Enable  
This bit controls the pixel doubling feature for the vertical dimension or height of the  
panel (i.e. 160 pixel high data doubled to 320 pixel high panel).  
When this bit = 1, pixel doubling in the vertical dimension (height) is enabled.  
When this bit = 0, there is no hardware effect.  
Note  
Pixel Doubling is not supported in SwivelView 90° or SwivelView 270° modes.  
bit 24  
Pixel Doubling Horizontal Enable  
This bit controls the pixel doubling feature for the horizontal dimension or width of the  
panel (i.e. 160 pixel wide data doubled to 320 pixel wide panel)  
When this bit = 1, pixel doubling in the horizontal dimension (width) is enabled.  
When this bit = 0, there is no hardware effect.  
Note  
Pixel Doubling is not supported in SwivelView 90° or SwivelView 270° modes.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 98  
Epson Research and Development  
Vancouver Design Center  
bit 23  
Display Blank  
When this bit = 0, the LCD display pipeline is enabled.  
When this bit = 1, all applicable LCD data outputs (see Table 4-9: “LCD Interface Pin  
Mapping,” on page 27) are forced to zero or one. The following table summarizes the  
changes to the signals on FPDAT[17:0] for each combination of bits.  
Table 8-8: Display Control Summary  
Display Blank  
(REG[10h] bit 23)  
Display Blank Polarity  
(REG[10h] bit 21)  
Software Video Invert  
(REG[10h] bit 20)  
Output Data Lines  
(FPDAT[17:0])  
0
1
0
1
0
1
Normal  
Inverted  
All 0  
0
1
X
0
1
All 1  
All 1  
All 0  
bit 22  
Dithering Disable  
When this bit = 0, dithering on the passive LCD panel is enabled, allowing a maximum of  
18  
64K colors (2 ) or 64 gray shades in 1/2/4/8 bpp mode. In 16bpp mode, only 64K colors  
16  
(2 ) can also be achieved.  
When this bit = 1, dithering on the passive LCD panel is disabled, allowing a maximum of  
12  
4096 colors (2 ) or 16 gray shades.  
The dithering algorithm provides more shades of each primary color.  
Note  
For a summary of the results of dithering for each color depth, see Table 8-10: “LCD  
Bit-per-pixel Selection,” on page 99.  
bit 21  
Display Blank Polarity  
When this bit = 0, the display blank function operates normally.  
When this bit = 1, the display blank function switches polarity.  
This bit works in conjunction with bit 23 and bit 20. Table 8-8: “Display Control Sum-  
mary” summarizes the changes to the signals on FPDAT[17:0] for each combination of  
bits.  
bit 20  
Software Video Invert  
When this bit = 0, video data is normal.  
When this bit = 1, video data is inverted.  
This bit works in conjunction with bit 23 and bit 21. Table 8-8: “Display Control Sum-  
mary” summarizes the changes to the signals on FPDAT[17:0] for each combination of  
bits.  
Note  
Video data is inverted after the Look-Up Table  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 99  
Vancouver Design Center  
bit 19  
PIP+ Window Enable  
This bit enables a PIP+ window within the main window. The location of the PIP+ win-  
dow within the landscape window is determined by the PIP+ X Position register  
(REG[58h]) and PIP+ Y Position register (REG[5Ch]). The PIP+ window has its own Dis-  
play Start Address register (REG[50h]) and Memory Address Offset register (REG[54h]).  
The PIP+ window shares the same color depth and SwivelViewTM orientation as the main  
window.  
bit 17-16  
SwivelView Mode Select Bits [1:0]  
These bits select different SwivelViewTM orientations:  
Table 8-9: SwivelViewTM Mode Select Options  
SwivelView Mode Select Bits  
SwivelView Orientation  
00  
01  
10  
11  
0° (Normal)  
90°  
180°  
270°  
bits 4-0  
Bit-per-pixel Select bits [4:0]  
These bits select the color depth (bit-per-pixel) for the displayed data for both the main  
+
window and the PIP window (if active).  
1, 2, 4 and 8 bpp modes use the 18-bit LUT. 16 bpp mode bypasses the LUT. For further  
details on the LUT, refer to Section 12, “Look-Up Table Architecture” on page 164.  
Table 8-10: LCD Bit-per-pixel Selection  
Max. No. Of Simultaneously  
Displayed Colors/Shades  
Bit-per-pixel Select Bits [4:0]  
Color Depth (bpp)  
00000  
00001  
Reserved  
1 bpp  
2 bpp  
2/2  
4/4  
00010  
00011  
Reserved  
Reserved  
00100  
4 bpp  
16/16  
00101 - 00111  
01000  
8 bpp  
256/64  
64K/64  
10000  
16 bpp  
10001 - 11111  
Reserved  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 100  
Epson Research and Development  
Vancouver Design Center  
Power Save Configuration Register  
REG[14h]  
Default = 00000010h  
Read/Write  
n/a  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
Memory  
Power  
Save  
VNDP  
Status  
(RO)  
Power  
Save  
Enable  
Reserv  
ed  
n/a  
n/a  
n/a  
Status  
(RO)  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
bit 7  
Vertical Non-Display Period Status (Read-only)  
This is a read-only status bit.  
When this bit = 0, the LCD panel output is in a Vertical Display Period.  
When this bit = 1, the LCD panel output is in a Vertical Non-Display Period.  
bit 6  
bit 4  
bit 0  
Memory Controller Power Save Status (Read-only)  
This read-only status bit indicates the power save state of the memory controller.  
When this bit = 0, the memory controller is powered up.  
When this bit = 1, the memory controller is powered down and the MCLK source can be  
turned off.  
Note  
Memory reads/writes are possible during power save mode because the S1D13A05 dy-  
namically enables the memory controller for display buffer accesses.  
Power Save Mode Enable  
When this bit = 1, the software initiated power save mode is enabled.  
When this bit = 0, the software initiated power save mode is disabled.  
At reset, this bit is set to 1. For a summary of Power Save Mode, see Section 15, “Power  
Save Mode” on page 178.  
Note  
Memory reads/writes are possible during power save mode because the S1D13A05 dy-  
namically enables the memory controller for display buffer accesses.  
Reserved  
This bit must be set to 0.  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 101  
Vancouver Design Center  
8.3.4 Look-Up Table Registers  
Look-Up Table Write Register  
REG[18h]  
Default = 00000000h  
Write Only  
LUT Write Address  
LUT Red Write Data  
21 20  
LUT Blue Write Data  
n/a  
31  
15  
30  
14  
29  
28  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
19  
3
18  
2
17  
1
16  
0
LUT Green Write Data  
n/a  
n/a  
13  
12  
5
4
Note  
The S1D13A05 has three 256-position, 6-bit wide LUTs, one for each of red, green, and  
blue (see Section 12, “Look-Up Table Architecture” on page 164).  
Note  
This is a write-only register and returns 00h if read.  
bits 31-24  
LUT Write Address Bits [7:0]  
These bits form a pointer into the Look-Up Table (LUT) which is used to write the LUT  
Red, Green, and Blue data. When the S1D13A05 is set to a host bus interface using lit-  
tle endian (CNF4 = 0), the RGB data is updated to the LUT with the completion of a  
write to these bits.  
Note  
When a value is written to the LUT Write Address Bits, the same value is automatically  
placed in the LUT Read Address Bits (REG[1Ch] bits 31-24).  
bits 23-18  
bits 15-10  
bits 7-2  
LUT Red Write Data Bits [5:0]  
These bits contains the data to be written to the red component of the Look-Up Table. The  
LUT position is controlled by the LUT Write Address bits (bits 31-24).  
LUT Green Write Data Bits [5:0]  
These bits contains the data to be written to the green component of the Look-Up Table.  
The LUT position is controlled by the LUT Write Address bits (bits 31-24).  
LUT Blue Write Data Bits [5:0]  
These bits contains the data to be written to the blue component of the Look-Up Table.  
The LUT position is controlled by the LUT Write Address bits (bits 31-24). When the  
S1D13A05 is set to a host bus interface using big endian (CNF4 = 1), the RGB data is  
updated to the LUT with the completion of a write to these bits.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 102  
Epson Research and Development  
Vancouver Design Center  
Look-Up Table Read Register  
REG[1Ch]  
Default = 00000000h  
Write Only (bits 31-24)/Read Only  
LUT Read Address (write only)  
LUT Red Read Data  
21 20  
LUT Blue Read Data  
n/a  
31  
15  
30  
29  
28  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
19  
3
18  
2
17  
1
16  
0
LUT Green Read Data  
n/a  
n/a  
14  
13  
12  
5
4
Note  
The S1D13A05 has three 256-position, 6-bit wide LUTs, one for each of red, green, and  
blue (see Section 12, “Look-Up Table Architecture” on page 164).  
bits 31-24  
LUT Read Address Bits [7:0] (Write Only)  
This register forms a pointer into the Look-Up Table (LUT) which is used to read LUT  
data. Red data is read from bits 23-18, green data from bits 15-10, and blue data from bits  
7-2.  
Note  
If a write to the LUT Write Address Bits (REG[18h] bits 31-24) is made, the LUT Read  
Address bits are automatically updated with the same value.  
bits 23-18  
bits 15-10  
LUT Red Read Data Bits [5:0] (Read Only)  
These bits point to the data from the red component of the Look-Up Table. The LUT posi-  
tion is controlled by the LUT Read Address bits (bits 31-24). This is a read-only register.  
LUT Green Read Data Bits [5:0] (Read Only)  
These bits point to the data from the green component of the Look-Up Table. The LUT  
position is controlled by the LUT Read Address bits (bits 31-24). This is a read-only regis-  
ter.  
bits 7-2  
LUT Blue Read Data Bits [5:0] (Read Only)  
These bits point to the data from the blue component of the Look-Up Table. The LUT  
position is controlled by the LUT Read Address bits (bits 31-24). This is a read-only regis-  
ter.  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 103  
Vancouver Design Center  
8.3.5 Display Mode Registers  
Horizontal Total Register  
REG[20h]  
Default = 00000000h  
Read/Write  
n/a  
31  
30  
14  
29  
13  
28  
12  
27  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
19  
18  
17  
1
16  
0
n/a  
Horizontal Total bits 6-0  
15  
11  
4
3
2
bits 6-0  
Horizontal Total Bits [6:0]  
These bits specify the LCD panel Horizontal Total period, in 8 pixel resolution. The Hori-  
zontal Total is the sum of the Horizontal Display period and the Horizontal Non-Display  
period. Since the maximum Horizontal Total is 1024 pixels, the maximum panel resolu-  
tion supported is 800x600.  
REG[20h] bits 6:0 = (Horizontal Total in number of pixels ÷ 8) - 1  
Note  
1
For all panels this register must be programmed such that:  
HDPS + HDP < HT  
HT - HDP 8MCLK  
For passive panels, this register must be programmed such that:  
2
HPS + HPW < HT  
See Section 6.5, “Display Interface” on page 52.  
3
Horizontal Display Period Register  
REG[24h] Default = 00000000h  
Read/Write  
n/a  
31  
30  
14  
29  
13  
28  
12  
27  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
19  
18  
17  
1
16  
0
n/a  
Horizontal Display Period bits 6-0  
15  
11  
4
3
2
bits 6-0  
Horizontal Display Period Bits [6:0]  
These bits specify the LCD panel Horizontal Display period, in 8 pixel resolution. The  
Horizontal Display period should be less than the Horizontal Total to allow for a sufficient  
Horizontal Non-Display period.  
REG[24h] bits 6:0 = (Horizontal Display Period in number of pixels ÷ 8) - 1  
Note  
For passive panels, HDP must be a minimum of 32 pixels and must be increased by mul-  
tiples of 16.  
For TFT panels, HDP must be a minimum of 8 pixels and must be increased by multi-  
ples of 8.  
Note  
See Section 6.5, “Display Interface” on page 52.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 104  
Epson Research and Development  
Vancouver Design Center  
Horizontal Display Period Start Position Register  
REG[28h]  
Default = 00000000h  
Read/Write  
n/a  
31  
30  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
21  
20  
19  
18  
2
17  
1
16  
0
n/a  
Horizontal Display Period Start Position bits 9-0  
15  
14  
6
5
4
3
bits 9-0  
Horizontal Display Period Start Position Bits [9:0]  
These bits specify a value used in the calculation of the Horizontal Display Period Start  
Position (in 1 pixel resolution) for TFT and HR-TFT panels.  
For passive LCD panels these bits must be set to 00h which will result in HDPS = 22.  
HDPS = (REG[28h] bits 9-0) + 22  
For TFT panels, HDPS is calculated using the following formula.  
HDPS = (REG[28h] bits 9-0) + 5  
Note  
This register must be programmed such that the following formula is valid.  
HDPS + HDP < HT  
FPLINE Register  
REG[2Ch]  
Default = 00000000h  
Read/Write  
FPLINE  
Polarity  
n/a  
FPLINE Pulse Width bits 6-0  
31  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
22  
21  
20  
19  
18  
2
17  
1
16  
0
n/a  
FPLINE Pulse Start Position bits 9-0  
15  
7
6
5
4
3
bit 23  
FPLINE Pulse Polarity  
This bit selects the polarity of the horizontal sync signal. For passive panels, this bit must  
be set to 1. For active panels, this bit is set according to the horizontal sync signal of the  
panel (typically FPLINE or LP). This bit has no effect for TFT Type 2 and TFT Type 3  
panels.  
When this bit = 0, the horizontal sync signal is active low.  
When this bit = 1, the horizontal sync signal is active high.  
bits 22-16  
FPLINE Pulse Width Bits [6:0]  
These bits specify the width of the panel horizontal sync signal, in 1 pixel resolution. The  
horizontal sync signal is typically FPLINE or LP, depending on the panel type.  
REG[2Ch] bits 22:16 = FPLINE Pulse Width in number of pixels - 1  
Note  
For passive panels, these bits must be programmed such that the following formula is  
valid.  
HPW + HPS < HT  
Note  
See Section 6.5, “Display Interface” on page 52.  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 105  
Vancouver Design Center  
bits 9-0  
FPLINE Pulse Start Position Bits [9:0]  
These bits specify the start position of the horizontal sync signal, in 1 pixel resolution.  
FPLINE Pulse Start Position in pixels = (REG[2Ch] bits 9-0) + 1  
Note  
For passive panels, these bits must be programmed such that the following formula is  
valid.  
HPW + HPS < HT  
Note  
See Section 6.5, “Display Interface” on page 52.  
Vertical Total Register  
REG[30h]  
Default = 00000000h  
Read/Write  
n/a  
31  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
20  
19  
3
18  
2
17  
1
16  
0
n/a  
Vertical Total bits 9-0  
15  
5
4
bits 9-0  
Vertical Total Bits [9:0]  
These bits specify the LCD panel Vertical Total period, in 1 line resolution. The Vertical  
Total is the sum of the Vertical Display Period and the Vertical Non-Display Period. The  
maximum Vertical Total is 1024 lines.  
REG[30h] bits 9:0 = Vertical Total in number of lines - 1  
Note  
1
This register must be programmed such that the following formula is valid.  
VT > VDPS + VDP  
If an HR-TFT panel is selected, the following formula must also apply.  
2
VT > (REG[B8h] bits 2-0) + VDP + VPS + 1  
See Section 6.5, “Display Interface” on page 52.  
3
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 106  
Epson Research and Development  
Vancouver Design Center  
Vertical Display Period Register  
REG[34h]  
Default = 00000000h  
Read/Write  
n/a  
31  
15  
30  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
21  
20  
19  
18  
2
17  
1
16  
0
n/a  
Vertical Display Period bits 9-0  
14  
6
5
4
3
bits 9-0  
Vertical Display Period Bits [9:0]  
These bits specify the LCD panel Vertical Display period, in 1 line resolution. The  
Vertical Display period should be less than the Vertical Total to allow for a sufficient  
Vertical Non-Display period.  
REG[34h] bits 9:0 = Vertical Display Period in number of lines - 1  
Note  
1
This register must be programmed such that the following formula is valid.  
VT > VDPS + VDP  
If an HR-TFT panel is selected, the following formula must also apply.  
2
VT > (REG[B8h] bits 2-0) + VDP + VPS + 1  
See Section 6.5, “Display Interface” on page 52.  
3
Vertical Display Period Start Position Register  
REG[38h] Default = 00000000h  
Read/Write  
n/a  
31  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
21  
20  
19  
18  
2
17  
1
16  
0
n/a  
Vertical Display Period Start Position bits 9-0  
15  
6
5
4
3
bits 9-0  
Vertical Display Period Start Position Bits [9:0]  
These bits specify the Vertical Display Period Start Position for TFT and HR-TFT panels  
in 1 line resolution. For passive LCD panels these bits must be set to 00h.  
For passive LCD panels these bits must be set to 00h.  
For TFT panels, VDPS is calculated using the following formula.  
VDPS = REG[38h] bits 9-0  
Note  
1
This register must be programmed such that the following formula is valid.  
VT > VDPS + VDP  
If an HR-TFT panel is selected, the following formula must also apply.  
2
VT > (REG[B8h] bits 2-0) + VDP + VPS + 1  
See Section 6.5, “Display Interface” on page 52.  
3
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 107  
Vancouver Design Center  
FPFRAME Register  
REG[3Ch]  
Default = 00000000h  
Read/Write  
FPFRAME  
Polarity  
FPFRAME Pulse Width  
bits 2-0  
n/a  
n/a  
31  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
22  
21  
20  
19  
18  
17  
16  
n/a  
FPFRAME Pulse Start Position bits 9-0  
15  
7
6
5
4
3
2
1
0
bit 23  
FPFRAME Pulse Polarity  
This bit selects the polarity of the vertical sync signal. For passive panels, this bit must be  
set to 1. For TFT panels, this bit is set according to the horizontal sync signal of the panel  
(typically FPFRAME, SPS). This bit has no effect for TFT Type 2 panels.  
When this bit = 0, the vertical sync signal is active low.  
When this bit = 1, the vertical sync signal is active high.  
bits 18-16  
FPFRAME Pulse Width Bits [2:0]  
These bits specify the width of the panel vertical sync signal, in 1 line resolution. The ver-  
tical sync signal is typically FPFRAME, or SPS, depending on the panel type.  
REG[3Ch] bits 2:0 = FPFRAME Pulse Width in number of lines - 1  
Note  
See Section 6.5, “Display Interface” on page 52.  
bits 9-0  
FPFRAME Pulse Start Position Bits [9:0]  
These bits specify the start position of the vertical sync signal, in 1 line resolution.  
For passive panels, these bits must be set to 00h.  
For TFT panels, VDPS is calculated using the following formula.  
VPS = REG[3Ch] bits 9-0  
Note  
See Section 6.5, “Display Interface” on page 52.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 108  
Epson Research and Development  
Vancouver Design Center  
Main Window Display Start Address Register  
REG[40h]  
Default = 00000000h  
Read/Write  
n/a  
24  
bit 16  
31  
30  
29  
13  
28  
12  
27  
11  
26  
10  
25  
23  
22  
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
Main Window Display Start Address bits 15-0  
15  
14  
9
8
7
6
bits 16-0  
Main Window Display Start Address Bits [16:0]  
This register specifies the starting address, in DWORDS, for the LCD image in the display  
buffer for the main window.  
Note that this is a double-word (32-bit) address. An entry of 00000h into these registers  
represents the first double-word of display memory, an entry of 00001h represents the sec-  
ond double-word of the display memory, and so on. Calculate the Display Start Address as  
follows:  
REG[40h] bits 16:0 = image address ÷ 4 (valid only for SwivelView 0°)  
Note  
For information on setting this register for other SwivelView orientations, see Section  
13, “SwivelView™” on page 170.  
Main Window Line Address Offset Register  
REG[44h] Default = 00000000h  
Read/Write  
n/a  
31  
30  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
21  
20  
19  
18  
2
17  
1
16  
0
n/a  
Main Window Line Address Offset bits 9-0  
15  
14  
6
5
4
3
bits 9-0  
Main Window Line Address Offset Bits [9:0]  
This register specifies the offset, in DWORDS, from the beginning of one display line to  
the beginning of the next display line in the main window. Note that this is a 32-bit  
address increment. Calculate the Line Address Offset as follows:  
REG[44h] bits 9:0 = display width in pixels ÷ (32 ÷ bpp)  
Note  
A virtual display can be created by programming this register with a value greater than  
the formula requires. When a virtual display is created the image width is larger than the  
display width and the displayed image becomes a window into the larger virtual image.  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 109  
Vancouver Design Center  
Extended Panel Type Register  
REG[48h]  
Default = 00000000h  
Read/Write  
n/a  
31  
30  
29  
13  
28  
27  
26  
25  
9
24  
23  
7
22  
6
21  
5
20  
4
19  
18  
17  
16  
Data  
Compare  
Invert  
Enable  
n/a  
n/a  
Extended Panel Type bits 3-0  
15  
14  
12  
11  
10  
8
3
2
1
0
bit 8  
Data Compare Invert Enable  
This bit can be used to lower power consumption for TFT Type 2 and TFT Type 3 Inter-  
faces. The Data Compare and Invert function reduces the amount of data toggled by  
counting the number of bits that are changed (1 to 0 or 0 to 1) from the previous pixel  
data. If more than half of the bits are changed the data is inverted and the lesser amount of  
bits are toggled. For all other panel interfaces it has no effect.  
When this bit = 0, the Data Compare and Invert functions are disabled.  
When this bit = 1, the Data Compare and Invert functions are enabled.  
bits 3-0  
Extended Panel Type Bits [3:0]  
These bits override the setting in REG[0Ch] bits 1-0 and allow selection of the alternate  
TFT panel types.  
Table 8-11: Extended Panel Type Selection  
REG[48h] Bits [3:0]  
Panel Type  
no effect from REG[0Ch] bits 1-0  
TFT Type 2  
0000  
0001  
0010  
TFT Type 3  
0011  
TFT Type 4  
0100  
Casio TFT  
0101 - 1111  
Reserved  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 110  
Epson Research and Development  
Vancouver Design Center  
8.3.6 Picture-in-Picture Plus (PIP+) Registers  
PIP+ Display Start Address Register  
REG[50h]  
Default = 00000000h  
Read/Write  
n/a  
24  
bit 16  
31  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
23  
22  
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
PIP+ Display Start Address bits 15-0  
15  
9
8
7
6
+
bits 16-0  
PIP Display Start Address Bits [16:0]  
These bits form the 17-bit address for the starting double-word of the  
PIP+ window.  
Note that this is a double-word (32-bit) address. An entry of 00000h into these registers  
represents the first double-word of display memory, an entry of 00001h represents the sec-  
ond double-word of the display memory, and so on.  
Note  
These bits have no effect unless the PIP+ Window Enable bit is set to 1 (REG[10h] bit  
19).  
PIP+ Line Address Offset Register  
REG[54h] Default = 00000000h  
Read/Write  
n/a  
31  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
21  
20  
19  
18  
2
17  
1
16  
0
n/a  
PIP+ Line Address Offset bits 9-0  
15  
6
5
4
3
+
bits 9-0  
PIP Window Line Address Offset Bits [9:0]  
These bits are the LCD display’s 10-bit address offset from the starting double-word of  
+
line “n” to the starting double-word of line “n + 1” for the PIP window. Note that this is a  
32-bit address increment.  
Note  
+
These bits have no effect unless the PIP Window Enable bit is set to 1 (REG[10h] bit  
19).  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 111  
Vancouver Design Center  
PIP+ X Positions Register  
REG[58h]  
Default = 00000000h  
n/a  
Read/Write  
PIP+ X End Position bits 9-0  
22 21 20 19  
PIP+ X Start Position bits 9-0  
31  
15  
30  
29  
13  
28  
27  
11  
26  
10  
25  
9
24  
8
23  
7
18  
2
17  
1
16  
0
n/a  
14  
12  
6
5
4
3
Note  
The effect of REG[58h] through REG[5Ch] takes place only after REG[5Ch] is written  
and at the next vertical non-display period.  
+
bits 25-16  
PIP Window X End Position Bits [9:0]  
+
These bits determine the X end position of the PIP window in relation to the origin of the  
panel. Due to the S1D13A05 SwivelView feature, the X end position may not be a  
horizontal position value (only true in 0° and 180° SwivelView). For further information  
on defining the value of the X End Position register, see  
Section 14, “Picture-in-Picture Plus (PIP+)” on page 175.  
The register is also incremented differently based on the SwivelView orientation. For 0°  
and 180° SwivelView the X end position is incremented by x pixels where x is relative to  
the current color depth.  
Table 8-12: 32-bit Address Increments for Color Depth  
Color Depth  
1 bpp  
Pixel Increment (x)  
32  
16  
8
2 bpp  
4 bpp  
8 bpp  
4
16 bpp  
2
For 90° and 270° SwivelView the X end position is incremented in 1 line increments.  
Depending on the color depth, some of the higher bits in this register are unused because  
the maximum horizontal display width is 1024 pixels.  
Note  
+
These bits have no effect unless the PIP Window Enable bit is set to 1 (REG[10h] bit  
19).  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 112  
Epson Research and Development  
Vancouver Design Center  
+
bits 9-0  
PIP Window X Start Position Bits [9:0]  
+
These bits determine the X start position of the PIP window in relation to the origin of the  
panel. Due to the S1D13A05 SwivelView feature, the X start position may not be a  
horizontal position value (only true in 0° and 180° SwivelView). For further information  
on defining the value of the X Start Position register, see  
Section 14, “Picture-in-Picture Plus (PIP+)” on page 175.  
The register is also incremented differently based on the SwivelView orientation. For 0°  
and 180° SwivelView the X start position is incremented by x pixels where x is relative to  
the current color depth.  
Table 8-13: 32-bit Address Increments for Color Depth  
Color Depth  
1 bpp  
Pixel Increment (x)  
32  
16  
8
2 bpp  
4 bpp  
8 bpp  
4
16 bpp  
2
For 90° and 270° SwivelView the X start position is incremented in 1 line increments.  
Depending on the color depth, some of the higher bits in this register are unused because  
the maximum horizontal display width is 1024 pixels.  
Note  
+
These bits have no effect unless the PIP Window Enable bit is set to 1 (REG[10h] bit  
19).  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 113  
Vancouver Design Center  
PIP+ Y Positions Register  
REG[5Ch]  
Default = 00000000h  
n/a  
Read/Write  
PIP+ Y End Position bits 9-0  
22 21 20 19  
PIP+ Y Start Position bits 9-0  
31  
15  
30  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
18  
2
17  
1
16  
0
n/a  
14  
6
5
4
3
Note  
1
The effect of REG[58h] through REG[5Ch] takes place only after REG[5Ch] is  
written and at the next vertical non-display period.  
2
For host bus interfaces using little endian (CNF4 = 0), a write to bits 31-24 causes the  
+
PIP Window Y End Position to take effect.  
+
For host bus interfaces using big endian (CNF4 = 1), a write to bits 7-0 causes the PIP  
Window Y End Position to take effect.  
+
bits 25-16  
PIP Window Y End Position Bits [9:0]  
+
These bits determine the Y end position of the PIP window in relation to the origin of the  
panel. Due to the S1D13A05 SwivelView feature, the Y end position may not be a  
vertical position value (only true in 0° and 180° SwivelView). For further information  
on defining the value of the Y End Position register, see  
Section 14, “Picture-in-Picture Plus (PIP+)” on page 175.  
The register is also incremented differently based on the SwivelView orientation. For 0°  
and 180° SwivelView the Y end position is incremented in 1 line increments. For 90° and  
270° SwivelView the Y end position is incremented by y pixels where y is relative to the  
current color depth.  
Table 8-14: 32-bit Address Increments for Color Depth  
Color Depth  
1 bpp  
Pixel Increment (y)  
32  
16  
8
2 bpp  
4 bpp  
8 bpp  
4
16 bpp  
2
Depending on the color depth, some of the higher bits in this register are unused because  
the maximum vertical display height is 1024 pixels.  
Note  
+
These bits have no effect unless the PIP Window Enable bit is set to 1 (REG[10h] bit  
19).  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 114  
Epson Research and Development  
Vancouver Design Center  
+
bits 9-0  
PIP Window Y Start Position Bits [9:0]  
+
These bits determine the Y start position of the PIP window in relation to the origin of the  
panel. Due to the S1D13A05 SwivelView feature, the Y start position may not be a  
vertical position value (only true in 0° and 180° SwivelView). For further information  
on defining the value of the Y Start Position register, see  
Section 14, “Picture-in-Picture Plus (PIP+)” on page 175.  
The register is also incremented differently based on the SwivelView orientation. For 0°  
and 180° SwivelView the Y start position is incremented in 1 line increments. For 90° and  
270° SwivelView the Y start position is incremented by y pixels where y is relative to the  
current color depth.  
Table 8-15: 32-bit Address Increments for Color Depth  
Color Depth  
1 bpp  
Pixel Increment (y)  
32  
16  
8
2 bpp  
4 bpp  
8 bpp  
4
16 bpp  
2
Depending on the color depth, some of the higher bits in this register are unused because  
the maximum vertical display height is 1024 pixels.  
Note  
+
These bits have no effect unless the PIP Window Enable bit is set to 1 (REG[10h] bit  
19).  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 115  
Vancouver Design Center  
8.3.7 Miscellaneous Registers  
Reserved  
REG[60h]  
Default = 00000000h  
Read/Write  
n/a  
Reserved  
20 19  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
22  
6
21  
5
18  
17  
1
16  
0
Reserved  
n/a  
Reserved  
n/a  
n/a  
7
4
3
2
GPIO Status and Control Register  
REG[64h] Default = 20000000h  
Read/Write  
GPIO7 GPIO6 GPIO5 GPIO4 GPIO3 GPIO2 GPIO1 GPIO0  
Input Input Input Input Input Input Input Input  
Enable Enable Enable Enable Enable Enable Enable Enable  
GPIO7 GPIO6 GPIO5 GPIO4 GPIO3 GPIO2 GPIO1 GPIO0  
Config  
Config  
Config  
Config  
Config  
Config  
Config  
Config  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
GPIO7 GPIO6 GPIO5 GPIO4 GPIO3 GPIO2 GPIO1 GPIO0  
Control/ Control/ Control/ Control/ Control/ Control/ Control/ Control/  
n/a  
Status  
Status  
Status  
Status  
Status  
Status  
Status  
Status  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
0
The S1D13A05 GPIO pins default to inputs, however they can be individually configured  
to outputs or inputs using the GPIO[7:0] Config bits (bits 23-16). If a GPIO pin is  
configured as an input, the input functionality must be enabled using the corresponding  
GPIO[7:0] Input Enable pin (see bits 31-24). Once the GPIO pin has been configured, it can  
be controlled/read using the GPIO[7:0] Control/Status bits (bits 7-0). See the individual bit  
descriptions for further details.  
Some GPIOs must be configured as outputs after every RESET for use with some extended  
panel types (i.e. Sharp HR-TFT, Casio TFT, etc.). See Table 4-9: “LCD Interface Pin  
Mapping,” on page 27 and the individual bit descriptions for bits 7-0 for specific infor-  
mation on each GPIO pin.  
bits 31-24  
GPIO[7:0] Input Enable bits  
These bits individually enable the input function for each GPIO pin (GPIO[7:0]). After  
power-on/reset, each bit must be set to a 1 to enable the input function of each GPIO pin  
(default is 0 except for GPIO5 which is 1). If the GPIO pin is configured as an output the  
GPIO[7:0] Input Enable bit has no effect.  
Note  
At power-on/reset, the GPIO5 Input Enable bit (bit 29) defaults to 1.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 116  
Epson Research and Development  
Vancouver Design Center  
bits 23-16  
GPIO[7:0] IO Configuration  
At power-on/reset, the GPIO[7:0] pins default to inputs. These bits individually configure  
each GPIO pin as either an output or input.  
When these bits = 0, the associated GPIO pin is configured as an input.  
When these bits = 1, the associated GPIO pin is configured as an output.  
This may be required for some extended panel types (i.e. Sharp HR-TFT, Casio TFT, etc.)  
or USB. See Table 4-9: “LCD Interface Pin Mapping,” on page 27 and the individual bit  
descriptions for bits 7-0 for specific information on each GPIO pin.  
Note  
If a GPIO pin is configured as an input, the input function of the GPIO pin must be en-  
abled using the corresponding GPIOx Input Enable bit (bits 31-24) before the input con-  
figuration takes effect.  
bit 7  
GPIO7 IO Control/Status  
The following table shows the multiple uses of GPIO7.  
Table 8-16: GPIO7 Usage  
Function  
Pin Usage  
Output  
Input  
Read  
Write 0  
Write 1  
GPIO7  
USB  
GPIO7 driven low  
GPIO7 driven high  
GPIO7 status returned  
not available (used by USBDP) not available (used by USBDP) not available (used by USBDP)  
bit 6  
GPIO6 IO Control/Status  
The following table shows the multiple uses of GPIO6.  
Table 8-17: GPIO6 Usage  
Function  
Pin Usage  
Output  
Input  
Read  
Write 0  
Write 1  
GPIO6  
USB  
GPIO6 driven low  
GPIO6 driven high  
GPIO6 status returned  
not available (used by USBDM) not available (used by USBDM) not available (used by USBDM)  
bit 5  
GPIO5 IO Control/Status  
The following table shows the multiple uses of GPIO5.  
Table 8-18: GPIO5 Usage  
Function  
Pin Usage  
Output  
Input  
Read  
Write 0  
Write 1  
GPIO5  
USB  
GPIO5 driven low  
GPIO5 driven high  
GPIO5 status returned  
not available (used by  
USBDETECT)  
not available (used by  
USBDETECT)  
not available (used by  
USBDETECT)  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 117  
Vancouver Design Center  
bit 4  
GPIO4 IO Control/Status  
The following table shows the multiple uses of GPIO4.  
Table 8-19: GPIO4 Usage  
Function  
Output  
Pin Usage  
Input  
Read  
Write 0  
Write 1  
GPIO4  
USB  
GPIO4 driven low  
GPIO4 driven high  
GPIO4 status returned  
not available (used by  
USBPUP)  
not available (used by  
USBPUP)  
not available (used by  
USBPUP)  
bit 3  
GPIO3 IO Control/Status  
The following table shows the multiple uses of GPIO3.  
Table 8-20: GPIO3 Usage  
Function  
Output  
Pin Usage  
Input  
Write 0  
Write 1  
Read  
GPIO3  
GPIO3 driven low  
GPIO3 driven high  
GPIO3 status returned  
not available (used by SPL)  
not available (used by STH)  
not available (used by STH)  
not available (used by EIO)  
Sharp HR-TFT  
Casio TFT  
not available (used by SPL)  
not available (used by STH)  
not available (used by STH)  
not available (used by EIO)  
not available (used by SPL)  
not available (used by STH)  
not available (used by STH)  
not available (used by EIO)  
TFT Type 2  
TFT Type 3  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 118  
Epson Research and Development  
Vancouver Design Center  
bit 2  
GPIO2 IO Control/Status  
The following table shows the multiple uses of GPIO2.  
Table 8-21: GPIO2 Usage  
Function  
Output  
Pin Usage  
GPIO2  
Input  
Write 0  
Write 1  
Read  
GPIO2 driven low  
GPIO2 driven high  
GPIO2 status returned  
not available (used by REV)  
not available (used by FRP)  
not available (used by POL)  
not available (used by POL)  
Sharp HR-TFT  
Casio TFT  
not available (used by REV)  
not available (used by FRP)  
not available (used by POL)  
not available (used by POL)  
not available (used by REV)  
not available (used by FRP)  
not available (used by POL)  
not available (used by POL)  
TFT Type 2  
TFT Type 3  
bit 1  
GPIO1 IO Control/Status  
The following table shows the multiple uses of GPIO1.  
Table 8-22: GPIO1 Usage  
Function  
Output  
Pin Usage  
Input  
Write 0  
Write 1  
Read  
GPIO1  
Sharp HR-TFT  
Casio TFT  
GPIO1 driven low  
GPIO1 driven high  
not available (used by CLS)  
GRES enabled  
GPIO1 status returned  
not available (used by CLS)  
GRES status returned  
not available (used by AP)  
OE status returned  
not available (used by CLS)  
GRES forced low  
TFT Type 2  
TFT Type 3  
not available (used by AP)  
OE forced low  
not available (used by AP)  
OE enabled  
bit 0  
GPIO0 IO Control/Status  
The following table shows the multiple uses of GPIO0.  
Table 8-23: GPIO0 Usage  
Function  
Output  
Pin Usage  
Input  
Write 0  
Write 1  
Read  
GPIO0  
Sharp HR-TFT  
Casio TFT  
GPIO0 driven low  
GPIO0 driven high  
GPIO0 status returned  
not available (used by PS)  
not available (used by POL)  
not available (used by VCLK)  
not available (used by CPV)  
not available (used by PS)  
not available (used by POL)  
not available (used by VCLK)  
not available (used by CPV)  
not available (used by PS)  
not available (used by POL)  
not available (used by VCLK)  
not available (used by CPV)  
TFT Type 2  
TFT Type 3  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 119  
Vancouver Design Center  
GPO Control Register  
REG[68h]  
Default = 00000000h  
Read/Write  
n/a  
31  
30  
29  
28  
12  
27  
11  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
GPO10 GPO9  
GPO8  
GPO7  
GPO6  
GPO5  
GPO4  
GPO3  
GPO2  
GPO1  
GPO0  
n/a  
Control Control Control Control Control Control Control Control Control Control Control  
15  
14  
13  
10  
9
8
7
6
5
4
3
2
1
0
bit 10  
GPO10 Control  
When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to  
this bit drives GPO10 high and writing a 0 to this bit drives GPO10 low. A read from this  
bit returns the status of GPO10.  
When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 = 0010), writing a 1  
to this bit sets PDME = 1 and writing a 0 sets PDME = 0.  
bit 9  
bit 8  
bit 7  
bit 6  
GPO9 Control  
When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to  
this bit drives GPO9 high and writing a 0 to this bit drives GPO9 low. A read from this bit  
returns the status of GPO9.  
When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 = 0010), writing a 1  
to this bit sets XSTBY = 1 and writing a 0 sets XSTBY = 0.  
GPO8 Control  
When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to  
this bit drives GPO8 high and writing a 0 to this bit drives GPO8 low. A read from this bit  
returns the status of GPO8.  
When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 = 0010), writing a 1  
to this bit sets XOHV = 1 and writing a 0 sets XOHV = 0.  
GPO7 Control  
When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to  
this bit drives GPO7 high and writing a 0 to this bit drives GPO7 low. A read from this bit  
returns the status of GPO7.  
When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 = 0010), writing a 1  
to this bit sets XRESV = 1 and writing a 0 sets XRESV = 0.  
GPO6 Control  
When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to  
this bit drives GPO6 high and writing a 0 to this bit drives GPO6 low. A read from this bit  
returns the status of GPO6.  
When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 = 0010), writing a 1  
to this bit sets XRESH = 1 and writing a 0 sets XRESH = 0.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 120  
Epson Research and Development  
Vancouver Design Center  
bit 5  
GPO5 Control  
When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to  
this bit drives GPO5 high and writing a 0 to this bit drives GPO5 low. A read from this bit  
returns the status of GPO5.  
When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 = 0010), writing a 1  
to this bit enables PCLK2 and writing a 0 forces PCLK2 low.  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
GPO4 Control  
When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to  
this bit drives GPO4 high and writing a 0 to this bit drives GPO4 low. A read from this bit  
returns the status of GPO4.  
When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 = 0010), writing a 1  
to this bit enables PCLK1 and writing a 0 forces PCLK1 low.  
GPO3 Control  
When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to  
this bit drives GPO3 high and writing a 0 to this bit drives GPO3 low. A read from this bit  
returns the status of GPO3.  
When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 = 0010), GPO3 is not  
available.  
GPO2 Control  
When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to  
this bit drives GPO2 low and writing a 0 to this bit drives GPO2 high. A read from  
this bit returns the status of GPO2.  
When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 = 0010), writing a 1  
to this bit enables XOEV and writing a 0 sets XOEV = 0.  
GPO1 Control  
When the Type 3 TFT LCD interface is not selected (REG[48h] bits 3:0), writing a 1 to  
this bit drives GPO1 high and writing a 0 to this bit drives GPO1 low. A read from this bit  
returns the status of GPO1.  
When the Type 3 TFT LCD interface is selected (REG[48h] bits 3:0 = 0010), writing a 1  
to this bit enables VCOM and writing a 0 sets VCOM = 0.  
GPO0 Control  
Writing a 1 to this bit drives GPO0 high and writing a 0 to this bit drives GPO0 low. A  
read from this bit returns the status of GPO0.  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 121  
Vancouver Design Center  
PWM Clock Configuration Register  
REG[70h]  
Default = 00000000h  
Read/Write  
n/a  
31  
30  
29  
13  
28  
27  
26  
25  
9
24  
8
23  
7
22  
21  
20  
4
19  
18  
17  
16  
PWM  
Clock  
Force  
High  
PWM  
Clock  
Enable  
PWM Clock Divide Select  
bits 3-0  
PWMCLK Source  
Select bits 1-0  
n/a  
15  
14  
12  
11  
10  
6
5
3
2
1
0
PWM Clock Enable  
Divided  
Clock  
PWM Duty Cycle  
Modulation  
PWM Clock  
Divider  
to PWMOUT  
PWMCLK  
m
Duty = n / 256  
Clock Source / 2  
frequency =  
m
Clock Source / (2 X 256)  
n = PWM Clock Duty Cycle  
m = PWM Clock Divide Select value  
PWM Clock Force High  
Figure 8-1: PWM Clock Block Diagram  
Note  
For further information on PWMCLK, see Section 7.1.4, “PWMCLK” on page 87.  
bits 7-4  
PWM Clock Divide Select Bits [3:0]  
The value of these bits represents the power of 2 by which the selected PWM clock source  
is divided.  
Table 8-24: PWM Clock Divide Select Options  
PWM Clock Divide Select Bits [3:0]  
PWM Clock Divide Amount  
0h  
1h  
2h  
3h  
4h  
5h  
6h  
7h  
8h  
9h  
Ah  
Bh  
Ch  
Dh  
Eh  
Fh  
1
2
4
8
16  
32  
64  
128  
256  
512  
1024  
2048  
4096  
8192  
16384  
32768  
Note  
This divided clock is further divided by 256 before it is output at PWMOUT.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 122  
Epson Research and Development  
Vancouver Design Center  
bit 3  
PWM Clock Force High  
When this bit = 0, the PWMOUT pin function is controlled by the PWM Clock enable bit.  
When this bit = 1, the PWMOUT pin is forced to high.  
bits 2-1  
PWMCLK Source Select Bits [1:0]  
These bits determine the source of PWMCLK.  
Table 8-25: PWMCLK Source Selection  
REG[70h] bits 2-1  
PWMCLK Source  
CLKI  
00  
01  
10  
11  
CLKI2  
BCLK  
PCLK  
Note  
For further information on the PWMCLK source select, see Section 7.2, “Clock Selec-  
tion” on page 88.  
bit 0  
PWM Clock Enable  
When this bit = 0, PWMOUT output acts as a general purpose output pin controllable by  
bit 3 of REG[70h].  
When this bit = 1, the PWM Clock circuitry is enabled.  
Note  
The PWM Clock circuitry is disabled when Power Save Mode is enabled.  
PWMOUT Duty Cycle Register  
REG[74h] Default = 00000000h  
Read/Write  
n/a  
31  
30  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
20  
19  
18  
17  
1
16  
0
n/a  
PWMOUT Duty Cycle bits 7-0  
15  
14  
5
4
3
2
bits 7-0  
PWMOUT Duty Cycle Bits [7:0]  
This register determines the duty cycle of the PWMOUT output.  
Table 8-26: PWMOUT Duty Cycle Select Options  
PWMOUT Duty Cycle [7:0]  
PWMOUT Duty Cycle  
Always Low  
00h  
01h  
02h  
...  
High for 1 out of 256 clock periods  
High for 2 out of 256 clock periods  
...  
FFh  
High for 255 out of 256 clock periods  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 123  
Vancouver Design Center  
Scratch Pad A Register  
REG[80h]  
Default = not applicable  
Read/Write  
Scratch Pad A bits 31-24  
24 23  
Scratch Pad A bits 15-0  
31  
30  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
15  
14  
8
7
bits 31-0  
Scratch Pad A Bits [31:0]  
This register contains general purpose read/write bits. These bits have no effect on hard-  
ware.  
Note  
The contents of the Scratch Pad A register defaults to an un-defined state after initial  
power-up. Any data written to this register remains intact when the S1D13A05 is reset,  
as long as the chip is not powered off.  
Scratch Pad B Register  
REG[84h] Default = not applicable  
Read/Write  
Scratch Pad B bits 31-24  
24 23  
Scratch Pad B bits 15-0  
31  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
15  
8
7
bits 31-0  
Scratch Pad B Bits [31:0]  
This register contains general purpose read/write bits. These bits have no effect on hard-  
ware.  
Note  
The contents of the Scratch Pad B register defaults to an un-defined state after initial  
power-up. Any data written to this register remains intact when the S1D13A05 is reset,  
as long as the chip is not powered off.  
Scratch Pad C Register  
REG[88h] Default = not applicable  
Read/Write  
Scratch Pad C bits 31-24  
24 23  
Scratch Pad C bits 15-0  
31  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
15  
8
7
bits 31-0  
Scratch Pad C Bits [31:0]  
This register contains general purpose read/write bits. These bits have no effect on hard-  
ware.  
Note  
The contents of the Scratch Pad C register defaults to an un-defined state after initial  
power-up. Any data written to this register remains intact when the S1D13A04 is reset,  
as long as the chip is not powered off.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 124  
Epson Research and Development  
Vancouver Design Center  
8.3.8 Extended Panel Registers  
HR-TFT CLS Width Register  
REG[A0h]  
Default = 0000012Ch  
Read/Write  
n/a  
31  
30  
14  
29  
13  
28  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
20  
19  
18  
2
17  
1
16  
0
n/a  
CLS Pulse Width bits 8-0  
15  
12  
5
4
3
bits 8-0  
CLS Pulse Width Bits [8:0]  
This register determines the width of the CLS signal in PCLKs.  
Note  
This register must be programmed such that the following formula is valid.  
(REG[A0h] bits 8-0) > 0  
HR-TFT PS1 Rising Edge Register  
REG[A4h] Default = 00000032h  
Read/Write  
n/a  
31  
30  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
18  
17  
1
16  
0
n/a  
PS1 Rising Edge bits 5-0  
15  
14  
3
2
bits 5-0  
PS1 Rising Edge Bits [5:0]  
This register determines the number of PCLKs between the CLS falling edge and the PS1  
rising edge.  
HR-TFT PS2 Rising Edge Register  
REG[A8h] Default = 00000064h  
Read/Write  
n/a  
31  
30  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
19  
18  
2
17  
1
16  
0
n/a  
PS2 Rising Edge bits 7-0  
15  
14  
4
3
bits 7-0  
PS2 Rising Edge Bits [7:0]  
This register determines the number of PCLKs between the LP falling edge and the first  
PS2 rising edge.  
Note  
This register must be programmed such that the following formula is valid.  
(REG[A8h] bits 7-0) > 0  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 125  
Vancouver Design Center  
HR-TFT PS2 Toggle Width Register  
REG[ACh]  
Default = 0000000Ah  
Read/Write  
n/a  
31  
30  
14  
29  
13  
28  
12  
27  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
19  
18  
17  
1
16  
0
n/a  
PS2 Toggle Width bits 6-0  
15  
11  
4
3
2
bits 6-0  
PS2 Toggle Width Bits [6:0]  
This register determines the width of the PS2 signal before toggling (in number of  
PCLKs).  
Note  
This register must be programmed such that the following formula is valid.  
(REG[ACh] bits 6-0) > 0  
HR-TFT PS3 Signal Width Register  
REG[B0h] Default = 00000064h  
Read/Write  
n/a  
31  
30  
29  
13  
28  
12  
27  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
19  
18  
17  
1
16  
0
n/a  
PS3 Signal Width bits 6-0  
15  
14  
11  
4
3
2
bits 6-0  
PS3 Signal Width Bits [6:0]  
This register determines the width of the PS3 signal in PCLKs.  
Note  
This register must be programmed such that the following formula is valid.  
(REG[B0h] bits 6-0) > 0  
HR-TFT REV Toggle Point Register  
REG[B4h] Default = 0000000Ah  
Read/Write  
n/a  
31  
30  
29  
13  
28  
12  
27  
11  
26  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
18  
17  
16  
0
n/a  
REV Toggle bits 4-0  
15  
14  
10  
3
2
1
bits 4-0  
REV Toggle Bits [4:0]  
This register determines the width in PCLKs to toggle the REV signal prior to LP rising  
edge.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 126  
Epson Research and Development  
Vancouver Design Center  
HR-TFT PS1/2 End Register  
REG[B8h]  
Default = 00000007h  
Read/Write  
n/a  
31  
30  
29  
13  
28  
12  
27  
11  
26  
10  
25  
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
17  
16  
n/a  
PS1/2 End bits 2-0  
1
15  
14  
9
2
0
bits 2-0  
PS1/2 End Bits [2:0]  
This register allows the PS signal to continue into the vertical non-display period (in  
lines).  
Note  
This register must be programmed such that the following formula is valid.  
VT > (REG[B8h] bits 2-0) + VDP + VPS + 1  
Type 2 TFT Configuration Register  
REG[BCh] Default = 00000000h  
Read/Write  
n/a  
31  
30  
29  
13  
28  
27  
11  
26  
25  
24  
23  
7
22  
21  
5
20  
VCLK Hold  
bits 1-0  
19  
18  
17  
16  
POL  
Type  
AP Pulse Width  
bits 2-0  
APRising Position  
bits 1-0  
VCLK Setup  
bits 1-0  
n/a  
n/a  
n/a  
n/a  
15  
14  
12  
10  
9
8
6
4
3
2
1
0
bit 15  
POL Type  
This bit selects how often the POL signal is toggled. The S1D13A05 GPIO2 pin controls  
the POL signal used for the TFT Type 2 Interface. For all other panel interfaces this bit has  
no effect.  
When this bit = 0, the POL signal is toggled every line.  
When this bit = 1, the POL signal is toggled every frame.  
bits 13-11  
AP Pulse Width Bits [2:0]  
These bits specify the AP Pulse Width used for the TFT Type 2 Interface. The S1D13A05  
GPIO1 pin controls the AP signal for the TFT Type 2 Interface. For all other panel inter-  
faces it has no effect.  
Table 8-27: AP Pulse Width  
REG[4Ch] bits 13-11  
AP Pulse Width (in PCLKs)  
000  
001  
010  
011  
100  
101  
110  
111  
20  
40  
80  
120  
150  
190  
240  
270  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 127  
Vancouver Design Center  
bits 9-8  
bits 4-3  
bits 1-0  
AP Rising Position Bits [1:0]  
These bits specify the TFT Type 2 AC timing parameter from the rising edge of FPLINE  
(STB) to the rising edge of GPIO1 (AP). The parameter is selected as follows. For all  
other panel interfaces it has no effect.  
Table 8-28: AP Rising Position  
REG[4Ch] bits 9-8  
AP Rising Position (in PCLKs)  
00  
01  
10  
11  
40  
52  
68  
90  
VCLK Hold Bits [1:0]  
These bits specify the TFT Type 2 AC timing parameter from the rising edge of FPLINE  
(STB) to the falling edge of GPIO0 (VCLK). The parameter is selected as follows. For all  
other panel interfaces it has no effect.  
Table 8-29: VCLK Hold  
REG[4Ch] bits 4-3  
VCLK Hold (in PCLKs)  
00  
01  
10  
11  
7
9
12  
16  
VCLK Setup Bits [1:0]  
These bits specify the TFT Type 2 AC timing parameter from the rising edge of GPIO0  
(VCLK) to the rising edge of FPLINE (STB). The parameter is selected as follows. For all  
other panel interfaces it has no effect.  
Table 8-30: VCLK Setup  
REG[4Ch] bits 1-0  
VCLK Setup (in PCLKs)  
00  
01  
10  
11  
7
9
12  
16  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 128  
Epson Research and Development  
Vancouver Design Center  
Casio TFT Timing Register  
REG[C0h]  
Default = 09180E09h  
Read/Write  
n/a  
GPCK Rising Edge to STH Pulse bits 5-0  
28 27 26 25  
GRES Falling Edge to GPCK Rising Edge bits 4-0  
13 12 11 10  
GRES Falling Edge to FRP Toggle Point bits 6-0  
21 20 19 18 17  
GPCK Rising Edge to GRES Rising Edge bits 5-0  
n/a  
23  
31  
15  
30  
14  
29  
24  
22  
6
16  
n/a  
n/a  
9
8
7
5
4
3
2
1
0
bits 29-24  
bits 22-16  
bits 13-8  
bits 5-0  
GPCK Rising Edge to STH Pulse Bits[5:0]  
These bits determine the number of PCLKs from GPCK rising edge to STH pulse.  
GRES Falling Edge to FRP Toggle Point Bits[6:0]  
These bits determine the number of PCLKs from GRES falling edge to FRP Toggle point.  
GRES Falling Edge to GPCK Rising Edge Bits[5:0]  
These bits determine the number of PCLKs from GRES falling edge to GPCK rising edge.  
GPCK Rising Edge to GRES Rising Edge Bits[5:0]  
These bits determine the number of PCLKs from GPCK rising edge to GRES rising edge.  
Type 3 TFT Configuration Register 0  
REG[D8h]  
Default = 00000000h  
Read/Write  
POL Toggle Position bits 7-0  
OE Pulse Width bits 7-0  
31  
15  
30  
29  
OE Rising Edge Position bits 7-0  
13 12 11 10  
28  
27  
26  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
19  
18  
2
17  
1
16  
0
n/a  
14  
4
3
bits 31-24  
bits 23-16  
bits 15-8  
POL Toggle Position Bits [7:0]  
These bits specify the toggle position of the POL signal in 2 pixel resolution. The  
S1D13A05 GPIO2 pin controls the POL signal used for the TFT Type 3 Interface. This  
register has no effect for all other panel interfaces.  
POL Toggle Position in pixels = (REG[D8h] bits 31-24) × 2  
OE Pulse Width Bits [7:0]  
These bits specify the pulse width of the OE signal in 2 pixel resolution. The S1D13A05  
GPIO1 pin controls the OE signal used for the TFT Type 3 Interface. This register has no  
effect for all other panel interfaces.  
OE Pulse Width in pixels = (REG[D8h] bits 23-16) × 2  
OE Rising Edge Position Bits [7:0]  
These bits specify the rising edge position of the OE signal in 2 pixel resolution. The  
S1D13A05 GPIO1 pin controls the OE signal used for the TFT Type 3 Interface. This reg-  
ister has no effect for all other panel interfaces.  
OE Rising Edge Position in pixels = (REG[D8h] bits 15-8) × 2  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 129  
Vancouver Design Center  
Type 3 TFT Configuration Register 1  
REG[DCh]  
Default = 00000000h  
Read/Write  
XOEV End Position bits 7-0  
XOEV Start Position bits 7-0  
21 20 19 18  
VCOM Toggle Position bits 7-0  
31  
15  
30  
14  
29  
13  
28  
CPV Pulse Width bits 6-0  
12 11  
27  
26  
10  
25  
9
24  
8
23  
7
22  
6
17  
1
16  
0
5
4
3
2
bits 31-24  
XOEV End Position Bits [7:0]  
These bits specify the falling/rising edge position of the XOEV signal in 2 pixel resolution  
(depending on the FPFRAME Pulse Polarity bit in REG[3Ch] bit 23). The S1D13A05  
GPO2 pin controls the XOEV signal used for the TFT Type 3 Interface. This register has  
no effect for all other panel interfaces.  
XOEV Falling Edge Position in pixels = (REG[DCh] bits 31-24) × 2  
Note  
If this register is set to 0, no pulse is generated.  
bits 23-16  
XOEV Start Position Bits [7:0]  
These bits specify the rising/falling edge position of the XOEV signal in 2 pixel resolution  
(depending on the FPFRAME Pulse Polarity bit in REG[3Ch] bit 23). The S1D13A05  
GPO2 pin controls the XOEV signal used for the TFT Type 3 Interface. This register has  
no effect for all other panel interfaces.  
XOEV Rising Edge Position in pixels = (REG[DCh] bits 23-16) × 2  
Note  
If this register is set to 0, no pulse is generated.  
bits 15-8  
bits 7-0  
CPV Pulse Width Bits [7:0]  
These bits specify the pulse width of the CPV signal in 2 pixel resolution. The S1D13A05  
GPIO0 pin controls the CPV signal used for the TFT Type 3 Interface. This register has no  
effect for all other panel interfaces.  
CPV Pulse Width in pixels = (REG[DCh] bits 15-8) × 2  
VCOM Toggle Position Bits [7:0]  
These bits specify the toggle position of the VCOM signal in 2 pixel resolution. The  
S1D13A05 GPO1 pin controls the VCOM signal used for the TFT Type 3 Interface. This  
register has no effect for all other panel interfaces.  
VCOM Toggle Position in pixels = (REG[DCh] bits 7-0) × 2  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 130  
Epson Research and Development  
Vancouver Design Center  
Type 3 TFT PCLK Divide Register  
REG[E0h]  
Default = 00000000h  
Read/Write  
n/a  
31  
30  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
20  
19  
3
18  
17  
16  
0
PCLK2 Divide  
Rate bits 1-0  
n/a  
PCLK1 Divide Rate bits 3-0  
15  
14  
5
4
2
1
bit 5-4  
PCLK2 Divide Rate Bits [1:0]  
These bits specify the divide rate for PCLK2. This register is used for the TFT Type 3  
Interface and has no effect for all other panel interfaces.  
Table 8-31: PCLK2 Divide Rate  
REG[C8h] bits 5-4  
PCLK2 Divide Rate  
00  
01  
10  
11  
64  
128  
256  
512  
bits 3-0  
PCLK1 Divide Rate Bits [3:0]  
These bits specify the divide rate for PCLK1. This register is used for the TFT Type 3  
Interface and has no effect for all other panel interfaces.  
Table 8-32: PCLK1 Divide Rate  
REG[C8h] bits 3-0  
0000  
PCLK1 Divide Rate  
2
4
0001  
0010  
8
0011  
16  
0100  
32  
0101  
64  
0110  
128  
256  
512  
1024  
2048  
4096  
8192  
16384  
32768  
65536  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 131  
Vancouver Design Center  
Type 3 TFT Partial Mode Display Area Control Register  
REG[E4h]  
Default = 00000000h  
Read/Write  
n/a  
31  
30  
29  
28  
27  
26  
25  
24  
23  
7
22  
21  
5
20  
19  
18  
17  
16  
Partial  
Mode  
Partial  
Mode  
Display  
Enable  
Area 2  
Area 1  
Area 0  
n/a  
Partial Mode Display Refresh Cycle bits 5-0  
n/a  
Display Display Display Display  
Type  
Select  
Enable Enable Enable  
15  
14  
13  
12  
11  
10  
9
8
6
4
3
2
1
0
bits 13-8  
bit 4  
Partial Mode Display Refresh Cycle Bits [5:0]  
These bits specify the refresh cycle for the Partial Mode Display. The refresh cycle can be  
a value from 0 to 63. This register is used for the TFT Type 3 Interface and has no effect  
for all other panel interfaces.  
Partial Mode Display Enable  
This bit enables/disables the Partial Mode Display for the TFT Type 3 and has no effect  
for all other panel interfaces.  
When this bit = 1, Partial Mode Display is enabled.  
When this bit = 0, Partial Mode Display is disabled.  
bit 3  
Partial Mode Display Type Select  
This bit selects the type of partial mode display.  
When this bit =0, the Stripe type of partial mode display is selected. If Stripe is enabled  
only the Y Position registers are used in calculating the partial display.  
When this bit = 1, type Block type of partial mode display is selected. If Block is enabled  
both the X and Y Position registers are used in calculating the partial display.  
bit 2  
bit 1  
bit 0  
Area 2 Display Enable  
This bit enables/disables the Area 2 for Partial Mode Display on the TFT Type 3 and has  
no effect for all other panel interfaces.  
When this bit = 1, Area 2 is enabled.  
When this bit = 0, Area 2 is disabled.  
Area 1 Display Enable  
This bit enables/disables the Area 1 for Partial Mode Display on the TFT Type 3 and has  
no effect for all other panel interfaces.  
When this bit = 1, Area 1 is enabled.  
When this bit = 0, Area 1 is disabled.  
Area 0 Display Enable  
This bit enables/disables the Area 0 for Partial Mode Display on the TFT Type 3 and has  
no effect for all other panel interfaces.  
When this bit = 1, Area 0 is enabled.  
When this bit = 0, Area 0 is disabled.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 132  
Epson Research and Development  
Vancouver Design Center  
Type 3 TFT Partial Area 0 Positions Register  
REG[E8h]  
Default = 00000000h  
Read/Write  
n/a  
Partial Area 0 Y End Position bits 5-0  
Partial Area 0 X End Position bits 5-0  
n/a  
n/a  
31  
15  
30  
14  
29  
13  
28  
Partial Area 0 Y Start Position bits 5-0  
12 11 10  
27  
26  
25  
24  
8
23  
7
22  
6
21  
5
20  
19  
18  
17  
16  
0
n/a  
Partial Area 0 X Start Position bits 5-0  
9
4
3
2
1
bits 29-24  
bits 21-16  
bits 13-8  
bits 5-0  
Partial Area 0 Y End Position Bits [5:0]  
These bits specify the Y End Position of Partial Area 0 in 8 line resolution. This register is  
used for the TFT Type 3 Interface and has no effect for all other panel interfaces.  
Partial Area 0 X End Position Bits [5:0]  
These bits specify the X End Position of Partial Area 0 in 8 pixel resolution. This register  
is used for the TFT Type 3 Interface and has no effect for all other panel interfaces.  
Partial Area 0 Y Start Position Bits [5:0]  
These bits specify the Y Start Position of Partial Area 0 in 8 line resolution. This register is  
used for the TFT Type 3 Interface and has no effect for all other panel interfaces.  
Partial Area 0 X Start Position Bits [5:0]  
These bits specify the X Start Position of Partial Area 0 in 8 pixel resolution. This register  
is used for the TFT Type 3 Interface and has no effect for all other panel interfaces.  
Type 3 TFT Partial Area 1 Positions Register  
REG[ECh]  
Default = 00000000h  
Read/Write  
n/a  
Partial Area 1 Y End Position bits 5-0  
Partial Area 1 X End Position bits 5-0  
20 19 18 17  
Partial Area 1 X Start Position bits 5-0  
n/a  
n/a  
31  
15  
30  
14  
29  
13  
28  
Partial Area 1 Y Start Position bits 5-0  
12 11 10  
27  
26  
25  
24  
8
23  
7
22  
6
21  
5
16  
0
n/a  
9
4
3
2
1
bits 29-24  
bits 21-16  
bits 13-8  
bits 5-0  
Partial Area 1 Y End Position Bits [5:0]  
These bits specify the Y End Position of Partial Area 1 in 8 line resolution. This register is  
used for the TFT Type 3 Interface and has no effect for all other panel interfaces.  
Partial Area 1 X End Position Bits [5:0]  
These bits specify the X End Position of Partial Area 1 in 8 pixel resolution. This register  
is used for the TFT Type 3 Interface and has no effect for all other panel interfaces.  
Partial Area 1 Y Start Position Bits [5:0]  
These bits specify the Y Start Position of Partial Area 1 in 8 line resolution. This register is  
used for the TFT Type 3 Interface and has no effect for all other panel interfaces.  
Partial Area 1 X Start Position Bits [5:0]  
These bits specify the X Start Position of Partial Area 1 in 8 pixel resolution. This register  
is used for the TFT Type 3 Interface and has no effect for all other panel interfaces.  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 133  
Vancouver Design Center  
Type 3 TFT Partial Area 2 Positions Register  
REG[F0h]  
Default = 00000000h  
Read/Write  
n/a  
Partial Area 2 Y End Position bits 5-0  
Partial Area 2 X End Position bits 5-0  
20 19 18 17  
Partial Area 2 X Start Position bits 5-0  
n/a  
n/a  
31  
15  
30  
14  
29  
13  
28  
Partial Area 2 Y Start Position bits 5-0  
12 11 10  
27  
26  
25  
24  
8
23  
7
22  
6
21  
5
16  
0
n/a  
9
4
3
2
1
bits 29-24  
bits 21-16  
bits 13-8  
bits 5-0  
Partial Area 2 Y End Position Bits [5:0]  
These bits specify the Y End Position of Partial Area 2 in 8 line resolution. This register is  
used for the TFT Type 3 Interface and has no effect for all other panel interfaces.  
Partial Area 2 X End Position Bits [5:0]  
These bits specify the X End Position of Partial Area 2 in 8 pixel resolution. This register  
is used for the TFT Type 3 Interface and has no effect for all other panel interfaces.  
Partial Area 2 Y Start Position Bits [5:0]  
These bits specify the Y Start Position of Partial Area 2 in 8 line resolution. This register is  
used for the TFT Type 3 Interface and has no effect for all other panel interfaces.  
Partial Area 2 X Start Position Bits [5:0]  
These bits specify the X Start Position of Partial Area 2 in 8 pixel resolution. This register  
is used for the TFT Type 3 Interface and has no effect for all other panel interfaces.  
Type 3 TFT Command Store Register  
REG[F4h] Default = 00000000h  
Read/Write  
n/a  
Command 1 Store bits 11-0  
22 21  
Command 0 Store bits 11-0  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
20  
4
19  
3
18  
2
17  
1
16  
0
n/a  
6
5
bits 27-16  
Command 1 Store Bits [11:0]  
These bits store command 1 for the TFT Type 3 Interface. This register has no effect for  
all other panel interfaces.  
bits 11-0  
Command 0 Store Bits [11:0]  
These bits store command 0 for the TFT Type 3 Interface. This register has no effect for  
all other panel interfaces.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 134  
Epson Research and Development  
Vancouver Design Center  
Type 3 TFT Miscellaneous Register  
REG[F8h]  
Default = 00000000h  
Read/Write  
n/a  
31  
30  
29  
13  
28  
27  
26  
25  
24  
23  
7
22  
6
21  
5
20  
19  
3
18  
2
17  
16  
Command  
Send  
Request  
Source Driver IC  
Number bits 1-0  
n/a  
n/a  
15  
14  
12  
11  
10  
9
8
4
1
0
bits 9-8  
Source Driver IC Number Bits [1:0]  
These bits contain the number of Source Driver ICs.  
Table 8-33: Number of Source Driver ICs  
REG[E0h] bits 1-0  
Source Driver ICs  
00  
01  
10  
11  
1
2
3
4
bit 0  
Command Send Request  
After the CPU sets this bit, the S1D13A05 sends the command in the next non-display  
period and clears this bit automatically. This register has no effect for all other panel inter-  
faces.  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 135  
Vancouver Design Center  
8.4 USB Registers (Offset = 4000h)  
The S1D13A05 USB device occupies a 48 byte local register space which can be accessed  
by the CPU on the local host interface.  
To access the USB registers:  
1. A valid USBCLK must be provided.  
2. The USBClk Enable bit (REG[4000h] bit 7) must be set to 1 and the USB Setup bit  
(REG[4000h] bit 2) must be set to 1. Both bits should be set together.  
If any of the above conditions are not true, the USB registers must not be accessed.  
Control Register  
REG[4000h]  
Default = 00h  
Read/Write  
n/a  
15  
14  
13  
12  
11  
10  
9
8
USBClk Enable  
Software EOT  
USB Enable  
Endpoint 4 Stall  
Endpoint 3 Stall  
USB Setup  
Reserved  
Reserved  
7
6
5
4
3
2
1
0
bit 7  
USBClk Enable.  
This bit allows the USBClk to be enabled/disabled allowing the S1D13A05 to save power  
when the USBClk is not required. The USBClk Enable bit operates independently of the  
Power Save Mode Enable bit (REG[14h] bit 4). For example, enabling power save mode  
does not disable the USB section of the S1D13A05. It must be disabled using the USBClk  
enable bit.  
This bit should initially be set with the USB Setup bit. However, it can be disabled/re-  
enabled individually.  
When this bit = 1, the USBClk is enabled.  
When this bit = 0, the USBClk is disabled.  
Note  
The USB Registers must not be accessed when this bit is 0.  
bit 6  
Software EOT  
This bit determines the response to an IN request to Endpoint 4 when the transmit FIFO is  
empty. If this bit is asserted, the S1D13A05 responds to an IN request to Endpoint 4 with  
an ACK and a zero length packet if the FIFO is empty. If this bit is not asserted, the  
S1D13A05 responds to an IN request from Endpoint 4 with an NAK if the FIFO is empty,  
indicating that it expects to transmit more data. This bit is automatically cleared when the  
S1D13A05 responds to the host with a zero length packet when the FIFO is empty.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 136  
Epson Research and Development  
Vancouver Design Center  
bit 5  
USB Enable  
Any device or configuration descriptor reads from the host will be acknowledged with a  
NAK until this bit is set. This allows time for the local CPU to set up the interrupt polling  
register, maximum packet size registers, and other configuration registers (e.g. Product ID  
and Vendor ID) before the host reads the descriptors.  
Note  
As the device and configuration descriptors cannot be read by the host until the USB  
Enable bit is set, the device enumeration process will not complete and the device will  
not be recognized on the USB.  
bit 4  
bit 3  
bit 2  
Endpoint 4 Stall.  
If this bit is set, host bulk reads from the transmit FIFO will result in a STALL acknowl-  
edge by the S1D13A05. No data will be returned to the USB host.  
Endpoint 3 Stall.  
If this bit is set, host bulk writes to the receive FIFO will result in a STALL acknowledge  
by the S1D13A05. Receive data will be discarded.  
USB Setup  
This bit is used by software to select between GPIO and USB functions for multifunction  
GPIO pins (GPIO[7:4]). This bit should be set at the same time as the USBClk Enable bit.  
When this bit = 1, the USB function is selected.  
When this bit = 0, the GPIO function is selected.  
Note  
The USB Registers must not be accessed when this bit is 0.  
bit 1  
bit 0  
Reserved.  
This bit must be set to 0.  
Reserved.  
This bit must be set to 0.  
Interrupt Enable Register 0  
REG[4002h]  
Default = 00h  
Read/Write  
n/a  
15  
14  
13  
12  
11  
10  
9
8
Suspend Request  
Interrupt Enable  
SOF Interrupt  
Enable  
Endpoint 4  
Interrupt Enable  
Endpoint 3  
Interrupt Enable  
Endpoint 2  
Interrupt Enable  
Endpoint 1  
Interrupt Enable  
Reserved  
n/a  
7
6
5
4
3
2
1
0
bit 7  
Suspend Request Interrupt Enable.  
When set, this bit enables an interrupt to occur when the USB host is requesting the  
S1D13A05 USB device to enter suspend mode.  
bit 6  
bit 5  
SOF Interrupt Enable.  
When set, this bit enables an interrupt to occur when a start-of-frame packet is received by  
the S1D13A05.  
Reserved.  
This bit must be set to 0.  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 137  
Vancouver Design Center  
bit 4  
bit 3  
bit 2  
bit 1  
Endpoint 4 Interrupt Enable.  
When set, this bit enables an interrupt to occur when a USB Endpoint 4 Data Packet has  
been sent by the S1D13A05.  
Endpoint 3 Interrupt Enable.  
When set, this bit enables an interrupt to occur when a USB Endpoint 3 Data Packet has  
been received by the S1D13A05.  
Endpoint 2 Interrupt Enable.  
When set, this bit enables an interrupt to occur when the USB Endpoint 2 Transmit Mail-  
box registers have been read by the USB host.  
Endpoint 1 Interrupt Enable.  
When set, this bit enables an interrupt to occur when the USB Endpoint 1 Receive Mail-  
box registers have been written to by the USB host.  
Interrupt Status Register 0  
REG[4004h]  
Default = 00h  
Read/Write  
n/a  
15  
14  
13  
12  
11  
10  
9
8
Upper Interrupt  
Active  
(read only)  
Suspend Request  
Interrupt Status  
SOF Interrupt  
Status  
Endpoint 4  
Interrupt Status  
Endpoint 3  
Interrupt Status  
Endpoint 2  
Interrupt Status  
Endpoint 1  
Interrupt Status  
Reserved  
7
6
5
4
3
2
1
0
bit 7  
Suspend Request Interrupt Status.  
This bit indicates when a suspend-request has been received by the S1D13A05. Writing a  
1 clears this bit.  
bit 6  
SOF Interrupt Status.  
This bit indicates when a start-of-frame packet has been received by the S1D13A05. Writ-  
ing a 1 clears this bit.  
bit 5  
bit 4  
Reserved.  
This bit must be set to 0.  
Endpoint 4 Interrupt Status.  
This bit indicates when a USB Endpoint 4 Data packet has been sent by the S1D13A05.  
Writing a 1 clears this bit.  
bit 3  
Endpoint 3 Interrupt Status (Receive FIFO Valid).  
This bit indicates when a USB Endpoint 3 Data packet has been received by the  
S1D13A05. No more packets to endpoint 3 will be accepted until this bit is cleared. Writ-  
ing a 1 clears this bit.  
bit 2  
bit 1  
bit 0  
Endpoint 2 Interrupt Status.  
This bit indicates when the USB Endpoint 2 Mailbox registers have been read by the USB  
host. Writing a 1 clears this bit.  
Endpoint 1 Interrupt Status (Receive Mailbox Valid).  
This bit indicates when the USB Endpoint 1 Mailbox registers have been written to by the  
USB host. Writing a 1 clears this bit.  
Upper Interrupt Active (read only).  
At least one interrupt status bit is set in register REG[4008h].  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 138  
Epson Research and Development  
Vancouver Design Center  
Interrupt Enable Register 1  
REG[4006h]  
Default = 00h  
Read/Write  
n/a  
15  
14  
6
13  
12  
4
11  
3
10  
2
9
8
Transmit FIFO  
Almost Empty  
Interrupt Enable  
Receive FIFO  
Almost Full  
Interrupt Enable  
n/a  
7
5
1
0
bit 1  
Transmit FIFO Almost Empty Interrupt Enable.  
When set, this bit enables an interrupt to be generated when the Transmit FIFO Almost  
Empty status bit is set.  
Note  
The Transmit FIFO Almost Empty threshold must be set greater than zero, as the FIFO  
count must drop below the threshold to cause an interrupt.  
bit 0  
Receive FIFO Almost Full Interrupt Enable.  
When set, this bit enables an interrupt to be generated when the Receive FIFO Almost Full  
status bit is set.  
Note  
The Receive FIFO Almost Full threshold must be set less than 64, as the FIFO count  
must rise above the threshold to cause an interrupt.  
Interrupt Status Register 1  
REG[4008h]  
Default = 00h  
Read/Write  
n/a  
15  
14  
6
13  
12  
4
11  
3
10  
2
9
8
Transmit FIFO  
Almost Empty  
Status  
Receive FIFO  
Almost Full Status  
n/a  
7
5
1
0
bit 1  
Transmit FIFO Almost Empty Status.  
This bit is set when the number of bytes in the Transmit FIFO is equal to the Transmit  
FIFO Almost Empty Threshold, and another byte is sent to the USB bus from the FIFO.  
Writing a 1 clears this bit.  
bit 0  
Receive FIFO Almost Full Status.  
This bit is set when the number of bytes in the Receive FIFO is equal to the Receive FIFO  
Almost Full Threshold, and another byte is received from the USB bus into the FIFO.  
Writing a 1 clears this bit.  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 139  
Vancouver Design Center  
Endpoint 1 Index Register  
REG[4010h]  
Default = 00h  
Read/Write  
n/a  
15  
14  
6
13  
12  
4
11  
3
10  
2
9
8
0
n/a  
Endpoint 1 Index bits 2-0 (RO)  
7
5
1
bits 2-0  
Endpoint 1 Index Register Bits [2:0].  
This register determines which Endpoint 1 Receive Mailbox is accessed when the End-  
point 1 Receive Mailbox Data register is read. This register is automatically incremented  
after the Endpoint 1 Receive Mailbox Data register is read. This index register wraps  
around to zero when it reaches the maximum count (7).  
Endpoint 1 Receive Mailbox Data Register  
REG[4012h]  
Default = 00h  
Read Only  
n/a  
15  
14  
6
13  
12  
11  
10  
2
9
1
8
0
Endpoint 1 Receive Mailbox Data bits 7-0  
7
5
4
3
bits 7-0  
Endpoint 1 Receive Mailbox Data Bits [7:0].  
This register is used to read data from one of the receive mailbox registers. Data is  
returned from the register selected by the Endpoint 1 Index Register. The eight receive  
mailbox registers are written by a USB bulk transfer to endpoint 1, and can be used to pass  
messages from the USB host to the local CPU. The format and content of the messages are  
user defined. If enabled, USB writes to this register can generate an interrupt.  
Endpoint 2 Index Register  
REG[4018h]  
Default = 00h  
Read/Write  
n/a  
15  
14  
6
13  
12  
4
11  
3
10  
2
9
8
0
n/a  
Endpoint 2 Index bits 2-0  
7
5
1
bits 2-0  
Endpoint 2 Index Register Bits [2:0].  
This register determines which Endpoint 2 Transmit Mailbox is accessed when the End-  
point 2 Transmit Mailbox Data register is read or written. This register is automatically  
incremented after the Endpoint 2 Transmit Mailbox Data port is read or written. This  
index register wraps around to zero when it reaches the maximum count (7).  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 140  
Epson Research and Development  
Vancouver Design Center  
Endpoint 2 Transmit Mailbox Data Register  
REG[401Ah]  
Default = 00h  
Read/Write  
n/a  
15  
14  
6
13  
12  
11  
10  
2
9
1
8
0
Endpoint 2 Transmit Mailbox Data bits 7-0  
7
5
4
3
bits 7-0  
Endpoint 2 Transmit Mailbox Data Bits [7:0].  
This register is used to read or write one of the transmit mailbox registers. The register  
being accessed is selected by the Endpoint 2 Index register. The eight Transmit Mailbox  
registers are written by the local CPU and are read by a USB transfer from endpoint 2. The  
format and content of the messages are user defined. If enabled, USB reads from this reg-  
ister can generate an interrupt.  
Endpoint 2 Interrupt Polling Interval Register  
REG[401Ch]  
Default = FFh  
Read/Write  
n/a  
15  
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
Interrupt Polling Interval bits 7-0  
7
4
3
bits 7-0  
Interrupt Polling Interval Bits [7:0].  
This register specifies the Endpoint 2 interrupt polling interval in milliseconds. It can be  
read by the host through the endpoint 2 descriptor.  
Endpoint 3 Receive FIFO Data Register  
REG[4020h]  
Default = 00h  
Read Only  
n/a  
15  
14  
6
13  
12  
11  
10  
2
9
1
8
0
Endpoint 3 Receive FIFO Data bits 7-0  
7
5
4
3
bits7-0  
Endpoint 3 Receive FIFO Data Bits [7:0].  
This register is used by the local CPU to read USB receive FIFO data. The FIFO data is  
written by the USB host using bulk or isochronous transfers to endpoint 3.  
Endpoint 3 Receive FIFO Count Register  
REG[4022h]  
Default = 00h  
Read Only  
n/a  
15  
14  
6
13  
12  
11  
10  
2
9
1
8
0
Receive FIFO Count bits 7-0  
7
5
4
3
bits 7-0  
Receive FIFO Count Bits [7:0].  
This register returns the number of receive FIFO entries containing valid entries. Values  
range from 0 (empty) to 64 (full). This register is automatically decremented after every  
read of the of the Receive FIFO Data Register (REG[4020h]).  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 141  
Vancouver Design Center  
Endpoint 3 Receive FIFO Status Register  
REG[4024h]  
Default = 01h  
Read/Write  
n/a  
15  
14  
13  
12  
11  
10  
9
8
Receive FIFO  
Empty  
(read only)  
Receive FIFO  
Flush  
Receive FIFO  
Overflow  
Receive FIFO  
Underflow  
Receive FIFO Full  
(read only)  
n/a  
7
6
5
4
3
2
1
0
bit 4  
Receive FIFO Flush.  
Writing to this bit causes the receive FIFO to be flushed. Reading this bit always returns a  
0.  
bit 3  
bit 2  
Receive FIFO Overflow.  
If set, this bit indicates that an attempt was made by the USB host to write to the receive  
FIFO when the receive FIFO was full. Writing a 1 clears this bit.  
Receive FIFO Underflow.  
If set, this bit indicates that an attempt was made to read the receive FIFO when the  
receive FIFO was empty. Writing a 1 clears this bit.  
bit 1  
bit 0  
Receive FIFO Full.  
If set, this bit indicates that the receive FIFO is full.  
Receive FIFO Empty.  
If set, this bit indicates that the receive FIFO is empty.  
Endpoint 3 Maximum Packet Size Register  
REG[4026h]  
Default = 08h  
Read/Write  
n/a  
15  
14  
6
13  
12  
11  
10  
2
9
1
8
0
Endpoint 3 Max Packet Size bits 7-0  
7
5
4
3
bits 7-0  
Endpoint 3 Max Packet Size Bits [7:0].  
This register specifies the maximum packet size for endpoint 3 in units of 8 bytes (default  
= 64 bytes). It can be read by the host through the endpoint 3 descriptor.  
Endpoint 4 Transmit FIFO Data Register  
REG[4028h]  
Default = 00h  
Write Only  
n/a  
15  
14  
6
13  
12  
11  
10  
2
9
1
8
0
Transmit FIFO Data bits 7-0  
7
5
4
3
bits 7-0  
Transmit FIFO Data Bits [7:0].  
This register is used by the local CPU to write data to the transmit FIFO. The FIFO data is  
read by the USB host using bulk or isochronous transfers from endpoint 4.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 142  
Epson Research and Development  
Vancouver Design Center  
Endpoint 4 Transmit FIFO Count Register  
REG[402Ah]  
Default = 00h  
Read Only  
n/a  
15  
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
Transmit FIFO Count bits 7-0  
7
4
3
bits 7-0  
Transmit FIFO Count Bits [7:0].  
This register returns the number of transmit FIFO entries containing valid entries. Values  
range from 0 (empty) to 64 (full).  
Endpoint 4 Transmit FIFO Status Register  
REG[402Ch]  
Default = 01h  
Read/Write  
n/a  
15  
14  
6
13  
12  
11  
10  
9
8
Transmit FIFO  
Valid  
Transmit FIFO  
Flush  
Transmit FIFO  
Overflow  
Transmit FIFO  
Full (read only)  
Transmit FIFO  
Empty (read only)  
n/a  
Reserved  
7
5
4
3
2
1
0
bit 5  
Transmit FIFO Valid.  
If set, this bit allows the data in the Transmit FIFO to be read by the next read from the  
host. This bit is automatically cleared by a host read. This bit is only used if bit 0 in  
USB[403Ah] Index [0Ch] is set.  
bit 4  
bit 3  
Transmit FIFO Flush.  
Writing to this bit causes the transmit FIFO to be flushed. Reading this bit always returns  
a 0.  
Transmit FIFO Overflow.  
If set, this bit indicates that an attempt was made by the local CPU to write to the transmit  
FIFO when the transmit FIFO was full. Writing a 1 clears this bit.  
bit 2  
bit 1  
Reserved.  
Transmit FIFO Full (read only).  
If set, this bit indicates that the transmit FIFO is full.  
bit 0  
Transmit FIFO Empty (read only).  
If set, this bit indicates that the transmit FIFO is empty.  
Endpoint 4 Maximum Packet Size Register  
REG[402Eh]  
Default = 08h  
Read/Write  
n/a  
15  
14  
6
13  
12  
11  
10  
2
9
1
8
0
Endpoint 4 Max Packet Size bits 7-0  
7
5
4
3
bits 7-0  
Endpoint 4 Max Packet Size Bits [7:0].  
This register specifies the maximum packet size for endpoint 4 in units of 8 bytes (default  
= 64 bytes). It can be read by the host through the endpoint 4 descriptor.  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 143  
Vancouver Design Center  
Revision Register  
REG[4030h]  
Default = 01h  
Read Only  
n/a  
15  
14  
6
13  
12  
11  
10  
2
9
1
8
0
Chip Revision bits 7-0  
7
5
4
3
bits 7-0  
Chip Revision Bits [7:0].  
This register returns current silicon revision number of the USB client.  
USB Status Register  
REG[4032h]  
Default = 00h  
Read/Write  
n/a  
15  
14  
13  
12  
11  
10  
9
8
USB Endpoint 4  
STALL  
USB Endpoint 4  
NAK  
USB Endpoint 4  
ACK  
USB Endpoint 3  
STALL  
USB Endpoint 3  
NAK  
USB Endpoint 3  
ACK  
Suspend Control  
Endpoint 2 Valid  
7
6
5
4
3
2
1
0
bit 7  
Suspend Control  
If set, this bit indicates that there is a pending suspend request. Writing a 1 clears this bit  
and causes the S1D13A05 USB device to enter suspended mode.  
bit 6  
bit 5  
bit 4  
bit 3  
USB Endpoint 4 STALL  
The last USB IN token could not be serviced because the endpoint was stalled  
(REG[4000h] bit 4 set), and was acknowledged with a STALL. Writing a 1 clears this bit.  
USB Endpoint 4 NAK  
The last USB packet transmitted (IN packet) encountered a FIFO underrun condition, and  
was acknowledged with a NAK. Writing a 1 clears this bit.  
USB Endpoint 4 ACK  
The last USB packet transmitted (IN packet) was successfully acknowledged with an  
ACK from the USB host. Writing a 1 clears this bit.  
USB Endpoint 3 STALL  
The last USB packet received (OUT packet) could not be accepted because the endpoint  
was stalled (REG[4000h] bit 3 set), and was acknowledged with a STALL. Writing a 1  
clears this bit.  
bit 2  
bit 1  
bit 0  
USB Endpoint 3 NAK  
The last USB packet received (OUT packet) could not be accepted, and was acknowl-  
edged with a NAK. Writing a 1 clears this bit.  
USB Endpoint 3 ACK.  
The last USB packet received (OUT packet) was successfully acknowledged with an  
ACK. Writing a 1 clears this bit.  
Endpoint 2 Valid.  
When this bit is set, the 8-byte endpoint 2 mailbox registers have been written by the local  
CPU, but not yet read by the USB host. The local CPU should not write into these regis-  
ters while this bit is set.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 144  
Epson Research and Development  
Vancouver Design Center  
Frame Counter MSB Register  
REG[4034h]  
Default = 00h  
Read Only  
n/a  
15  
7
14  
6
13  
12  
4
11  
3
10  
2
9
8
0
n/a  
Frame Counter bits 10-8  
5
1
Frame Counter LSB Register  
REG[4036h]  
Default = 00h  
Read Only  
n/a  
15  
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
Frame Counter bits 7-0  
7
4
3
bits 10-0  
Frame Counter Bits [10:0]  
This register contains the frame counter from the most recent start-of-frame packet.  
Extended Register Index  
REG[4038h]  
Default = 00h  
Read/Write  
n/a  
15  
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
Extended Register Index bits 7-0  
7
4
3
bits 7-0  
Extended Register Index Bits [7:0]  
This register selects which extended data register is accessed when the REG[403Ah] is  
read or written.  
Extended Register Data  
REG[403Ah]  
Default = 04h  
Read/Write  
n/a  
15  
14  
6
13  
12  
11  
10  
2
9
1
8
0
Extended Data bits 7-0  
7
5
4
3
bits 7-0  
Extended Data Bits [7:0]  
This port provides access to one of the extended data registers. The index of the current  
register is held in REG[4038h].  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 145  
Vancouver Design Center  
Vendor ID MSB  
REG[403Ah], Index[00h]  
Default = 04h  
Read/Write  
Vendor ID bits 15-8  
7
6
5
4
3
2
2
1
1
0
Vendor ID LSB  
REG[403Ah], Index[01h]  
Default = B8h  
Read/Write  
Vendor ID bits 7-0  
7
6
5
4
3
0
bits 15-0  
Vendor ID Bits [15:0]  
These registers determine the Vendor ID returned in a “Get Device Descriptor” request.  
Product ID MSB  
REG[403Ah], Index[02h]  
Default = 88h  
Read/Write  
Product ID bits 15-8  
7
6
5
4
3
2
1
0
Product ID LSB  
REG[403Ah], Index[03h]  
Default = 21h  
Read/Write  
Product ID bits 7-0  
7
6
5
4
3
2
1
0
bits 15-0  
Product ID Bits [15:0]  
These registers determine the Product ID returned in a “Get Device Descriptor” request.  
Release Number MSB  
REG[403Ah], Index[04h]  
Default = 01h  
Read/Write  
Release Number bits 15-8  
7
6
5
4
3
2
1
0
Release Number LSB  
REG[403Ah], Index[05h]  
Default = 00h  
Read/Write  
Release Number bits 7-0  
7
6
5
4
3
2
1
0
bits 15-0  
Release Number Bits [15:0]  
These registers determine the device release number returned in a “Get Device Descrip-  
tor” request.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 146  
Epson Research and Development  
Vancouver Design Center  
Receive FIFO Almost Full Threshold  
REG[403Ah], Index[06h]  
Default = 3Ch  
Read/Write  
n/a  
Receive FIFO Almost Full Threshold bits 5-0  
7
6
5
4
3
2
1
0
bits 5-0  
Receive FIFO Almost Full Threshold Bits [5:0]  
This register determines the threshold at which the receive FIFO almost full status bit is  
set.  
Note  
The Receive FIFO Almost Full threshold must be set less than 64, as the FIFO count  
must rise above the threshold to cause an interrupt.  
Transmit FIFO Almost Empty Threshold  
REG[403Ah], Index[07h]  
Default = 04h  
Read/Write  
n/a  
Transmit FIFO Almost Empty Threshold bits 5-0  
7
6
5
4
3
2
1
0
bits 5-0  
Transmit FIFO Almost Empty Threshold Bits [5:0].  
This register determines the threshold at which the transmit FIFO almost empty status bit  
is set.  
Note  
The Transmit FIFO Almost Empty threshold must be set greater than zero, as the FIFO  
count must drop below the threshold to cause an interrupt.  
USB Control  
REG[403Ah], Index[08h]  
Default = 01h  
Read/Write  
USB String  
Enable  
n/a  
4
7
6
5
3
2
1
0
bit 0  
USB String Enable.  
When set, this bit allows the default Vendor and Product ID String Descriptors to be  
returned to the host. When this bit is cleared, the string index values in the Device  
Descriptor are set to zero.  
Maximum Power Consumption  
REG[403Ah], Index[09h]  
Default = FAh  
Read/Write  
Maximum Current bits 7-0  
7
6
5
4
3
2
1
0
bits 7-0  
Maximum Current Bits [7:0].  
The amount of current drawn by the peripheral from the USB port in increments of 2 mA.  
The S1D13A05 reports this value to the host controller in the configuration descriptor.  
The default and maximum value is 500 mA (FAh * 2 mA).  
In order to comply with the USB specification the following formula must apply:  
REG[403Ah] index[09h]  
FAh.  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 147  
Vancouver Design Center  
Packet Control  
REG[403Ah], Index[0Ah]  
Default = 00h  
Read/Write  
EP4 Data Toggle EP3 Data Toggle EP2 Data Toggle EP1 Data Toggle  
Reserved  
3
Reserved  
2
n/a  
1
Reserved  
7
6
5
4
0
bit 7  
bit 6  
bit 5  
bit 4  
EP4 Data Toggle Bit.  
Contains the value of the Data Toggle bit to be sent in response to the next IN token to  
endpoint 4 from the USB host.  
Note  
When a write is made to this bit, the value cannot be read back before a minimum of 12  
USBCLK.  
EP3 Data Toggle Bit.  
Contains the value of the Data Toggle bit expected in the next DATA packet to endpoint 3  
from the USB host.  
Note  
When a write is made to this bit, the value cannot be read back before a minimum of 12  
USBCLK.  
EP2 Data Toggle Bit.  
Contains the value of the Data Toggle bit to be sent in response to the next IN token to  
endpoint 2 from the USB host.  
Note  
When a write is made to this bit, the value cannot be read back before a minimum of 12  
USBCLK.  
EP1 Data Toggle Bit.  
Contains the value of the Data Toggle bit expected in the next DATA packet to endpoint 1  
from the USB host.  
Note  
When a write is made to this bit, the value cannot be read back before a minimum of 12  
USBCLK.  
bit 3  
bit 2  
bit 0  
Reserved.  
This bit must be set to 0.  
Reserved.  
This bit must be set to 0.  
Reserved.  
This bit must be set to 0.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 148  
Epson Research and Development  
Vancouver Design Center  
Reserved  
REG[403Ah], Index[0Bh]  
Default = 00h  
Read/Write  
n/a  
4
Reserved  
7
6
5
3
2
1
0
bit 0  
Reserved.  
This bit must be set to 0.  
FIFO Control  
REG[403Ah], Index[0Ch]  
Default = 00h  
Read/Write  
Transmit FIFO  
Valid Mode  
n/a  
7
6
5
4
3
2
1
0
bit 0  
Transmit FIFO Valid Mode.  
When set, this bit causes a NAK response to a host read request from the transmit FIFO  
(EP4) unless the FIFO Valid bit (in register EP4STAT) is set. When this bit is cleared, any  
data waiting in the transmit FIFO will be sent in response to a host read request, and the  
FIFO Valid bit is ignored.  
USBFC Input Control Register  
REG[4040h]  
Default = 0Dh  
Read/Write  
n/a  
15  
14  
13  
12  
11  
10  
9
8
n/a  
USCMPEN  
Reserved  
Reserved  
ISO  
WAKEUP  
Reserved  
Reserved  
7
6
5
4
3
2
1
0
These bits control inputs to the USB module.  
USCMPEN  
bit 6  
This bit controls the USB differential input receiver.  
0 = differential input receiver disabled  
1 = differential input receiver enabled  
bits 5  
bits 4  
bit 3  
Reserved.  
This bit must be set to 0.  
Reserved.  
This bit must be set to 0.  
ISO  
This bits selects between isochronous and bulk transfer modes for the FIFOs (Endpoint 3  
and Endpoint 4).  
0 = Isochronous transfer mode  
1 = Bulk transfer mode  
bit 2  
WAKEUP  
This active low bit initiates a USB remote wake-up.  
0 = initiate USB remote wake-up  
1 = no action  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 149  
Vancouver Design Center  
bit 1  
bit 0  
Reserved.  
This bit must be set to 0.  
Reserved.  
This bit must be set to 0.  
Reserved  
REG[4042h]  
n/a  
n/a  
15  
7
14  
6
13  
5
12  
11  
3
10  
2
9
1
8
4
0
Pin Input Status / Pin Output Data Register  
REG[4044h]  
Default = depends on USB input pin state  
Read/Write  
n/a  
15  
14  
6
13  
12  
11  
10  
2
9
8
USBDETECT  
Input Pin Status  
(read only)  
USBPUP Output  
Pin Status  
n/a  
7
5
4
3
1
0
These bits can generate interrupts.  
USBDETECT Input Pin Status  
bit 1  
This read-only bit indicates the status of the USBDETECT input pin after a steady-state  
period of 0.5 seconds.  
bit 0  
USBPUP Output Pin Status  
This bit controls the state of the USBPUP output pin.  
This bit must be set to 1 to enable the USB interface and USB registers. See the S1D13A05  
Programming Notes and Examples, document number X40-A-G-003-xx for further infor-  
mation on this bit.  
Interrupt Control Enable Register 0  
REG[4046h]  
Default = 00h  
Read/Write  
n/a  
15  
14  
13  
12  
11  
10  
9
8
USB Host  
Connected  
n/a  
Reserved  
Reserved  
Reserved  
Reserved  
USBRESET  
Reserved  
7
6
5
4
3
2
1
0
These bits enable interrupts from the corresponding bit of the Interrupt Control Status/Clear  
Register 0.  
0 = corresponding interrupt bit disabled (masked).  
1 = corresponding interrupt bit enabled.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 150  
Epson Research and Development  
Vancouver Design Center  
Interrupt Control Enable Register 1  
REG[4048h]  
Default = 00h  
Read/Write  
n/a  
15  
14  
13  
12  
11  
10  
9
8
USB Host  
Disconnect  
Device  
Configured  
n/a  
Reserved  
5
Reserved  
Reserved  
Reserved  
INT  
7
6
4
3
2
1
0
These bits enable interrupts from the corresponding bit of the Interrupt Control Status/Clear  
Register 1.  
0 = corresponding interrupt bit disabled (masked).  
1 = corresponding interrupt bit enabled.  
Interrupt Control Status/Clear Register 0  
REG[404Ah]  
Default = 00h  
Read/Write  
n/a  
15  
14  
13  
12  
11  
10  
9
8
USB Host  
Connected  
n/a  
Reserved  
5
Reserved  
Reserved  
Reserved  
USBRESET  
Reserved  
7
6
4
3
2
1
0
On reads, these bits represent the interrupt status for interrupts caused by low-to-high  
transitions on the corresponding signals.  
0 (read) = no low-to-high event detected on the corresponding signal.  
1 (read) = low-to-high event detected on the corresponding signal.  
On writes, these bits clear the corresponding interrupt status bit.  
0 (write) = corresponding interrupt status bit unchanged.  
1 (write) = corresponding interrupt status bit cleared to zero.  
These bits must always be cleared via a write to this register before first use. This will  
ensure that any changes on input pins during system initialization do not generate erroneous  
interrupts. The interrupt bits are used as follows.  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
USB Host Connected  
Indicates the USB device is connected to a USB host.  
Reserved.  
Must be set to 0.  
Reserved.  
Must be set to 0.  
Reserved.  
Must be set to 0.  
Reserved.  
Must be set to 0.  
USBRESET  
Indicates the USB device is reset using the RESET# pin or using the USB port reset.  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 151  
Vancouver Design Center  
bit 0  
Reserved.  
Must be set to 0.  
Interrupt Control Status/Clear Register 1  
REG[404Ch]  
Default = 00h  
Read/Write  
n/a  
15  
14  
13  
12  
11  
10  
9
8
USB Host  
Disconnected  
Device  
Configured  
n/a  
Reserved  
Reserved  
Reserved  
Reserved  
INT  
7
6
5
4
3
2
1
0
On reads, these bits represent the interrupt status for interrupts caused by high-to-low  
transitions on the corresponding signals.  
0 (read) = no high-to-low event detected on the corresponding signal.  
1 (read) = high-to-low event detected on the corresponding signal.  
On writes, these bits clear the corresponding interrupt status bit.  
0 (write) = corresponding interrupt status bit unchanged.  
1 (write) = corresponding interrupt status bit cleared to zero.  
These bits must always be cleared via a write to this register before first use. This will  
ensure that any changes on input pins during system initialization do not generate erroneous  
interrupts. The interrupt bits are used as follows.  
bit 6  
bit 5  
bit 4  
bit 3  
bit 2  
bit 1  
bit 0  
USB Host Disconnected  
Indicates the USB device is disconnected from a USB host.  
Reserved.  
Must be set to 0.  
Device Configured.  
Indicates the USB device has been configured by the USB host.  
Reserved.  
Must be set to 0.  
Reserved.  
Must be set to 0.  
Reserved.  
Must be set to 0.  
INT  
Indicates an interrupt request originating from within the USB registers (REG[4000h] to  
REG[403Ah]).  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 152  
Epson Research and Development  
Vancouver Design Center  
Interrupt Control Masked Status Register 0  
REG[404Eh]  
Default = 00h  
Read Only  
n/a  
15  
14  
13  
12  
11  
10  
9
8
USB Host  
Connected  
n/a  
Reserved  
Reserved  
Reserved  
Reserved  
USBRESET  
Reserved  
7
6
5
4
3
2
1
0
These read-only bits represent the logical AND of the corresponding Interrupt Control  
Status/Clear Register 0 (REG[404Ah])and the Interrupt Control Enable Register 0  
(REG[4046h]).  
Interrupt Control Masked Status Register 1  
REG[4050h]  
Default = 00h  
Read Only  
n/a  
15  
14  
13  
12  
11  
10  
9
8
USB Host  
Disconnected  
Device  
Configured  
n/a  
Reserved  
Reserved  
Reserved  
Reserved  
INT  
7
6
5
4
3
2
1
0
These read-only bits represent the logical AND of the corresponding Interrupt Control  
Status/Clear Register 1 (REG[404Ch]) and the Interrupt Control Enable Register 1  
(REG[4048h]).  
USB Software Reset Register  
REG[4052h]  
Default = 00h  
Write Only  
n/a  
15  
14  
6
13  
5
12  
11  
10  
2
9
1
8
0
USB Software Reset (Code = 10100100) bits 7-0  
7
4
3
bits 7-0  
USB Software Reset Bits [7:0] (Write Only)  
When the specific code of 10100100b is written to these bits the USB module of the  
S1D13A05 is reset. Use of the above code avoids the possibility of accidently resetting the  
USB.  
USB Wait State Register  
REG[4054h]  
Default = 00h  
Read/Write  
n/a  
15  
14  
6
13  
5
12  
4
11  
3
10  
2
9
8
n/a  
USB Wait State bits 1-0  
7
1
0
bits 1-0  
USB Wait State Bits [1:0]  
This register controls the number of wait states the S1D13A05 uses for its internal USB  
support. For all bus interfaces supported by the S1D13A05 these bits must be set to 01.  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 153  
Vancouver Design Center  
8.5 2D Acceleration (BitBLT) Registers (Offset = 8000h)  
These registers control the S1D13A05 2D Acceleration engine. For detailed BitBLT  
programming instructions, see the S1D13A05 Programming Notes and Examples,  
document number X40A-G-003-xx.  
BitBLT Control Register  
REG[8000h] Default = 00000000h  
Read/Write  
Color  
Format  
Select  
Dest  
Linear  
Select  
Source  
Linear  
Select  
n/a  
25  
31  
30  
14  
29  
13  
28  
27  
26  
24  
23  
7
22  
6
21  
5
20  
4
19  
3
18  
17  
1
16  
BitBLT  
Enable  
(WO)  
n/a  
15  
12  
11  
10  
9
8
2
0
bit 18  
BitBLT Color Format Select  
This bit selects the color format that the 2D operation is applied to.  
When this bit = 0, 8 bpp (256 color) format is selected.  
When this bit = 1, 16 bpp (64K color) format is selected.  
bit 17  
BitBLT Destination Linear Select  
When this bit = 1, the Destination BitBLT is stored as a contiguous linear block of  
memory.  
When this bit = 0, the Destination BitBLT is stored as a rectangular region of memory.  
The BitBLT Memory Address Offset register (REG[8014h]) determines the address offset  
from the start of one line to the next line.  
bit 16  
bit 0  
BitBLT Source Linear Select  
When this bit = 1, the Source BitBLT is stored as a contiguous linear block of memory.  
When this bit = 0, the Source BitBLT is stored as a rectangular region of memory.  
The BitBLT Memory Address Offset register (REG[8014h]) determines the address offset  
from the start of one line to the next line.  
BitBLT Enable  
This bit is write only.  
Setting this bit to 1 begins the 2D BitBLT operation. This bit must not be set to 0 while a  
BitBLT operation is in progress.  
Note  
To determine the status of a BitBLT operation use the BitBLT Busy Status bit  
(REG[8004h] bit 0).  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 154  
Epson Research and Development  
Vancouver Design Center  
BitBLT Status Register  
REG[8004h]  
Default = 00000000h  
Read Only  
n/a  
Number of Used FIFO Entries  
n/a  
22  
Number of Free FIFO Entries (0 means full)  
31  
30  
29  
13  
28  
27  
26  
25  
24  
8
23  
7
21  
20  
19  
18  
17  
16  
FIFO  
Not  
Empty  
FIFO  
Full  
Status  
BitBLT  
Busy  
Status  
FIFO  
Half Full  
n/a  
n/a  
15  
14  
12  
11  
10  
9
6
5
4
3
2
1
0
bits 28-24  
bits 20-16  
bit 6  
Number of Used FIFO Entries Bits [4:0]  
These bits indicate the minimum number of FIFO entries currently in use (there may be  
more values in internal pipeline stages).  
Number of Free FIFO Entries Bits [4:0]  
These bits indicate the number of empty FIFO entries available. If these bits return a 0, the  
FIFO is full.  
BitBLT FIFO Not-Empty Status  
This is a read-only status bit.  
When this bit = 0, the BitBLT FIFO is empty.  
When this bit = 1, the BitBLT FiFO has at least one data.  
To reduce system memory read latency, software can monitor this bit prior to a BitBLT  
read burst operation.  
The following table shows the number of words available in BitBLT FIFO under different  
status conditions.  
Table 8-34: BitBLT FIFO Words Available  
BitBLT FIFO Full  
Status  
(REG[8004h] Bit 4) (REG[8004h] Bit 5) (REG[8004h] Bit 6)  
BitBLT FIFO Half  
Full Status  
BitBLT FIFO Not Number of Words  
Empty Status  
available in BitBLT  
FIFO  
0
0
0
1
0
0
1
1
0
1
1
1
0
1 to 6  
7 to 14  
15 to 16  
bit 5  
bit 4  
BitBLT FIFO Half Full Status  
This is a read-only status bit.  
When this bit = 1, the BitBLT FIFO is half full or greater than half full.  
When this bit = 0, the BitBLT FIFO is less than half full.  
BitBLT FIFO Full Status  
This is a read-only status bit.  
When this bit = 1, the BitBLT FIFO is full.  
When this bit = 0, the BitBLT FIFO is not full.  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 155  
Vancouver Design Center  
bit 0  
BitBLT Busy Status  
This bit is a read-only status bit.  
When this bit = 1, the BitBLT operation is in progress.  
When this bit = 0, the BitBLT operation is complete.  
Note  
During a BitBLT Read operation, the BitBLT engine does not attempt to keep the FIFO  
full. If the FIFO becomes full, the BitBLT operation stops temporarily as data is read  
out of the FIFO. The BitBLT will restart only when less than 14 values remain in the  
FIFO.  
BitBLT Command Register  
REG[8008h] Default = 00000000h  
Read/Write  
n/a  
BitBLT ROP Code bits 3-0  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
5
20  
4
19  
3
18  
17  
16  
0
n/a  
BitBLT Operation bits 3-0  
2
1
bits 19-16  
BitBLT Raster Operation Code/Color Expansion Bits [3:0]  
ROP Code for Write BitBLT and Move BitBLT. Bits 2-0 also specify the start bit position  
for Color Expansion.  
Table 8-35 : BitBLT ROP Code/Color Expansion Function Selection  
BitBLT ROP Code Bits Boolean Function for Write  
Boolean Function for  
Pattern Fill  
Start Bit Position for Color  
Expansion  
[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
BitBLT and Move BitBLT  
0 (Blackness)  
0 (Blackness)  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
bit 0  
bit 1  
bit 2  
bit 3  
bit 4  
bit 5  
bit 6  
bit 7  
~S . ~D or ~(S + D)  
~P . ~D or ~(P + D)  
~S . D  
~P . D  
~S  
~P  
S . ~D  
P . ~D  
~D  
~D  
S ^ D  
P ^ D  
~S + ~D or ~(S . D)  
~P + ~D or ~(P . D)  
S . D  
P . D  
~(S ^ D)  
D
~(P ^ D)  
D
~S + D  
S
~P + D  
P
S + ~D  
S + D  
1 (Whiteness)  
P + ~D  
P + D  
1 (Whiteness)  
Note  
S = Source, D = Destination, P = Pattern.  
~ = NOT, . = Logical AND, + = Logical OR, ^ = Logical XOR  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 156  
Epson Research and Development  
Vancouver Design Center  
bits 3-0  
BitBLT Operation Bits [3:0]  
Specifies the 2D Operation to be carried out based on the following table.  
Table 8-36 : BitBLT Operation Selection  
BitBLT Operation Bits [3:0]  
BitBLT Operation  
Write BitBLT with ROP.  
0000  
0001  
Read BitBLT.  
0010  
Move BitBLT in positive direction with ROP.  
Move BitBLT in negative direction with ROP.  
Transparent Write BitBLT.  
0011  
0100  
0101  
Transparent Move BitBLT in positive direction.  
Pattern Fill with ROP.  
0110  
0111  
Pattern Fill with transparency.  
Color Expansion.  
1000  
1001  
Color Expansion with transparency.  
Move BitBLT with Color Expansion.  
Move BitBLT with Color Expansion and transparency.  
Solid Fill.  
1010  
1011  
1100  
Other combinations  
Reserved  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 157  
Vancouver Design Center  
BitBLT Source Start Address Register  
REG[800Ch]  
Default = 00000000h  
Read/Write  
n/a  
BitBLT Source Start Address bits 20-16  
31  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
24  
23  
22  
21  
5
20  
19  
18  
17  
1
16  
0
BitBLT Source Start Address bits 15-0  
15  
9
8
7
6
4
3
2
bits 20-0  
BitBLT Source Start Address Bits [20:0]  
A 21-bit register that specifies the source start address for the BitBLT operation.  
If data is sourced from the CPU, then bit 0 is used for byte alignment within a 16-bit word  
and the other address bits are ignored. In pattern fill operation, the BitBLT Source Start  
Address is defined by the following equation.  
Value programmed to the Source Start Address Register =  
Pattern Base Address + Pattern Line Offset + Pixel Offset.  
The following table shows how Source Start Address Register is defined for 8 and 16 bpp  
color depths.  
Table 8-37 : BitBLT Source Start Address Selection  
Color Format  
Pattern Base Address[20:0]  
Pattern Line Offset[2:0]  
Pixel Offset[3:0]  
BitBLT Source Start  
Address[5:3]  
BitBLT Source Start  
Address[2:0]  
8 bpp  
BitBLT Source Start Address[20:6]  
BitBLT Source Start  
Address[6:4]  
BitBLT Source Start  
Address[3:0]  
16 bpp  
BitBLT Source Start Address[20:7]  
Note  
For further information on the BitBLT Source Start Address register, see the S1D13A05  
Programming Notes and Examples, document number X40A-G-003-xx.  
BitBLT Destination Start Address Register  
REG[8010h]  
Default = 00000000h  
Read/Write  
n/a  
BitBLT Destination Start Address bits 20-16  
31  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
24  
23  
22  
21  
5
20  
19  
18  
17  
1
16  
0
BitBLT Destination Start Address bits 15-0  
15  
9
8
7
6
4
3
2
bits 20-0  
BitBLT Destination Start Address Bits [20:0]  
A 21-bit register that specifies the destination start address for the BitBLT operation.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 158  
Epson Research and Development  
Vancouver Design Center  
BitBLT Memory Address Offset Register  
REG[8014h]  
Default = 00000000h  
Read/Write  
n/a  
31  
30  
14  
29  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
22  
21  
20  
19  
18  
2
17  
1
16  
0
n/a  
BitBLT Memory Address Offset bits 10-0  
15  
13  
7
6
5
4
3
bits 10-0  
BitBLT Memory Address Offset Bits [10:0]  
These bits are the display’s 11-bit address offset from the starting word of line n to the  
starting word of line n + 1. They are used only for address calculation when the BitBLT is  
configured as a rectangular region of memory. They are not used for the displays.  
BitBLT Width Register  
REG[8018h] Default = 00000000h  
Read/Write  
n/a  
31  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
20  
19  
3
18  
2
17  
1
16  
0
n/a  
BitBLT Width bits 9-0  
15  
5
4
bits 9-0  
BitBLT Width Bits [9:0]  
A 10-bit register that specifies the BitBLT width in pixels - 1.  
BitBLT width in pixels = (REG[8018h] bits 9-0) + 1  
BitBLT Height Register  
REG[801Ch] Default = 00000000h  
Read/Write  
n/a  
31  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
24  
8
23  
7
22  
6
21  
20  
19  
3
18  
2
17  
1
16  
0
n/a  
BitBLT Height bits 9-0  
15  
5
4
bits 9-0  
BitBLT Height Bits [9:0]  
A 10-bit register that specifies the BitBLT height in lines - 1.  
BitBLT height in lines = (REG[801Ch] bits 9-0) + 1  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 159  
Vancouver Design Center  
BitBLT Background Color Register  
REG[8020h]  
Default = 00000000h  
Read/Write  
n/a  
31  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
24  
23  
22  
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
BitBLT Background Color bits 15-0  
15  
9
8
7
6
bits 15-0  
BitBLT Background Color Bits [15:0]  
This register specifies the BitBLT background color for Color Expansion or key color for  
Transparent BitBLT. For 16 bpp color depths (REG[8000h] bit 18 = 1), bits 15-0 are used.  
For 8 bpp color depths (REG[8000h] bit 18 = 0), bits 7-0 are used.  
BitBLT Foreground Color Register  
REG[8024h] Default = 00000000h  
Read/Write  
n/a  
31  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
24  
23  
22  
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
BitBLT Foreground Color bits 15-0  
15  
9
8
7
6
bits 15-0  
BitBLT Foreground Color Bits [15:0]  
This register specifies the BitBLT foreground color for Color Expansion or Solid Fill. For  
16 bpp color depths (REG[8000h] bit 18 = 1), bits 15-0 are used. For 8 bpp color depths  
(REG[8000h] bit 18 = 0), bits 7-0 are used.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 160  
Epson Research and Development  
Vancouver Design Center  
8.6 2D Accelerator (BitBLT) Data Register Descriptions  
The 2D Accelerator (BitBLT) data registers decode AB15-AB0 and require AB16 = 1. The  
BitBLT data registers are 32-bit wide. Byte access to the BitBLT data registers is not  
allowed.  
2D Accelerator (BitBLT) Data Memory Mapped Region Register  
AB16-AB0 = 10000h-1FFFEh, even addresses  
Read/Write  
BitBLT Data bits 31-16  
24 23  
BitBLT Data bits 15-0  
31  
15  
30  
14  
29  
13  
28  
12  
27  
11  
26  
10  
25  
9
22  
6
21  
5
20  
4
19  
3
18  
2
17  
1
16  
0
8
7
bits 15-0  
BitBLT Data Bits [15:0]  
This register specifies the BitBLT data. This register is loosely decoded from 10000h to  
1FFFEh.  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 161  
Vancouver Design Center  
9 2D Accelerator (BitBLT) Engine  
9.1 Overview  
The S1D13A05 is designed with a built-in 2D BitBLT engine which increases the perfor-  
mance of Bit Block Transfers (BitBLT). It supports 8 and 16 bit-per-pixel color depths.  
The BitBLT engine supports rectangular and linear addressing modes for source and desti-  
nation in a positive direction for all BitBLT operations except the move BitBLT which also  
supports in a negative direction.  
The BitBLT operations support byte alignment of all types. The BitBLT engine has a  
dedicated BitBLT IO access space. This allows the BitBLT engine to support simultaneous  
BitBLT and host side operations.  
9.2 BitBLT Operations  
The S1D13A05 2D BitBLT engine supports the following BitBLTs. For detailed infor-  
mation on using the individual BitBLT operations, refer to the S1D13A05 Programming  
Notes and Examples, document number X40A-G-003-xx.  
• Write BitBLT.  
• Move BitBLT.  
• Solid Fill BitBLT.  
• Pattern Fill BitBLT.  
• Transparent Write BitBLT.  
• Transparent Move BitBLT.  
• Read BitBLT.  
• Color Expansion BitBLT.  
• Move BitBLT with Color Expansion.  
Note  
For details on the BitBLT registers, see Section 8.5, “2D Acceleration (BitBLT) Regis-  
ters (Offset = 8000h)” on page 153.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 162  
Epson Research and Development  
Vancouver Design Center  
10 Frame Rate Calculation  
The following formula is used to calculate the display frame rate.  
fPCLK  
FrameRate = --------------------------------  
(HT) × (VT)  
Where:  
fPCLK = PClk frequency (Hz)  
HT  
VT  
= Horizontal Total  
= ((REG[20h] bits 6-0) + 1) x 8 Pixels  
= Vertical Total  
= ((REG[30h] bits 9-0) + 1) Lines  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 163  
Vancouver Design Center  
11 Display Data Formats  
The following diagrams show the display mode data formats for a little-endian system.  
1 bpp:  
Byte 0  
bit 7  
bit 0  
P P P P  
P P P P  
7
0
1
2
3
4
5
6
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
0
1
2
3
4
5
6
7
8
9
10  
18  
11  
19  
12  
20  
13  
21  
14  
22  
15  
23  
Byte 1  
Byte 2  
LUT  
LUT  
LUT  
P
= RGB value from LUT  
n
Index (A )  
n
16  
17  
Host Address  
Panel Display  
Display Memory  
2 bpp:  
bit 7  
bit 0  
P P P P  
P P P P  
3
4
0
1
2
5
6
7
A
A
A
B
B
B
A
A
A
B
B
B
A
A
A
B
B
B
A
A
A
B
B
B
0
4
8
0
4
8
1
5
9
1
5
9
2
2
3
3
Byte 0  
Byte 1  
Byte 2  
6
6
7
7
P
= RGB value from LUT  
Index (A , B )  
n
10  
10  
11  
11  
n
n
Host Address  
Display Memory  
Panel Display  
4 bpp:  
bit 7  
bit 0  
P P P P  
P P P P  
3
4
0
1
2
7
5
6
A
A
A
B
B
B
C
C
C
D
D
D
A
A
A
B
B
B
C
C
C
D
D
D
0
2
4
0
2
4
0
2
4
0
2
4
1
3
5
1
3
5
1
3
5
1
3
5
Byte 0  
Byte 1  
Byte 2  
P
= RGB value from LUT  
Index (A , B , C , D )  
n
n
n
n
n
Host Address  
8 bpp:  
Display Memory  
Panel Display  
P P P P  
P P P P  
3
4
bit 7  
bit 0  
0
1
2
7
5
6
G
F
H
0
B
C
C
C
D
D
D
E
E
E
A
0
Byte 0  
Byte 1  
Byte 2  
0
1
2
0
0
1
2
0
1
2
0
1
2
0
1
2
G
G
LUT  
F
H
1
A
1
B
B
1
2
P = RGB value from LUT Index  
n
(A , B , C , D , E , F , G , H )  
n
n
n
n
n
n
n
n
F
H
2
A
2
Host Address  
Display Memory  
5-6-5 RGB  
Panel Display  
16 bpp:  
P P P P  
P P P P  
0
1
2
3
4
5
6
7
bit 7  
2
bit 0  
0
1
0
4
2
1
3
0
G
0
G
R
B
0
G
R
B
B
B
B
0
Byte 0  
Byte 1  
Byte 2  
Byte 3  
0
0
0
0
0
Bypasses LUT  
4
3
1
2
5
4
3
4-0  
5-0  
4-0  
R
0
R
B
G
B
G
B
R
B
G
0
P
= (R  
, G  
, B  
n
)
0
0
0
0
0
0
n
n
n
2
1
4
0
2
1
3
0
G
1
G
1
G
B
1
1
1
1
1
1
4
3
2
1
0
5
4
3
R
1
R
R
R
1
R
G
G
G
1
1
1
1
1
1
Panel Display  
Host Address  
Display Buffer  
Figure 11-1: 4/8/16 Bit-Per-Pixel Display Data Memory Organization  
Note  
1. The Host-to-Display mapping shown here is for a little endian system.  
2. For 16 bpp format, R , G , B represent the red, green, and blue color components.  
n
n
n
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 164  
Epson Research and Development  
Vancouver Design Center  
12 Look-Up Table Architecture  
The following figures are intended to show the display data output path only.  
Note  
When Video Data Invert is enabled the video data is inverted after the Look-Up Table.  
12.1 Monochrome Modes  
The green Look-Up Table (LUT) is used for all monochrome modes.  
1 Bit-per-pixel Monochrome Mode  
Green Look-Up Table 256x6  
6-bit Gray Data  
00  
01  
00  
01  
FC  
FD  
FE  
FF  
1 bit-per-pixel data  
from Display Buffer  
= unused Look-Up Table entries  
Figure 12-1: 1 Bit-per-pixel Monochrome Mode Data Output Path  
2 Bit-per-pixel Monochrome Mode  
Green Look-Up Table 256x6  
00  
00  
01  
10  
11  
6-bit Gray Data  
01  
02  
03  
FC  
FD  
FE  
FF  
= unused Look-Up Table entries  
2 bit-per-pixel data  
from Display Buffer  
Figure 12-2: 2 Bit-per-pixel Monochrome Mode Data Output Path  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 165  
Vancouver Design Center  
4 Bit-per-pixel Monochrome Mode  
Green Look-Up Table 256x6  
00  
01  
02  
03  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
6-bit Gray Data  
FC  
FD  
FE  
FF  
4 bit-per-pixel data  
from Display Buffer  
= unused Look-Up Table entries  
Figure 12-3: 4 Bit-per-pixel Monochrome Mode Data Output Path  
8 Bit-per-pixel Monochrome Mode  
Green Look-Up Table 256x6  
00  
0000 0000  
0000 0001  
0000 0010  
0000 0011  
0000 0100  
0000 0101  
0000 0110  
0000 0111  
01  
02  
03  
04  
05  
06  
07  
6-bit Gray Data  
1111 1000  
1111 1001  
1111 1010  
1111 1011  
1111 1100  
1111 1101  
1111 1110  
1111 1111  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
8 bit-per-pixel data  
from Display Buffer  
Figure 12-4: 8 Bit-per-pixel Monochrome Mode Data Output Path  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 166  
Epson Research and Development  
Vancouver Design Center  
16 Bit-Per-Pixel Monochrome Mode  
The LUT is bypassed and the green data is directly mapped for this color depth– “Display  
Data Formats” on page 163..  
12.2 Color Modes  
1 Bit-Per-Pixel Color  
Red Look-Up Table 256x6  
6-bit Red Data  
00  
0
1
01  
FC  
FD  
FE  
FF  
Green Look-Up Table 256x6  
00  
01  
6-bit Green Data  
0
1
FC  
FD  
FE  
FF  
Blue Look-Up Table 256x6  
00  
01  
6-bit Blue Data  
0
1
FC  
FD  
FE  
FF  
1 bit-per-pixel data  
from Image Buffer  
= unused Look-Up Table entries  
Figure 12-5: 1 Bit-Per-Pixel Color Mode Data Output Path  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 167  
Vancouver Design Center  
2 Bit-Per-Pixel Color  
Red Look-Up Table 256x6  
00  
01  
02  
03  
00  
01  
10  
11  
6-bit Red Data  
FC  
FD  
FE  
FF  
Green Look-Up Table 256x6  
00  
01  
02  
03  
00  
01  
10  
11  
6-bit Green Data  
FC  
FD  
FE  
FF  
Blue Look-Up Table 256x6  
00  
01  
02  
03  
00  
01  
10  
11  
6-bit Blue Data  
FC  
FD  
FE  
FF  
2 bit-per-pixel data  
from Image Buffer  
= unused Look-Up Table entries  
Figure 12-6: 2 Bit-Per-Pixel Color Mode Data Output Path  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 168  
Epson Research and Development  
Vancouver Design Center  
4 Bit-Per-Pixel Color  
Red Look-Up Table 256x6  
00  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
6-bit Red Data  
6-bit Green Data  
6-bit Blue Data  
FC  
FD  
FE  
FF  
Green Look-Up Table 256x6  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
FC  
FD  
FE  
FF  
Blue Look-Up Table 256x6  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
FC  
FD  
FE  
FF  
= unused Look-Up Table entries  
4 bit-per-pixel data  
from Image Buffer  
Figure 12-7: 4 Bit-Per-Pixel Color Mode Data Output Path  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 169  
Vancouver Design Center  
8 Bit-per-pixel Color Mode  
Red Look-Up Table 256x6  
00  
01  
02  
03  
04  
05  
06  
07  
0000 0000  
0000 0001  
0000 0010  
0000 0011  
0000 0100  
0000 0101  
0000 0110  
0000 0111  
6-bit Red Data  
6-bit Green Data  
6-bit Blue Data  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
1111 1000  
1111 1001  
1111 1010  
1111 1011  
1111 1100  
1111 1101  
1111 1110  
1111 1111  
Green Look-Up Table 256x6  
0000 0000  
0000 0001  
0000 0010  
0000 0011  
0000 0100  
0000 0101  
0000 0110  
0000 0111  
00  
01  
02  
03  
04  
05  
06  
07  
1111 1000  
1111 1001  
1111 1010  
1111 1011  
1111 1100  
1111 1101  
1111 1110  
1111 1111  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
Blue Look-Up Table 256x6  
00  
01  
02  
03  
04  
05  
06  
07  
0000 0000  
0000 0001  
0000 0010  
0000 0011  
0000 0100  
0000 0101  
0000 0110  
0000 0111  
1111 1000  
1111 1001  
1111 1010  
1111 1011  
1111 1100  
1111 1101  
1111 1110  
1111 1111  
F8  
F9  
FA  
FB  
FC  
FD  
FE  
FF  
8 bit-per-pixel data  
from Display Buffer  
Figure 12-8: 8 Bit-per-pixel Color Mode Data Output Path  
16 Bit-Per-Pixel Color Mode  
The LUT is bypassed and the color data is directly mapped for this color depth– “Display  
Data Formats” on page 163.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 170  
Epson Research and Development  
Vancouver Design Center  
13 SwivelView™  
13.1 Concept  
Most computer displays are refreshed in landscape orientation – from left to right and top  
to bottom. Computer images are stored in the same manner. SwivelView™ is designed to  
rotate the displayed image on an LCD by 90°, 180°, or 270° in a counter-clockwise  
direction. The rotation is done in hardware and is transparent to the user for all display  
buffer reads and writes. By processing the rotation in hardware, SwivelView™ offers a  
performance advantage over software rotation of the displayed image.  
The image is not actually rotated in the display buffer since there is no address translation  
during CPU read/write. The image is rotated during display refresh.  
13.2 90° SwivelView™  
90° SwivelView™ requires the Memory Clock (MCLK) to be at least 1.25 times the  
frequency of the Pixel Clock (PCLK), i.e. MCLK 1.25PCLK.  
The following figure shows how the programmer sees a 320x480 portrait image and how  
the image is being displayed. The application image is written to the S1D13A05 in the  
following sense: A–B–C–D. The display is refreshed by the S1D13A05 in the following  
sense: B-D-A-C.  
physical memory  
start address  
A
B
SwivelView  
window  
display start address  
(panel origin)  
D
C
480  
320  
image seen by programmer  
= image in display buffer  
image refreshed by S1D13A05  
Figure 13-1: Relationship Between The Screen Image and the Image Refreshed in 90° SwivelView.  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 171  
Vancouver Design Center  
13.2.1 Register Programming  
Enable 90° SwivelView™ Mode  
Set SwivelView™ Mode Select bits (REG[10h] bits 17:16) to 01.  
Display Start Address  
The display refresh circuitry starts at pixel “B”, therefore the Main Window Display Start  
Address register (REG[40h]) must be programmed with the address of pixel “B”. To  
calculate the value of the address of pixel “B” use the following formula (assumes 8 bpp  
color depth).  
REG[40h] bits 16:0 = ((image address + (panel height x bpp ÷ 8)) ÷ 4) - 1  
= ((0 + (320 pixels x 8 bpp ÷ 8)) ÷ 4) -1  
= 79 (4Fh)  
Line Address Offset  
The Main Window Line Address Offset register (REG[44h]) is based on the display width  
and programmed using the following formula.  
REG[44h] bits 9:0  
= display width in pixels ÷ (32 ÷ bpp)  
= 320 pixels ÷ 32 ÷ 8 bpp  
= 80 (50h)  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 172  
Epson Research and Development  
Vancouver Design Center  
13.3 180° SwivelView™  
The following figure shows how the programmer sees a 480x320 landscape image and how  
the image is being displayed. The application image is written to the S1D13A05 in the  
following sense: A–B–C–D. The display is refreshed by the S1D13A05 in the following  
sense: D-C-B-A.  
display start address  
(panel origin)  
physical memory  
start address  
C
A
C
B
d o w w i n  
SwivelView  
e w V i e l i v w S  
window  
A
D
480  
480  
image seen by programmer  
= image in display buffer  
image refreshed by S1D13A05  
Figure 13-2: Relationship Between The Screen Image and the Image Refreshed in 180° SwivelView.  
13.3.1 Register Programming  
Enable 180° SwivelView™ Mode  
Set SwivelView™ Mode Select bits (REG[10h] bits 17:16) to 10.  
Display Start Address  
The display refresh circuitry starts at pixel “D”, therefore the Main Window Display Start  
Address register (REG[40h]) must be programmed with the address of pixel “D”. To  
calculate the value of the address of pixel “D” use the following formula (assumes 8 bpp  
color depth).  
REG[40h] bits 16:0  
= ((image address + (offset x (panel height - 1) + panel width) x bpp ÷ 8) ÷ 4) - 1  
= ((0 + (480 pixels x 319 pixels + 480 pixels) x 8 bpp ÷ 8) ÷ 4) - 1  
= 38399 (95FFh)  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 173  
Vancouver Design Center  
Line Address Offset  
The Main Window Line Address Offset register (REG[44h]) is based on the display width  
and programmed using the following formula.  
REG[44h] bits 9:0  
= display width in pixels ÷ (32 ÷ bpp)  
= 480 pixels ÷ 32 ÷ 8 bpp  
= 120 (78h)  
13.4 270° SwivelView™  
270° SwivelView™ requires the Memory Clock (MCLK) to be at least 1.25 times the  
frequency of the Pixel Clock (PCLK), i.e. MCLK 1.25PCLK.  
The following figure shows how the programmer sees a 320x480 portrait image and how  
the image is being displayed. The application image is written to the S1D13A05 in the  
following sense: A–B–C–D. The display is refreshed by the S1D13A05 in the following  
sense: C-A-D-B.  
physical memory  
start address  
A
B
SwivelView  
window  
display start address  
(panel origin)  
D
C
480  
320  
image seen by programmer  
= image in display buffer  
image refreshed by S1D13A05  
Figure 13-3: Relationship Between The Screen Image and the Image Refreshed in 270° SwivelView.  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 174  
Epson Research and Development  
Vancouver Design Center  
13.4.1 Register Programming  
Enable 270° SwivelView™ Mode  
Set SwivelView™ Mode Select bits (REG[10h] bits 17:16) to 11.  
Display Start Address  
The display refresh circuitry starts at pixel “C”, therefore the Main Window Display Start  
Address register (REG[40h]) must be programmed with the address of pixel “C”. To  
calculate the value of the address of pixel “C” use the following formula (assumes 8 bpp  
color depth).  
REG[40h] bits 16:0 = (image address + ((panel width - 1) x offset x bpp ÷ 8) ÷ 4)  
= (0 + ((480 pixels - 1) x 320 pixels x 8 bpp ÷ 8) ÷ 4)  
= 38320 (95B0h)  
Line Address Offset  
The Main Window Line Address Offset register (REG[44h]) is based on the display width  
and programmed using the following formula.  
REG[44h] bits 9:0  
= display width in pixels ÷ (32 ÷ bpp)  
= 320 pixels ÷ 32 ÷ 8 bpp  
= 80 (50h)  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 175  
Vancouver Design Center  
14 Picture-in-Picture Plus (PIP+)  
14.1 Concept  
+
+
Picture-in-Picture Plus (PIP ) enables a secondary window (or PIP window) within the  
+
main display window. The PIP window may be positioned anywhere within the virtual  
display and is controlled through the PIP Window control registers (REG[50h] through  
REG[5Ch]). The PIP window retains the same color depth and SwivelView orientation as  
+
+
the main window.  
+
The following diagram shows an example of a PIP window within a main window and the  
registers used to position it.  
0° SwivelViewTM  
+
PIP window y start position  
(REG[5Ch] bits 9-0)  
panel’s origin  
+
PIP window y end position  
(REG[5Ch] bits 25-16)  
main-window  
+
PIP window  
+
+
PIP window x start position  
PIP window x end position  
(REG[58h] bits 25-16)  
(REG[58h] bits 9-0)  
Figure 14-1: Picture-in-Picture Plus with SwivelView disabled  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 176  
Epson Research and Development  
Vancouver Design Center  
14.2 With SwivelView Enabled  
14.2.1 SwivelView 90°  
90° SwivelViewTM  
panel’s origin  
+
PIP window x start position  
(REG[58h] bits 9-0)  
+
PIP window x end position  
(REG[58h] bits 25-16)  
+
PIP window  
+
PIP window y start position  
(REG[5Ch] bits 9-0)  
+
PIP window y end position  
(REG[5Ch] bits 25-16)  
main-window  
Figure 14-2: Picture-in-Picture Plus with SwivelView 90° enabled  
14.2.2 SwivelView 180°  
180° SwivelViewTM  
+
PIP window x end position  
+
PIP window x start position  
(REG[58h] bits 25-16)  
(REG[58h] bits 9-0)  
+
PIP window  
main-window  
+
PIP window y end position  
(REG[5Ch] bits 25-16)  
+
PIP window y start position  
panel’s origin  
(REG[5Ch] bits 9-0)  
Figure 14-3: Picture-in-Picture Plus with SwivelView 180° enabled  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 177  
Vancouver Design Center  
14.2.3 SwivelView 270°  
270° SwivelViewTM  
main-window  
+
PIP window y end position  
(REG[5Ch] bits 25-16)  
+
PIP window y start position  
+
PIP window  
(REG[5Ch] bits 9-0)  
+
PIP window x start position  
+
PIP window x end position  
(REG[58h] bits 9-0)  
(REG[58h] bits 25-16)  
panel’s origin  
Figure 14-4: Picture-in-Picture Plus with SwivelView 270° enabled  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 178  
Epson Research and Development  
Vancouver Design Center  
15 Power Save Mode  
A software initiated Power Save Mode is incorporated into the S1D13A05 to accommodate  
the need for power reduction in the hand-held devices market. This mode is enable via the  
Power Save Mode Enable bit (REG[14h] bit 4).  
Software Power Save Mode saves power by powering down the control signals and  
stopping display refresh accesses to the display buffer. For programming information on  
disabling the clocks, see the S1D13A05 Programming Notes and Examples, document  
number X40A-G-003-xx.  
Table 15-1: Power Save Mode Function Summary  
Software  
Normal  
Power Save  
IO Access Possible?  
Memory Access Possible?  
Look-Up Table Registers Access Possible?  
Display Active?  
Yes  
Yes  
Yes  
1
Yes  
Yes  
Yes  
No  
Yes  
LCD I/F Outputs  
Forced Low  
Stopped  
Forced Low  
Active  
Active  
Active  
Yes  
PWMCLK  
GPIO Pins configured for HR-TFT  
GPIO Pins configured as GPIOs; Access Possible?  
USB Running?  
2
Yes  
3
Yes  
Yes  
Note  
1
When power save mode is enabled, the memory controller is powered down and the  
status of the memory controller is indicated by the Memory Controller Power Save Sta-  
tus bit (REG[14h] bit 6). However, memory reads/writes are possible during power save  
mode because the S1D13A05 dynamically enables the memory controller for display  
buffer accesses.  
2
GPIOs can be accessed and if configured as outputs can be changed.  
The power-down state of the USB section is controlled by the USBClk Enable bit  
3
(REG[4000h] bit 7).  
After reset, the S1D13A05 is always in Power Save Mode. Software must initialize the chip  
(i.e. programs all registers) and then clear the Power Save Mode Enable bit.  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 179  
Vancouver Design Center  
16 USB Considerations  
16.1 USB Oscillator Circuit  
The following circuit provides an example implementation for using an external oscillator  
to drive USBCLK.  
USBOSCI  
USBOSCO  
R
f
R
d
C
C
d
g
Figure 16-1: USB Oscillator Example Circuit  
The following values are recommended for a 48MHz fundamental mode oscillator. If an  
oscillator of a different value is used, the capacitive and resistive values must be adjusted  
accordingly.  
Table 16-1: Resistance and Capacitance Values for Example Circuit  
Symbol  
Value  
1MΩ  
470Ω  
12pF  
12pF  
R
f
R
d
C
C
g
d
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 180  
Epson Research and Development  
Vancouver Design Center  
17 Mechanical Data  
1.2max  
+0.30  
+0.10  
-0.15  
-0.05  
10  
0.35  
0.1max  
TOP VIEW  
SIDE VIEW  
+0.10  
-0.05  
1.0  
0.45  
0.08  
M
L
K
J
H
G
F
E
D
C
B
A
1
2
3
4
5
6
7
8
9
10 11  
BOTTOM VIEW  
All dimensions in mm  
Figure 17-1: Mechanical Data PFBGA 121-pin Package  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 181  
Vancouver Design Center  
18 References  
The following documents contain additional information related to the S1D13A05.  
Document numbers are listed in parenthesis after the document name. All documents can  
be found at the Epson Research and Development Website at www.erd.epson.com.  
• S1D13A05 Product Brief (X40A-C-001-xx)  
• S1D13A05 Programming Notes And Examples (X40A-G-003-xx)  
• S1D13A05 Register Summary (X40A-R-001-xx)  
• Interfacing to the Toshiba TMPR3905/3912 Microprocessor (X40A-G-002-xx)  
• Interfacing to the PC Card Bus (X40A-G-005-xx)  
• S1D13A05 Power Consumption (X40A-G-006-xx)  
• Interfacing to the Freescale MCF5307 "Coldfire" Microprocessor (X40A-G-010-xx)  
• S1D13A05 Wind River WindML v2.0 Display Drivers (X40A-E-003-xx)  
• S5U13A05B00C Rev. 1.0 Evaluation Board User Manual (X40A-G-004-xx)  
• 13A05CFG Configuration Utility Users Manual (X40A-B-001-xx)  
• 13A05PLAY Diagnostic Utility Users Manual (X40A-B-002-xx)  
• 13A05VIEW Demonstration Utility Users Manual (X40A-B-003-xx)  
• S5U13A05P00C100 Evaluation Board User Manual (X40A-G-014-xx)  
• Errata No. X00Z-P-001 (X00Z-P-001-xx)  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 182  
Epson Research and Development  
Vancouver Design Center  
19 Sales and Technical Support  
AMERICA  
ASIA  
EPSON ELECTRONICS AMERICA, INC.  
214 Devcon Drive  
San Jose, CA 95112,USA  
EPSON (CHINA) CO., LTD.  
7F, Jinbao Bldg., No.89 Jinbao St.,  
Dongcheng District,  
Beijing 100005, CHINA  
Phone: +86-10-8522-1199 FAX: +86-10-8522-1125  
Phone: +1-800-228-3964  
FAX: +1-408-922-0238  
SHANGHAI BRANCH  
7F, Block B, High-Tech Bldg., 900, Yishan Road,  
Shanghai 200233, CHINA  
EUROPE  
EPSON EUROPE ELECTRONICS GmbH  
Riesstrasse 15, 80992 Munich,  
GERMANY  
Phone: +86-21-5423-5577 FAX: +86-21-5423-4677  
SHENZHEN BRANCH  
12F, Dawning Mansion, Keji South 12th Road,  
Hi-Tech Park, Shenzhen 518057, CHINA  
Phone: +86-755-2699-3828 FAX: +86-755-2699-3838  
Phone: +49-89-14005-0  
FAX: +49-89-14005-110  
EPSON HONG KONG LTD.  
Unit 715-723, 7/F Trade Square, 681 Cheung Sha Wan Road,  
Kowloon, Hong Kong  
Phone: +852-2585-4600  
FAX: +852-2827-4346  
EPSON TAIWAN TECHNOLOGY & TRADING LTD.  
14F, No. 7, Song Ren Road,  
Taipei 110, TAIWAN  
Phone: +886-2-8786-6688 FAX: +886-2-8786-6660  
EPSON SINGAPORE PTE., LTD.  
1 HarbourFront Place,  
#03-02 HarbourFront Tower One, Singapore 098633  
Phone: +65-6586-5500  
FAX: +65-6271-3182  
SEIKO EPSON CORP.  
KOREA OFFICE  
5F, KLI 63 Bldg., 60 Yoido-dong  
Youngdeungpo-Ku, Seoul, 150-763, KOREA  
Phone: +82-2-784-6027  
FAX: +82-2-767-3677  
SEIKO EPSON CORP.  
MICRODEVICES OPERATIONS DIVISION  
Device Sales & Marketing Dept.  
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN  
Phone: +81-42-587-5814  
FAX: +81-42-587-5117  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  
Epson Research and Development  
Page 183  
Vancouver Design Center  
Change Record  
X40A-A-001-07  
Revision 7.7- Issued: February 27, 2012  
• globally remove QFP5-128 package  
• section 2.9, remove QFP package to features  
• section 4.1.2, remove QFP package pin diagram  
• section 4.2, remove QFP package pin descriptions  
• section 18, remove QFP package mechanical drawing  
Revision 7.6 - Issued: December 18, 2008  
X40A-A-001-07  
X40A-A-001-07  
• all changes from the previous revision are in Red  
• section 19, updated Sales and Technical Support addresses  
Revision 7.5 - Issued: February 13, 2008  
• all changes from the previous revision are in Red  
• Release as revision 7.5 to align with Japan numbering  
• section 18 References - remove references to obsolete application notes and change  
“Interfacing to the Motorola MCF5307...” to “Interfacing to the Freescale MCF5307...”  
X40A-A-001-07  
Revision 7.04 - Released: September 17, 2007  
• all changes from the previous revision are in Red  
• section 18, updated Refereces  
• section 19, updated Sales and Technical Support addresses  
Revision 7.03 - Released: June 13, 2007  
X40A-A-001-07  
X40A-A-001-07  
• all changes from the previous revision are in Red  
• section 4.2.1, corrected the PFBGA Pin# listing for the DB[15:0] pin description  
Revision 7.02 - Released: February 01, 2007  
• all changes from the previous revision are in Red  
• section 6.5, changed formula for VPS from “REG[002Ch] bits 9-0” to “REG[003Ch]  
bits 9-0”  
• section 6.5.1, changed formula for VPS from “REG[002Ch] bits 9-0” to “REG[003Ch]  
bits 9-0”  
X40A-A-001-07  
Revision 7.01, Released: October 3, 2006  
• all changes from the previous revision are in Red  
• REG[04h] bit 0 - remove reference to CNF7  
Hardware Functional Specification  
Issue Date: 2012/02/27  
S1D13A05  
X40A-A-001-07  
Revision 7.7  
Page 184  
Epson Research and Development  
Vancouver Design Center  
• section 19 Sales and Technical Support - update the addresses for North America and  
Singapore  
X40A-A-001-07  
X40A-A-001-06  
Revision 7, Released: July 7, 2006  
• all changes from the previous revision are in Red  
• add section 6.2 RESET# Timing  
Revision 6.01  
• section 3.1, figure 3-1, changed System Diagram for Generic #1 so that BS# pin is  
connected to IOVDD instead of VSS (GND)  
• section 4.2.1, table 4-2, changed BS# pin description for Generic #1 so that BS# pin is  
connected to IOVDD instead of VSS (GND)  
• REG[10h] bits 4-0, updated the Bits-Per-Pixel bit description and clarified the color  
depth table  
X40A-A-001-06  
X40A-A-001-05  
Revision 6.0  
• released as revision 6.0  
Revision 5.01  
• section 2.9, added QFP package to features  
• section 4.1.2, added QFP package pin diagram  
• section 4.2, added QFP package pin descriptions  
• section 18, added QFP package mechanical drawing  
Revision 5.0  
X40A-A-001-05  
X40A-A-001-04  
• released as revision 5.0  
Revision 4.01  
• section 4.2.2, for DRDY pin description, removed description for HR-TFT (not used)  
S1D13A05  
X40A-A-001-07  
Hardware Functional Specification  
Issue Date: 2012/02/27  
Revision 7.7  

相关型号:

S1D13A05F00A100

320X320 PIXELS CRT OR FLAT PNL GRPH DSPL CTLR, PBGA121, LEAD FREE, PLASTIC, FBGA-121
SEIKO

S1D14F57

2-level grayscale EPD Passive panel driver IC
EPSON

S1D15100D00C

LIQUID CRYSTAL DISPLAY DRIVER, UUC48, DIE-48
SEIKO

S1D15100F00C

LIQUID CRYSTAL DISPLAY DRIVER, PQFP48, QFP-48
SEIKO

S1D15200D00A

Liquid Crystal Driver, 77-Segment, CMOS, 4.80 X 7.04 MM, 0.40 MM HEIGHT, ALUMINUM PAD, DIE-100
SEIKO

S1D15200D00B

Liquid Crystal Driver, 77-Segment, CMOS, 4.80 X 7.04 MM, 0.525 MM HEIGHT, GOLD BUMP, DIE-100
SEIKO

S1D15200D00E

Liquid Crystal Driver, 77-Segment, CMOS, 4.80 X 7.04 MM, 0.525 MM HEIGHT, GOLD BUMP, DIE-100
SEIKO

S1D15200D10A

LIQUID CRYSTAL DISPLAY DRIVER, UUC100, 4.80 X 7.04 MM, 0.40 MM HEIGHT, ALUMINUM PAD, DIE-100
SEIKO

S1D15200D10E

LIQUID CRYSTAL DISPLAY DRIVER, UUC100, 4.80 X 7.04 MM, 0.525 MM HEIGHT, GOLD BUMP, DIE-100
SEIKO

S1D15200F00A

LIQUID CRYSTAL DISPLAY DRIVER, PQFP100, PLASTIC, QFP5-100
SEIKO

S1D15200F00C

LIQUID CRYSTAL DISPLAY DRIVER, PQFP100, PLASTIC, QFP15-100
SEIKO

S1D15200F10C

LIQUID CRYSTAL DISPLAY DRIVER, PQFP100, PLASTIC, QFP15-100
SEIKO