W195BH [CYPRESS]

Processor Specific Clock Generator, 150MHz, CMOS, PDSO48, 0.300 INCH, SSOP-48;
W195BH
型号: W195BH
厂家: CYPRESS    CYPRESS
描述:

Processor Specific Clock Generator, 150MHz, CMOS, PDSO48, 0.300 INCH, SSOP-48

文件: 总13页 (文件大小:143K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
W195B  
Frequency Generator for Integrated Core Logic  
SDRAM, APIC, 48MHz Output Skew: ........................250 ps  
Features  
PCI Output Skew:........................................................500 ps  
• Maximized EMI suppression using Cypress’s Spread  
Spectrum Technology  
• Low jitter and tightly controlled clock skew  
• Highly integrated device providing clocks required for  
CPU, core logic, and SDRAM  
• Two copies of CPU clocks  
CPU to SDRAM Skew (@100 MHz):..................4.5 to 5.5 ns  
CPU to 3V66 Skew (@ 66 MHz): .......................7.0 to 8.0 ns  
3V66 to PCI Skew (3V66 lead):..........................1.5 to 3.5 ns  
PCI to APIC Skew: ....................................................± 0.5 ns  
Table 1. Frequency Selections  
• Nine copies of SDRAM clocks  
• Eight copies of PCI clock  
FS3 FS2 FS1 FS0 CPU SDRAM 3V66 PCI APIC  
• One copy of synchronous APIC clock  
• Two copies of 66-MHz outputs  
• Two copies of 48-MHz outputs  
• One copy of selectable 24- or 48-MHz clock  
• One copy of double strength 14.31818-MHz reference  
clock  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
133.6 133.6  
Reserved  
100.2 100.2  
66.8 33.4 16.7  
66.8 33.4 16.7  
66.8 33.4 16.7  
66.8  
105  
110  
114  
119  
124  
129  
95  
100.2  
105  
110  
114  
119  
124  
129  
95  
70  
73.3 36.7 18.3  
76 38 19  
35 17.5  
• Power-down control  
79.3 39.7 19.8  
82.7 41.3 20.7  
64.5 32.3 16.1  
63.3 31.7 15.8  
69 34.5 17.3  
75 37.5 18.8  
75 37.5 18.8  
2
• I C interface for turning off unused clocks  
Key Specifications  
CPU, SDRAM Outputs Cycle-to-Cycle Jitter: ............. 250 ps  
138  
150  
75  
138  
150  
113  
90  
APIC, 48MHz, 3V66, PCI Outputs  
Cycle-to-Cycle Jitter: .................................................. 500 ps  
90  
60  
30  
15  
CPU, 3V66 Output Skew: ........................................... 175 ps  
83.3  
125  
83.3 41.7 20.8  
Pin Configuration[1]  
Block Diagram  
VDDQ3  
VDDQ2  
APIC  
VDDQ2  
CPU0  
CPU1  
REF2x/FS3*  
VDDQ3  
X1  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
REF2X/FS3*  
X1  
X2  
XTAL  
OSC  
X2  
GND  
VDDQ3  
3V66_0  
3V66_1  
GND  
FS0*/PCI0  
FS1^/PCI1  
FS2*/PCI2  
GND  
PCI3  
PCI4  
VDDQ3  
PCI5  
PCI6  
PCI7  
GND  
PLL REF FREQ  
GND  
VDDQ3  
SDRAM0  
SDRAM1  
SDRAM2  
GND  
VDDQ2  
CPU0:1  
Divider,  
Delay,  
and  
Phase  
Control  
Logic  
I2C  
Logic  
2
SDATA  
SCLK  
SDRAM3  
SDRAM4  
SDRAM5  
VDDQ3  
SDRAM6  
SDRAM7  
SDRAM8  
GND  
PWRDWN#*  
SCLK  
VDDQ3  
GND  
SDATA  
FS3*  
FS2*  
FS1*  
FS0*  
APIC  
VDDQ3  
3V66_0:1  
2
PCI0/FS0*  
PLL 1  
PCI1/FS1*  
PCI2/FS2*  
48MHz_0  
48MHz_1  
SI0/24_48#MHz*  
VDDQ3  
PCI3:7  
5
9
SDRAM0:8  
Note:  
PWRDWN#  
1. Internal 250K pull-up or pull down resistors present on inputs  
marked with * or ^ respectively. Design should not rely solely on  
internal pull-up or pull down resistor to set I/Opins HIGH orLOW  
respectively.  
VDDQ3  
PLL2  
48MHz_0:1  
2
SI0/24_48#MHz*  
/2  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
October 13, 1999, rev. **  
PRELIMINARY  
W195B  
Pin Definitions  
Pin  
Type  
Pin Name  
Pin No.  
Pin Description  
REF2x/FS3  
1
I/O  
Reference Clock with 2x Drive/Frequency Select 3: 3.3V 14.318-MHz clock out-  
put. This pin also serves as the select strap to determine device operating frequency  
as described in Table 1.  
X1  
3
4
I
I
Crystal Input: This pin has dual functions. It can be used as an external 14.318-  
MHz crystal connection or as an external reference frequency input.  
X2  
Crystal Output: An input connection for an external 14.318-MHz crystal connec-  
tion. If using an external reference, this pin must be left unconnected.  
PCI0/FS0  
10  
I/O  
PCI Clock 0/Frequency Selection 0: 3.3V 33-MHz PCI clock outputs. This pin also  
serves as the select strap to determine device operating frequency as described in  
Table 1.  
PCI1/FS1  
PCI2/FS2  
11  
12  
I/O  
I/O  
PCI Clock 1/Frequency Selection 1: 3.3V 33-MHz PCI clock outputs. This pin also  
serves as the select strap to determine device operating frequency as described in  
Table 1.  
PCI Clock 2/Frequency Selection 2: 3.3V 33-MHz PCI clock outputs. This pin  
doubles as the select strap to determine device operating frequency as described  
in Table 1.  
PCI3:7  
14, 15, 17, 18,  
19  
O
O
PCI Clock 3 through 7: 3.3V 33-MHz PCI clock outputs. PCI0:7 can be individually  
turned off via I C interface.  
2
3V66_0:1  
48MHz_0:1  
7,8  
66-MHz Clock Output: 3.3V output clocks. The operating frequency is controlled  
by FS0:3 (see Table 1).  
21, 22  
23  
O
48-MHz Clock Output: 3.3V fixed 48-MHz, non-spread spectrum clock output.  
SIO/  
24_48#MHz  
I/O  
Clock Output for Super I/O: This is the input clock for a Super I/O (SIO) device.  
During power-up, it also serves as a selection strap. If it is sampled HIGH, the output  
frequency for SIO is 24 MHz. If the input is sampled LOW, the output is 48 MHz.  
PWRDWN#  
CPU0:1  
29  
I
Power Down Control: LVTTL-compatible input that places the device in power-  
down mode when held LOW.  
45, 44  
O
CPU Clock Outputs: Clock outputs for the host bus interface. Output frequencies  
depending on the configuration of FS0:3. Voltage swing is set by V  
.
DDQ2  
SDRAM0:8,  
41, 40, 39, 37,  
36, 35, 33, 32,  
31  
SDRAM Clock Outputs: 3.3V outputs for SDRAM. The operating frequency is  
controlled by FS0:3 (see Table 1).  
O
O
APIC  
47  
Synchronous APIC Clock Outputs: Clock outputs running synchronous with the  
PCI clock outputs. Voltage swing set by V  
.
DDQ2  
2
SDATA  
SCLK  
25  
28  
I/O  
I
Data pin for I C circuitry.  
2
Clock pin for I C circuitry.  
VDDQ3  
2, 6, 16, 24, 27,  
34, 42  
P
3.3V Power Connection: Power supply for SDRAM output buffers, PCI output buff-  
ers, reference output buffers, and 48-MHz output buffers. Connect to 3.3V.  
VDDQ2  
GND  
46, 48  
P
2.5V Power Connection: Power supply for IOAPIC and CPU output buffers. Con-  
nect to 2.5V or 3.3V.  
5, 9, 13, 20, 26,  
30, 38, 43  
G
Ground Connections: Connect all ground pins to the common system ground  
plane.  
2
PRELIMINARY  
W195B  
Output Strapping Resistor  
Series Termination Resistor  
Clock Load  
W195B  
Output  
Buffer  
Power-on  
Reset  
Timer  
Hold  
Output  
Low  
Output Three-state  
10 k  
Q
D
Data  
Latch  
Figure 1. Input Logic Selection Through Resistor Load Option  
is delivered on the pins. If the power supply has not yet  
reached full value, output frequency initially may be below tar-  
get but will increase to target once supply voltage has stabi-  
lized. In either case, a short output clock cycle may be pro-  
duced from the CPU clock outputs when the outputs are  
enabled.  
Overview  
The W195B is a highly integrated frequency timing generator,  
supplying all the required clock sources for an Intel® architec-  
ture platform using graphics integrated core logic.  
Functional Description  
Offsets Among Clock Signal Groups  
I/O Pin Operation  
Figure 2 and Figure 3 represent the phase relationship among  
the different groups of clock outputs from W195B when it is  
providing a 66-MHz CPU clock and a 100-MHz CPU clock,  
respectively. It should be noted that when CPU clock is oper-  
ating at 100 MHz, CPU clock output is 180 degrees out of  
phase with SDRAM clock outputs.  
Pin # 1, 10, 11, 12, 23 are dual-purpose l/O pins. Upon power-  
up the pin acts as a logic input. An external 10-kstrapping  
resistor should be used. Figure 1 shows a suggested method  
for strapping resistor connections.  
After 2 ms, the pin becomes an output. Assuming the power  
supply has stabilized by then, the specified output frequency  
0 ns  
10 ns  
20 ns  
30 ns  
40 ns  
CPU 66 Period  
CPU 66-MHz  
SDRAM 100 Period  
SDRAM 100-MHz  
Hub-PC  
3V66 66-MHz  
PCI 33-MHz  
REF 14.318-MHz  
USB 48-MHz  
APIC  
Figure 2. Group Offset Waveforms (66.8 CPU Clock, 100.2 SDRAM Clock)  
3
PRELIMINARY  
W195B  
0 ns  
10 ns  
20 ns  
30 ns  
40 ns  
CPU 100 Period  
CPU 100-MHz  
SDRAM 100 Period  
SDRAM 100-MHz  
Hub-PC  
3V66 66-MHz  
PCI 33-MHz  
REF 14.318-MHz  
USB 48-MHz  
APIC  
Figure 3. Group Offset Waveforms (100.2 CPU Clock, 100.2 SDRAM Clock)  
Power Down Control  
W195B provides one PWRDWN# signal to place the device in low-power mode. In low-power mode, the PLLs are turned off and  
all clock outputs are driven LOW.  
0ns  
25ns  
50ns  
75ns  
Center  
1
2
VCO Internal  
CPU 100MHz  
3V66 66MHz  
PCI 33MHz  
APIC  
PwrDwn  
SDRAM 100MHz  
REF 14.318MHz  
USB 48MHz  
[2, 3, 4, 5]  
Figure 4. PWRDWN# Timing Diagram  
Notes:  
2. Once the PWRDWN# signal is sampled LOW for two consecutive rising edges of CPU clock, clocks of interest should be held LOW on the next HIGH-to-LOW  
transition.  
3. PWRDWN# is an asynchronous input and metastable conditions could exist. This signal is synchronized inside W195B.  
4. The shaded sections on the SDRAM, REF, and USB clocks indicate dont carestates.  
5. Diagrams shown with respect to 100 MHz. Similar operation when CPU is 66 MHz.  
4
PRELIMINARY  
W195B  
Where P is the percentage of deviation and F is the frequency  
in MHz where the reduction is measured.  
Spread Spectrum Generator  
The device generates a clock that is frequency modulated in  
order to increase the bandwidth that it occupies. By increasing  
the bandwidth of the fundamental and its harmonics, the am-  
plitudes of the radiated electromagnetic emissions are re-  
duced. This effect is depicted in Figure 5.  
The output clock is modulated with a waveform depicted in  
Figure 6. This waveform, as discussed in Spread Spectrum  
Clock Generation for the Reduction of Radiated Emissionsby  
Bush, Fessler, and Hardin produces the maximum reduction  
in the amplitude of radiated electromagnetic emissions. The  
deviation selected for this chip is 0.5% of the selected fre-  
quency. Figure 6 details the Cypress spreading pattern.  
Cypress does offer options with more spread and greater EMI  
reduction. Contact your local Sales representative for details  
on these devices.  
As shown in Figure 5, a harmonic of a modulated clock has a  
much lower amplitude than that of an unmodulated signal. The  
reduction in amplitude is dependent on the harmonic number  
and the frequency deviation or spread. The equation for the  
reduction is  
dB = 6.5 + 9*log (P) + 9*log (F)  
10  
10  
EMI Reduction  
Spread  
Spectrum  
Enabled  
Non-  
Spread  
Spectrum  
Figure 5. Typical Clock and SSFTG Comparison  
MAX.  
MIN.  
Figure 6. Typical Modulation Profile  
5
PRELIMINARY  
W195B  
1 bit  
7 bits  
1
1
8 bits  
1
Start bit  
Slave Address  
R/W  
Ack  
Command Code  
Ack  
Byte Count = N  
Ack  
1 bit  
Data Byte 1  
8 bits  
Ack  
Data Byte 2  
8 bits  
Ack  
1
...  
Data Byte N  
8 bits  
Ack  
1
Stop  
1
1
[6]  
Figure 7. An Example of a Block Write  
Serial Data Interface  
fer a maximum of 32 data bytes. The slave receiver address  
for W195B is 11010010. Figure 7 shows an example of a block  
write.  
The W195B features a two-pin, serial data interface that can  
be used to configure internal register settings that control par-  
ticular device functions.  
The command code and the byte count bytes are required as  
the first two bytes of any transfer. W195B expects a command  
code of 0000 0000. The byte count byte is the number of ad-  
ditional bytes required for the transfer, not counting the com-  
mand code and byte count bytes. Additionally, the byte count  
byte is required to be a minimum of 1 byte and a maximum of  
32 bytes to satisfy the above requirement. Table 2 shows an  
example of a possible byte count value.  
Data Protocol  
The clock driver serial protocol accepts only block writes from  
the controller. The bytes must be accessed in sequential order  
from lowest to highest byte with the ability to stop after any  
complete byte has been transferred. Indexed bytes are not al-  
lowed.  
A transfer is considered valid after the acknowledge bit corre-  
sponding to the byte count is read by the controller. The com-  
mand code and byte count bytes are ignored by the W195B.  
However, these bytes must be included in the data write se-  
quence to maintain proper byte allocation.  
A block write begins with a slave address and a write condition.  
After the command code the core logic issues a byte count  
which describes how many more bytes will follow in the mes-  
sage. If the host had 20 bytes to send. The first byte would be  
the number 20 (14h), followed by the 20 bytes of data. The byte  
count may not be 0. A block write command is allowed to trans-  
Table 2. Example of Possible Byte Count Value  
Byte Count Byte  
Notes  
MSB  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0000  
0010  
LSB  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
0000  
Not allowed. Must have at least one byte.  
Data for functional and frequency select register (currently byte 0 in spec)  
Reads first two bytes of data. (byte 0 then byte 1)  
Reads first three bytes (byte 0, 1, 2 in order)  
Reads first four bytes (byte 0, 1, 2, 3 in order)  
[7]  
Reads first five bytes (byte 0, 1, 2, 3, 4 in order)  
[7]  
Reads first six bytes (byte 0, 1, 2, 3, 4, 5 in order)  
Reads first seven bytes (byte 0, 1, 2, 3, 4, 5, 6 in order)  
Max. byte count supported = 32  
Table 3. Serial Data Interface Control Functions Summary  
Control Function  
Description  
Common Application  
Output Disable  
Any individual clock output(s) can be disabled.  
Disabled outputs are actively held LOW.  
Unused outputs are disabled to reduce EMI and sys-  
tem power. Examples are clock outputs to unused  
PCI slots.  
(Reserved)  
Reserved function for future device revision or pro- No user application. Register bit must be written as 0.  
duction device testing.  
Notes:  
6. The acknowledgment bit is returned by the slave/receiver (W195B).  
7. Byte 6 and 7 are not defined for W195B.  
6
PRELIMINARY  
W195B  
2. All unused register bits (reserved and N/A) should be writ-  
ten to a 0level.  
Serial Configuration Map  
1. The serial bits will be read by the clock driver in the following  
order:  
3. All register bits labeled Initialize to 0" must be written to  
zero during initialization. Failure to do so may result in high-  
er than normal operating current. The controller will read  
back the last written value.  
Byte 0 - Bits 7, 6, 5, 4, 3, 2, 1, 0  
Byte 1 - Bits 7, 6, 5, 4, 3, 2, 1, 0  
Byte N - Bits 7, 6, 5, 4, 3, 2, 1, 0  
[8]  
Byte 0: Control Register (1 = Enable, 0= Disable)  
Bit  
Pin#  
Name  
Reserved  
Default  
Pin Function  
Pin Description  
Pin Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
-
0
0
0
0
0
1
1
0
Reserved  
-
Reserved  
Reserved  
Reserved  
Reserved  
24/48MHz  
48MHz  
Reserved  
-
Reserved  
-
Reserved  
-
23  
Reserved  
(Active/Inactive)  
(Active/Inactive)  
Reserved  
21, 22  
-
Reserved  
[8]  
Byte 1: Control Register (1 = Enable, 0= Disable)  
Bit  
Pin#  
32  
33  
35  
36  
37  
39  
40  
41  
Name  
SDRAM7  
Default  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
1
1
1
1
1
1
1
1
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
SDRAM6  
SDRAM5  
SDRAM4  
SDRAM3  
SDRAM2  
SDRAM1  
SDRAM0  
[8]  
Byte 2: Control Register (1 = Enable, 0= Disable)  
Bit  
Pin#  
19  
18  
17  
15  
14  
12  
11  
-
Name  
Default  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PCI7  
PCI6  
PCI5  
PCI4  
PCI3  
PCI2  
PCI1  
1
1
1
1
1
1
1
0
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
Reserved  
Reserved  
Note:  
8. Inactive means outputs are held LOW and are disabled from switching. These outputs are designed to be configured at power-on and are not expected to be  
configured during the normal modes of operation.  
7
PRELIMINARY  
W195B  
Byte 3: Reserved Register (1 = Enable, 0= Disable)  
Bit  
Pin#  
Name  
Reserved  
Default  
Pin Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
-
-
-
-
-
-
-
-
0
0
0
0
0
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Byte 4: Reserved Register (1 = Enable, 0= Disable)  
Bit  
Pin#  
Name  
Default  
Pin Function  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
-
-
-
-
-
SEL3  
SEL2  
SEL1  
SEL0  
0
0
0
0
0
See Table 4  
See Table 4  
See Table 4  
See Table 4  
FS(0:3) Override  
0 = Select operating frequency by FS(0:3) strapping  
1 = Select operating frequency by SEL(0:4) bit settings  
Bit 2  
Bit 1  
Bit 0  
-
-
-
SEL4  
0
0
0
See Table 4  
Reserved  
Reserved  
Reserved  
Reserved  
Byte 5: Reserved Register (1 = Enable, 0= Disable)  
Bit  
Pin#  
Name  
Reserved  
Default  
Pin Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
-
-
-
-
-
-
-
-
0
0
0
0
0
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Byte 6: Reserved Register (1 = Enable, 0= Disable)  
Bit  
Pin#  
Name  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Default  
Pin Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
-
-
-
-
-
-
-
-
0
0
0
0
0
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
8
PRELIMINARY  
W195B  
Table 4. Additional Frequency Selections through Serial Data Interface Data Bytes  
Input Conditions  
Output Frequency  
Data Byte 4, Bit 3 = 1  
Bit 2  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Spread  
SEL_4  
SEL_3  
SEL_2  
SEL_1  
SEL_0  
CPU  
SDRAM  
3V66  
66.8  
Reserved  
66.8  
66.8  
71.3  
74.7  
78  
PCI  
APIC  
Spectrum  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
133.6  
133.6  
33.4  
16.7  
±0.5%  
100.2  
66.8  
107  
112  
117  
121  
155  
145  
136  
140  
72  
100.2  
100.2  
107  
33.4  
33.4  
35.7  
37.3  
39  
16.7  
16.7  
17.8  
18.7  
19.5  
20.2  
19.4  
18.1  
17  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
±0.5%  
OFF  
112  
117  
121  
80.7  
77.5  
72.5  
68  
40.3  
38.8  
36.3  
34  
155  
145  
136  
140  
70  
35  
17.5  
18  
108  
72  
36  
130  
127  
125  
133.6  
130  
65  
32.5  
31.8  
31.3  
33.4  
16.3  
15.9  
15.6  
16.7  
127  
63.5  
62.5  
66.8  
Reserved  
66.8  
66.8  
70  
125  
133.6  
100.2  
66.8  
105  
110  
114  
119  
124  
129  
95  
100.2  
100.2  
105  
110  
114  
119  
124  
129  
95  
33.4  
33.4  
35  
16.7  
16.7  
17.5  
18.3  
19  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
73.3  
76  
36.7  
38  
79.3  
82.7  
64.5  
63.3  
69  
39.7  
41.3  
32.3  
31.7  
34.5  
37.5  
37.5  
30  
19.8  
20.7  
16.1  
15.8  
17.3  
18.8  
18.8  
15  
138  
150  
75  
138  
150  
113  
90  
75  
75  
90  
60  
83.3  
125  
83.3  
41.7  
20.8  
9
PRELIMINARY  
W195B  
DC Electrical Characteristics  
DC parameters must be sustainable under steady state (DC) conditions.  
Absolute Maximum DC Power Supply  
Parameter  
Description  
3.3V Core Supply Voltage  
Min.  
0.5  
0.5  
65  
Max.  
4.6  
Unit  
V
V
V
DDQ3  
2.5V I/O Supply Voltage  
Storage Temperature  
3.6  
V
DDQ2  
S
T
150  
°C  
Absolute Maximum DC I/O  
Parameter  
Description  
Min.  
0.5  
0.5  
2000  
Max.  
4.6  
Unit  
V
V
V
3.3V Core Supply Voltage  
i/o3  
i/o2  
2.5V I/O Supply Voltage  
2.5V I/O Supply Voltage  
3.6  
V
ESD prot.  
V
DC Operating Requirements  
Parameter  
Description  
Condition  
3.3V±5%  
3.3V±5%  
2.5V±5%  
Min.  
Max.  
3.465  
3.465  
2.625  
Unit  
V
V
V
V
V
V
V
3.3V Core Supply Voltage  
3.3V I/O Supply Voltage  
2.5V I/O Supply Voltage  
3.135  
3.135  
2.375  
DD3  
V
DDQ3  
DDQ2  
V
= 3.3V±5%  
DD3  
ih3  
il3  
3.3V Input High Voltage  
3.3V Input Low Voltage  
V
2.0  
V
+0.3  
DD  
V
V
DD3  
V
0.3  
0.8  
SS  
[9]  
I
Input Leakage Current  
0<V <V  
DDQ3  
5  
+5  
µA  
il  
in  
V
= 2.5V±5%  
= 3.3V±5%  
= 3.3V±5%  
DDQ2  
V
2.5V Output High Voltage  
2.5V Output Low Voltage  
I
I
I
=(1 mA)  
2.0  
2.4  
2.4  
V
V
oh2  
oh  
V
I =(1 mA)  
ol  
0.4  
ol2  
V
DDQ3  
V
3.3V Output High Voltage  
3.3V Output Low Voltage  
=(1 mA)  
oh  
V
V
oh3  
V
I =(1 mA)  
0.4  
ol3  
ol  
V
DDQ3  
poh3  
pol3  
V
V
PCI Bus Output High Voltage  
PCI Bus Output Low Voltage  
=(1 mA)  
V
V
oh  
I =(1 mA)  
0.55  
ol  
C
C
C
Input Pin Capacitance  
Xtal Pin Capacitance  
Output Pin Capacitance  
Pin Inductance  
5
22.5  
6
pF  
pF  
pF  
nH  
°C  
in  
13.5  
xtal  
out  
pin  
L
0
0
7
T
Ambient Temperature  
No Airflow  
70  
a
Note:  
9. Input Leakage Current does not include inputs with pull-up or pull-down resistors.  
10  
PRELIMINARY  
W195B  
AC Electrical Characteristics  
T = 0°C to +70°C, V  
= 3.3V±5%, V  
= 2.5V±5%  
DDQ2  
A
DDQ3  
f
= 14.31818 MHz  
XTL  
Spread Spectrum function turned off  
66.6-MHz Host  
100-MHz Host  
Parameter  
Description  
Min.  
15.0  
5.2  
Max.  
15.5  
N/A  
N/A  
1.6  
Min.  
10.0  
3.0  
Max.  
10.5  
N/A  
N/A  
1.6  
Unit  
ns  
Notes  
T
T
T
T
T
Host/CPUCLK Period  
10  
13  
14  
Period  
HIGH  
LOW  
RISE  
FALL  
Host/CPUCLK High Time  
Host/CPUCLK Low Time  
Host/CPUCLK Rise Time  
Host/CPUCLK Fall Time  
ns  
5.0  
2.8  
ns  
0.4  
0.4  
ns  
0.4  
1.6  
0.4  
1.6  
ns  
T
T
T
T
T
SDRAM CLK Period  
10.0  
3.0  
2.8  
0.4  
0.4  
10.5  
N/A  
N/A  
1.6  
10.0  
3.0  
2.8  
0.4  
0.4  
10.5  
N/A  
N/A  
1.6  
ns  
ns  
ns  
ns  
ns  
10  
13  
14  
Period  
HIGH  
LOW  
RISE  
FALL  
SDRAM CLK High Time  
SDRAM CLK Low Time  
SDRAM CLK Rise Time  
SDRAM CLK Fall Time  
1.6  
1.6  
T
T
T
T
T
APIC CLK Period  
60.0  
25.5  
25.3  
0.4  
64.0  
N/A  
N/A  
1.6  
60.0  
25.5  
25.3  
0.4  
64.0  
N/A  
N/A  
1.6  
ns  
ns  
ns  
ns  
ns  
10  
13  
14  
Period  
HIGH  
LOW  
RISE  
FALL  
APIC CLK High Time  
APIC CLK Low Time  
APIC CLK Rise Time  
APIC CLK Fall Time  
0.4  
1.6  
0.4  
1.6  
T
T
T
T
T
3V66 CLK Period  
15.0  
5.25  
5.05  
0.5  
16.0  
N/A  
N/A  
2.0  
15.0  
5.25  
5.05  
0.5  
16.0  
N/A  
N/A  
2.0  
ns  
ns  
ns  
ns  
ns  
10, 12  
13  
Period  
HIGH  
LOW  
RISE  
FALL  
3V66 CLK High Time  
3V66 CLK Low Time  
3V66 CLK Rise Time  
3V66 CLK Fall Time  
14  
0.5  
2.0  
0.5  
2.0  
T
T
T
T
T
PCI CLK Period  
30.0  
12.0  
12.0  
0.5  
N/A  
N/A  
N/A  
2.0  
30.0  
12.0  
12.0  
0.5  
N/A  
N/A  
N/A  
2.0  
ns  
ns  
ns  
ns  
ns  
10, 11  
13  
Period  
HIGH  
LOW  
RISE  
FALL  
PCI CLK High Time  
PCI CLK Low Time  
PCI CLK Rise Time  
PCI CLK Fall Time  
14  
0.5  
2.0  
0.5  
2.0  
tp , tp  
Output Enable Delay (All outputs)  
Output Disable Delay (All outputs)  
All Clock Stabilization from Power-Up  
1.0  
1.0  
10.0  
10.0  
3
1.0  
1.0  
10.0  
10.0  
3
ns  
ns  
ZL  
ZH  
ZH  
tp , tp  
LZ  
t
ms  
stable  
Notes:  
10. Period, jitter, offset, and skew measured on rising edge at 1.25 for 2.5V clocks and at 1.5V for 3.3V clocks.  
11.  
12.  
T
T
HIGH is measured at 2.0V for 2.5V outputs, 2.4V for 3.3V outputs.  
LOW is measured at 0.4V for all outputs.  
13. The time specified is measured from when VDDQ3 achieves its nominal operating level (typical condition VDDQ3 = 3.3V) until the frequency output is stable and  
operating within specification.  
14. TRISE and TFALL are measured as a transition through the threshold region Vol = 0.4V and Voh = 2.0V (1 mA) JEDEC specification.  
11  
PRELIMINARY  
W195B  
Group Skew and Jitter Limits  
Output Group  
Skew, Jitter  
Pin-Pin Skew Max  
Cycle-Cycle Jitter  
250 ps  
Duty Cycle  
45/55  
Nom Vdd  
2.5V  
Measure Point  
1.25V  
1.5V  
CPU  
SDRAM  
APIC  
175 ps  
250 ps  
250 ps  
250 ps  
175 ps  
500 ps  
N/A  
250 ps  
45/55  
3.3V  
500 ps  
45/55  
2.5V  
1.25V  
1.5V  
48MHz  
3V66  
500 ps  
45/55  
3.3V  
500 ps  
45/55  
3.3V  
1.5V  
PCI  
500 ps  
45/55  
3.3V  
1.5V  
REF  
1000 ps  
45/55  
3.3V  
1.5V  
Test Point  
Output  
Buffer  
Test Load  
Clock Output Wave  
TPERIOD  
Duty Cycle  
THIGH  
2.0  
1.25  
2.5V Clocking  
Interface  
0.4  
TLOW  
TRISE  
TFALL  
TPERIOD  
Duty Cycle  
THIGH  
2.4  
1.5  
0.4  
3.3V Clocking  
Interface  
TLOW  
TRISE  
TFALL  
Figure 8. Output Buffer  
Ordering Information  
Package  
Name  
Ordering Code  
Package Type  
48-pin SSOP (300 mils)  
W195B  
H
Intel is a registered trademark of Intel Corporation.  
Document #: 38-00815  
12  
PRELIMINARY  
W195B  
Package Diagram  
48-Pin Shrink Small Outline Package (SSOP, 300 mils)  
© Cypress Semiconductor Corporation, 1999. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  

相关型号:

W195BHT

Processor Specific Clock Generator, 150MHz, CMOS, PDSO48, 0.300 INCH, SSOP-48
CYPRESS

W196

Spread Spectrum FTG for 440BX and VIA Apollo Pro-133
CYPRESS

W196

Spread Spectrum FTG for 440BX and VIA Apollo Pro-133
SPECTRALINEAR

W196GT

Processor Specific Clock Generator, 150MHz, CMOS, PDSO28, 0.300 INCH, SOIC-28
CYPRESS

W196_02

Spread Spectrum FTG for 440BX and VIA Apollo Pro-133
CYPRESS

W198HT

Clock Generator, 108MHz, CMOS, PDSO16, 0.209 INCH, MO-150AB, SSOP-16
CYPRESS

W199

Spread Spectrum FTG for VIA Apollo Pro-133
CYPRESS

W1991

LTE Stealth Blade Antenna
PULSE

W1991AV

LTE Stealth Blade Antenna
PULSE

W199ABMX-7

Advantages of the W199 Power Relay
ETC

W199ADBX-4

Advantages of the W199 Power Relay
ETC

W199AX-15

RELAY OPEN CHASSIS 240VAC
ETC