W194-70GT [CYPRESS]

PLL Based Clock Driver, W19 Series, 2 True Output(s), 0 Inverted Output(s), PDSO8, 0.150 INCH, SOIC-8;
W194-70GT
型号: W194-70GT
厂家: CYPRESS    CYPRESS
描述:

PLL Based Clock Driver, W19 Series, 2 True Output(s), 0 Inverted Output(s), PDSO8, 0.150 INCH, SOIC-8

驱动 光电二极管 逻辑集成电路
文件: 总6页 (文件大小:102K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W194  
Frequency Multiplier and Zero Delay Buffer  
Features  
Table 1. Configuration Options  
• Two outputs  
FBIN  
OUT1  
OUT1  
OUT1  
OUT1  
OUT2  
OUT2  
OUT2  
OUT2  
FS0  
0
FS1  
0
OUT1  
2 X REF  
4 X REF  
REF  
OUT2  
REF  
• Configuration options allow various multiplications of  
the reference frequency—refer to Table 1 to determine  
the specific option which meets your multiplication  
needs  
1
0
2 X REF  
REF/2  
0
1
• Available in 8-pin SOIC package  
1
1
8 X REF  
4 X REF  
8 X REF  
2 X REF  
16 X REF  
4 X REF  
2 X REF  
4 X REF  
REF  
Key Specifications  
0
0
Operating Voltage: .............................. 3.3V±5% or 5.0±10%  
1
0
Operating Range: .......................10 MHz < f  
< 133 MHz  
OUT1  
0
1
Absolute Jitter: ......................................................... ±500 ps  
Output to Output Skew: .............................................. 250 ps  
1
1
8 X REF  
Propagation Delay: ................................................... ±350 ps  
Propagation delay is affected by input rise time.  
Block Diagram  
Pin Configuration  
SOIC  
External feedback connection to  
OUT1 or OUT2, not both  
FBIN  
FBIN  
IN  
1
2
3
4
8
7
6
5
OUT2  
VDD  
OUT1  
FS1  
GND  
FS0  
FS0  
÷Q  
FS1  
Phase  
Detector  
Charge  
Pump  
IN  
Reference  
Input  
Loop  
Filter  
Output  
Buffer  
OUT1  
OUT2  
VCO  
Output  
Buffer  
÷2  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
November 16, 2000, rev. *B  
W194  
Pin Definitions  
Pin  
Pin Name  
IN  
Pin No.  
Type  
Pin Description  
2
1
I
I
Reference Input: The output signals will be synchronized to this signal.  
FBIN  
Feedback Input: This input must be fed by one of the outputs (OUT1 or OUT2) to ensure  
proper functionality. If the trace between FBIN and the output pin being used for feedback  
is equal in length to the traces between the outputs and the signal destinations, then the  
signals received at the destinations will be synchronized to the REF signal input (IN).  
OUT1  
OUT2  
VDD  
6
8
7
O
O
P
Output 1: The frequency of the signal provided by this pin is determined by the feedback  
signal connected to FBIN, and the FS0:1 inputs (see Table 1).  
Output 2: The frequency of the signal provided by this pin is one-half of the frequency of  
OUT1. See Table 1.  
Power Connections: Connect to 3.3V or 5V. This pin should be bypassed with a 0.1-µF  
decoupling capacitor. Use ferrite beads to help reduce noise for optimal jitter performance.  
GND  
3
P
I
Ground Connection: Connect all grounds to the common system ground plane.  
FS0:1  
4, 5  
Function Select Inputs: Tie to V (HIGH, 1) or GND (LOW, 0) as desired per Table 1.  
DD  
How to Implement Zero Delay,and Inserting Other Devices  
in Feedback Path.”  
Overview  
The W194-70 is a two-output zero delay buffer and frequency  
multiplier. It provides an external feedback path allowing max-  
imum flexibility when implementing the Zero Delay feature.  
This is explained further in the sections of this data sheet titled  
The W194-70 is a pin-compatible upgrade of the Cypress  
W42C70-01. The W194-70 addresses some application de-  
pendent problems experienced by users of the older device.  
Ferrite  
Bead  
CA  
Power Supply Connection  
G
V+  
µ
10 F  
C8  
G
µ
0.01 F  
OUT 2  
22  
FBIN  
IN  
1
OUTPUT 2  
8
µ
C9 = 0.1 F  
VDD  
7
G
2
3
OUT 1  
22  
OUTPUT 1  
GND  
6
G
FS0  
FS1  
5
4
Figure 1. Schematic/Suggested Layout  
2
W194  
device (ASIC, multiple output clock buffer/driver, etc.) which is  
put into the feedback path.  
How to Implement Zero Delay  
Typically, Zero Delay Buffers (ZDBs) are used because a de-  
signer wants to provide multiple copies of a clock signal in  
phase with each other. The whole concept behind ZDBs is that  
the signals at the destination chips are all going HIGH at the  
same time as the input to the ZDB. In order to achieve this,  
layout must compensate for trace length between the ZDB and  
the target devices. The method of compensation is described  
below.  
Referring to Figure 2, if the traces between the ASIC/Buffer  
and the destination of the clock signal(s) (A) are equal in length  
to the trace between the buffer and the FBIN pin, the signals  
at the destination(s) device will be driven HIGH at the same  
time the Reference clock provided to the ZDB goes HIGH.  
Synchronizing the other outputs of the ZDB to the outputs from  
the ASIC/Buffer is more complex however, as any propagation  
delay from the ZDB output to the ASIC/Buffer output must be  
accounted for.  
External feedback is the trait that allows for this compensation.  
The PLL on the ZDB will cause the feedback signal to be in  
phase with the reference signal. When laying out the board,  
match the trace lengths between the output being used for  
feedback and the FBIN input to the PLL.  
Zero  
Reference  
Delay  
Signal  
Buffer  
If it is desirable to either add a little delay, or slightly precede  
the input signal, this may also be affected by either making the  
trace to the FBIN pin a little shorter or a little longer than the  
traces to the devices being clocked.  
ASIC/  
Buffer  
Feedback  
Input  
A
Inserting Other Devices in Feedback Path  
Figure 2. 6 Output Buffer in the Feedback Path  
Another nice feature available due to the external feedback is  
the ability to synchronize signals to the signal coming from  
some other device. This implementation can be applied to any  
3
W194  
Absolute Maximum Ratings  
Stresses greater than those listed in this table may cause per-  
manent damage to the device. These represent a stress rating  
above those specified in the operating sections of this specifi-  
cation is not implied. Maximum conditions for extended peri-  
ods may affect reliability.  
only. Operation of the device at these or any other conditions  
.
Parameter  
Description  
Voltage on any pin with respect to GND  
Storage Temperature  
Rating  
0.5 to +7.0  
65 to +150  
0 to +70  
Unit  
V
V
, V  
DD IN  
T
°C  
°C  
°C  
W
STG  
T
Operating Temperature  
A
T
Ambient Temperature under Bias  
Power Dissipation  
55 to +125  
0.5  
B
P
D
: T = 0°C to 70°C, V = 3.3V ±5%  
DC Electrical Characteristics  
A
DD  
Parameter  
Description  
Supply Current  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
mA  
V
I
Unloaded, 100 MHz  
17  
35  
DD  
V
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
0.8  
IL  
V
2.0  
2.4  
V
IH  
OL  
V
I
I
= 12 mA  
= 8 mA  
0.4  
V
OL  
OL  
V
Output High Voltage  
I
I
= 12 mA  
= 8 mA  
V
OH  
OL  
OL  
I
I
Input Low Current  
Input High Current  
V
V
= 0V  
5
5
µA  
µA  
IL  
IN  
IN  
= V  
IH  
DD  
: T = 0°C to 70°C, V = 5V ±10%  
DC Electrical Characteristics  
A
DD  
Parameter  
Description  
Supply Current  
Test Condition  
Min.  
Typ.  
Max.  
35  
Unit  
mA  
V
I
Unloaded, 100 MHz  
17  
DD  
V
Input Low Voltage  
Input High Voltage  
Output Low Voltage  
0.8  
IL  
V
V
2.0  
2.4  
V
IH  
OL  
I
I
= 12 mA  
= 8 mA  
0.4  
V
OL  
OL  
V
Output High Voltage  
I
I
= 12 mA  
= 8 mA  
V
OH  
OL  
OL  
I
I
Input Low Current  
Input High Current  
V
V
= 0V  
5
5
µA  
µA  
IL  
IN  
IN  
= V  
IH  
DD  
4
W194  
AC Electrical Characteristics: T = 0°C to +70°C, V = 3.3V ±5%  
A
DD  
Parameter  
Description  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
[1]  
f
f
t
t
t
t
t
t
t
t
t
Input Frequency  
OUT2 = REF  
OUT1 15-pF load  
MHz  
IN  
[6]  
Output Frequency  
Output Rise Time  
Output Fall Time  
10  
133  
3.5  
2.5  
10  
MHz  
OUT  
R
2.0V to 0.8V, 15-pF load  
2.0V to 0.8V, 15-pF load  
ns  
ns  
F
[2]  
Input Clock Rise Time  
ns  
ICLKR  
ICLKF  
PD  
[2]  
Input Clock Fall Time  
10  
ns  
[3, 4]  
FBIN to REF Skew  
Duty Cycle  
Measured at V /2  
2  
0.6  
50  
2
ns  
DD  
[5]  
15-pF load  
40  
60  
%
D
PLL Lock Time  
Jitter, Cycle-to-Cycle  
Power supply stable  
1.0  
300  
ms  
ps  
LOCK  
JC  
[8]  
Die out Time  
100  
Clock Cycles  
DC  
AC Electrical Characteristics: T = 0°C to +70°C, V = 5.0V ±10%  
A
DD  
Parameter  
Description  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
MHz  
MHz  
ns  
[1]  
f
Input Frequency  
OUT2 = REF  
OUT1 15-pF load  
IN  
[6]  
f
t
t
t
t
t
t
t
t
Output Frequency  
Output Rise Time  
Output Fall Time  
10  
133  
2.5  
1.5  
10  
OUT  
R
2.0V to 0.8V, 15-pF load  
2.0V to 0.8V, 15-pF load  
ns  
F
[2]  
Input Clock Rise Time  
ns  
ICLKR  
ICLKF  
PD  
[2]  
Input Clock Fall Time  
10  
ns  
[3, 4]  
FBIN to REF Skew  
Duty Cycle  
Measured at V /2  
2  
0.6  
50  
2
ns  
DD  
[5, 7]  
15-pF load  
40  
60  
%
D
PLL Lock Time  
Jitter, Cycle-to-Cycle  
Power supply stable  
1.0  
200  
ms  
ps  
LOCK  
JC  
Ordering Information  
Package  
Ordering Code  
Option  
-70  
Name  
Package Type  
8-pin SOIC (150-mil)  
W194  
G
Document #: 38-00794-B  
Notes:  
1. Input frequency is limited by output frequency range and input to output frequency multiplication factor (which is determined by circuit configuration).  
2. Longer input rise and fall time will degrade skew and jitter performance.  
3. All AC specifications are measured with a 50transmission line, load terminated with 50to 1.4V.  
4. Skew is measured at 1.4V on rising edges.  
5. Duty cycle is measured at 1.4V.  
6. For the higher drive -11, the load is 20 pF.  
7. Duty Cycle measured at 120 MHz. For 133 MHz, degrades to 35/65 worst case.  
8. 33 MHz reference input suddenly stopped (0MHz). Number of cycles provided prior to output falling to <16 MHz.  
5
W194  
Package Diagram  
8-Pin Small Outlined Integrated Circuit (SOIC, 150-mil)  
© Cypress Semiconductor Corporation, 2000. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  

相关型号:

W195

Clocks and Buffers
ETC

W195B

Frequency Generator for Integrated Core Logic
CYPRESS

W195BH

Processor Specific Clock Generator, 150MHz, CMOS, PDSO48, 0.300 INCH, SSOP-48
CYPRESS

W195BHT

Processor Specific Clock Generator, 150MHz, CMOS, PDSO48, 0.300 INCH, SSOP-48
CYPRESS

W196

Spread Spectrum FTG for 440BX and VIA Apollo Pro-133
CYPRESS

W196

Spread Spectrum FTG for 440BX and VIA Apollo Pro-133
SPECTRALINEAR

W196GT

Processor Specific Clock Generator, 150MHz, CMOS, PDSO28, 0.300 INCH, SOIC-28
CYPRESS

W196_02

Spread Spectrum FTG for 440BX and VIA Apollo Pro-133
CYPRESS

W198HT

Clock Generator, 108MHz, CMOS, PDSO16, 0.209 INCH, MO-150AB, SSOP-16
CYPRESS

W199

Spread Spectrum FTG for VIA Apollo Pro-133
CYPRESS

W1991

LTE Stealth Blade Antenna
PULSE

W1991AV

LTE Stealth Blade Antenna
PULSE