W196 [CYPRESS]

Spread Spectrum FTG for 440BX and VIA Apollo Pro-133; 扩频FTG的440BX和威盛Apollo Pro的-133
W196
型号: W196
厂家: CYPRESS    CYPRESS
描述:

Spread Spectrum FTG for 440BX and VIA Apollo Pro-133
扩频FTG的440BX和威盛Apollo Pro的-133

文件: 总11页 (文件大小:141K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
W196  
Spread Spectrum FTG for 440BX and VIA Apollo Pro-133  
CPU Cycle to Cycle Jitter: ..........................................250 ps  
Features  
CPU, PCI Output Edge Rate:.........................................1 V/ns  
• Maximized EMI suppression using Cypress’s Spread  
Spectrum Technology  
CPU0:1 Output Skew: ................................................175 ps  
PCI_F, PCI1:6 Output Skew: .......................................500 ps  
CPU to PCI Skew: ........................ 1.5 to 4.0 ns (CPU Leads)  
REF2X/SEL48#, SCLOCK, SDATA: ............... 250-kpull-up  
FS1:............................................................250-kpull-down  
FS0:...................................................No pull-up or pull-down  
• System frequency synthesizer for 440BX, 440ZX, and  
VIA Apollo Pro-133  
2
• I C programmable to 155 MHz (32 selectable  
frequencies)  
• Two skew-controlled copies of CPU output  
• Seven copies of PCI output (synchronous w/CPU out-  
put)  
• One copy of 14.31818-MHz IOAPIC output  
• One copy of 48-MHz USB output  
Note:  
Internal pull-up or pull-down resistors should not be re-  
lied upon for setting I/O pins HIGH or LOW.  
Table 1. Pin Selectable Frequency  
• Selectable 24-/48-MHz clock is determined by resistor  
straps on power up  
• One high-drive output buffer that produces a copy of  
the 14.318-MHz reference  
FS1  
1
FS0  
1
CPU(0:1)  
133.3 MHz  
105 MHz  
100 MHz  
66.8 MHz  
PCI  
33.3 MHz  
35 MHz  
• Isolated core VDD pin for noise reduction  
1
0
0
1
33.3 MHz  
33.3 MHz  
Key Specifications  
0
0
Supply Voltages: ....................................... V  
V
= 3.3V±5%  
= 2.5V±5%  
DDQ3  
DDQ2  
Block Diagram  
Pin Configuration  
VDDQ3  
REF2X/SEL48#  
GND  
X1  
X2  
XTAL  
OSC  
VDDQ3  
IOAPIC  
PLL Ref Freq  
X1  
X2  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
GND  
2
REF2X/SEL48#  
VDDQ3  
VDDQ2  
IOAPIC  
VDDQ2  
CPU0  
GND  
3
PCI_F  
4
VDDQ2  
CPU0  
PCI1  
5
PCI2  
6
PCI3  
7
CPU1  
GND  
PCI4  
8
CPU1  
VDDQ3  
GND  
VDDQ3  
PCI5  
9
10  
11  
12  
13  
14  
PCI6  
SDATA  
SCLOCK  
FS0  
FS1  
FS0  
PLL 1  
VDDQ3  
48MHz  
24_48MHz/FS1  
÷2/÷3  
GND  
VDDQ3  
PCI_F  
PCI1  
PCI2  
PCI3  
PCI4  
PCI5  
PCI6  
GND  
2
SDATA  
SCLOCK  
I C  
LOGIC  
VDDQ3  
48MHz  
PLL2  
24_48MHz/FS1  
GND  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
October 28, 1999, rev. **  
PRELIMINARY  
W196  
Pin Definitions  
Pin  
No.  
Pin  
Type  
Pin Name  
Pin Description  
CPU0:1  
22, 21  
O
CPU Clock Outputs 0 through 1: These two CPU clocks run at a frequency set by  
FS0:1 or the serial data interface. See Table 1 and Table 5. Output voltage swing is  
set by the voltage applied to VDDQ2.  
PCI1:6  
PCI_F  
5, 6, 7, 8, 10,  
11, 4  
O
PCI Bus Clock Outputs 1 through 6 and PCI_F: These seven PCI clock outputs  
run synchronously to the CPU clock. Voltage swing is set by the power connection  
to VDDQ3.  
IOAPIC  
24  
13  
14  
O
O
I/O APIC Clock Output: Provides 14.318-MHz fixed frequency. The output voltage  
swing is set by the power connection to VDDQ2.  
48MHz  
48-MHz Output: Fixed 48-MHz USB clock. Output voltage swing is controlled by  
voltage applied to VDDQ3.  
24_48MHz/FS1  
I/O  
24-MHz or 48-MHz Output/Frequency Select 1 Input: Frequency is set by the state  
of pin 27 on power-up. This pin doubles as the select strap to determine device  
operating frequency as described in Table 1.  
REF2X/SEL48#  
27  
I/O  
I/O Dual-Function REF2X and SEL48# Pin: Upon power-up, the state of SEL48#  
is latched. The initial state is set by either a 10K resistor to GND or to V . A 10K  
DD  
resistor to GND causes pin 14 to output 48 MHz. If the pin is strapped to V , pin  
DD  
14 will output 2 4MHz. After 2 ms, the pin becomes a high-drive output that produces  
a copy of 14.318 MHz.  
FS0  
16  
I
I/O  
I
Frequency Selection 0 Input: Selects CPU clock frequency as shown in Table 1  
on page 1.  
2
2
SDATA  
SCLOCK  
X1  
18  
I C Data Pin: Data should be presented to this input as described in the I C section  
of this data sheet. Internal 250-kpull-up resistor.  
2
2
17  
I C Clock Pin: The I C Data clock should be presented to this input as described in  
2
the I C section of this data sheet.  
1
I
Crystal Connection or External Reference Frequency Input: Connect to either  
a 14.318-MHz crystal or other reference signal.  
X2  
2
I
Crystal Connection: An input connection for an external 14.318-MHz crystal. If  
using an external reference, this pin must be left unconnected.  
VDDQ3  
VDDQ2  
GND  
9, 12, 20, 26  
23, 25  
P
P
G
Power Connection: Power supply for core logic and PLL circuitry, PCI, 48/24MHz,  
and Reference output buffers. Connect to 3.3V supply.  
Power Connection: Power supply for IOAPIC and CPU output buffers. Connect to  
2.5V supply.  
3, 15, 19, 28  
Ground Connections: Connect all ground pins to the common system ground  
plane.  
2
PRELIMINARY  
W196  
buffer is enabled, which converts the l/O pin into an operating  
Functional Description  
clock output. The 2-ms timer is started when V  
reaches  
DD  
I/O Pin Operation  
2.0V. The input bits can only be reset by turning V  
off and  
DD  
then back on again.  
Pins 14 and 27 are dual-purpose l/O pins. Upon power-up  
these pins act as logic inputs, allowing the determination of  
assigned device functions. A short time after power-up, the  
logic state of these pins is latched and the pins become clock  
outputs. This feature reduces device pin count by combining  
clock outputs with input select pins.  
It should be noted that the strapping resistors have no signifi-  
cant effect on clock output signal integrity. The drive imped-  
ance of the clock output is 20(nominal), which is minimally  
affected by the 10-kstrap to ground or V . As with the se-  
DD  
ries termination resistor, the output strapping resistor should  
be placed as close to the l/O pin as possible in order to keep  
the interconnecting trace short. The trace from the resistor to  
An external 10-kstrappingresistor is connected between  
the l/O pin and ground or V . Connection to ground sets a  
DD  
ground or V should be kept less than two inches in length to  
DD  
latch to 0, connection to V sets a latch to 1.Figure 1 and  
DD  
prevent system noise coupling during input logic sampling.  
Figure 2 show two suggested methods for strapping resistor  
connections.  
When the clock output is enabled following the 2-ms input pe-  
riod, a 14.318-MHz output frequency is delivered on the pin,  
Upon W196 power-up, the first 2 ms of operation is used for  
input logic selection. During this period, the REF2X and  
24_48MHz clock output buffers are three-stated, allowing the  
output strapping resistor on the l/O pin to pull the pin and its  
associated capacitive clock load to either a logic HIGH or LOW  
state. At the end of the 2-ms period, the established logic 0”  
or 1condition of the l/O pin is then latched. Next the output  
assuming that V has stabilized. If V has not yet reached  
DD  
DD  
full value, output frequency initially may be below target but will  
increase to target once V voltage has stabilized. In either  
DD  
case, a short output clock cycle may be produced from the  
CPU clock outputs when the outputs are enabled.  
VDD  
Output Strapping Resistor  
Series Termination Resistor  
10 k  
(Load Option 1)  
Clock Load  
W196  
Output  
Buffer  
Power-on  
Hold  
Output  
Low  
Output Three-state  
10 kΩ  
(Load Option 0)  
Reset  
Timer  
Q
D
Data  
Latch  
Figure 1. Input Logic Selection Through Resistor Load Option  
Jumper Options  
Output Strapping Resistor  
VDD  
Series Termination Resistor  
10 kΩ  
Clock Load  
W196  
R
Output  
Buffer  
Power-on  
Reset  
Timer  
Resistor Value R  
Hold  
Output  
Low  
Output Three-state  
Q
D
Data  
Latch  
Figure 2. Input Logic Selection Through Jumper Option  
3
PRELIMINARY  
W196  
chipset. Clock device register changes are normally made  
upon system initialization, if required. The interface can also  
be used during system operation for power management func-  
tions. Table 2 summarizes the control functions of the serial  
data interface.  
Serial Data Interface  
The W196 features a two-pin, serial data interface that can be  
used to configure internal register settings that control partic-  
ular device functions. Upon power-up, the W196 initializes with  
default register settings. Therefore, the use of this serial data  
interface is optional. The serial interface is write-only (to the  
clock chip) and is the dedicated function of device pins SDATA  
and SCLOCK. In motherboard applications, SDATA and  
SCLOCK are typically driven by two logic outputs of the  
Operation  
Data is written to the W196 in ten bytes of eight bits each.  
Bytes are written in the order shown in Table 3.  
Table 2. Serial Data Interface Control Functions Summary  
Control Function  
Description  
Common Application  
Clock Output Disable  
Any individual clock output(s) can be disabled.  
Disabled outputs are actively held LOW.  
Unused outputs are disabled to reduce EMI and  
system power. Examples are clock outputs to un-  
used PCI slots.  
CPU Clock Frequency Provides CPU/PCI frequency selections beyond For alternate microprocessors and power man-  
Selection  
the selections that are provided by the FS0:1 pins. agement options. Smooth frequency transition al-  
Frequency is changed in a smooth and controlled lows CPU frequency change under normalsystem  
fashion.  
operation.  
Output Three-state  
Test Mode  
Puts all clock outputs into a high-impedance state. Production PCB testing.  
All clock outputs toggle in relation to X1 input, in- Production PCB testing.  
ternal PLL is bypassed. Refer to Table 4.  
(Reserved)  
Reserved function for future device revision or pro- No user application. Register bit must be written  
duction device testing.  
as 0.  
Table 3. Byte Writing Sequence  
Byte  
Sequence  
Byte Name  
Bit Sequence  
Byte Description  
1
Slave Address  
11010010  
Commands the W196 to accept the bits in Data Bytes 36 for internal  
register configuration. Since other devices may exist on the same com-  
mon serial data bus, it is necessary to have a specific slave address for  
each potential receiver. The slave receiver address for the W196 is  
11010010. Register setting will not be made if the Slave Address is not  
correct (or is for an alternate slave receiver).  
2
3
Command  
Code  
Dont Care  
Dont Care  
Unused by the W196, therefore bit values are ignored (dont care). This  
byte must be included in the data write sequence to maintain proper byte  
allocation. The Command Code Byte is part of the standard serial com-  
munication protocol and may be used when writing to another addressed  
slave receiver on the serial data bus.  
Byte Count  
Unused by the W196, therefore bit values are ignored (dont care). This  
byte must be included in the data write sequence to maintain proper byte  
allocation. The Byte Count Byte is part of the standard serial communi-  
cation protocol and may be used when writing to another addressed slave  
receiver on the serial data bus.  
4
5
Data Byte 0  
Data Byte 1  
Data Byte 2  
Data Byte 3  
Data Byte 4  
Data Byte 5  
Data Byte 6  
Dont Care  
Refer to Cypress SDRAM drivers.  
6
7
Refer to Table 4  
The data bits in these bytes set internal W196 registers that control device  
operation. The data bits are only accepted when the Address Byte bit  
sequence is 11010010, as noted above. For description of bit control  
functions, refer to Table 4, Data Byte Serial Configuration Map.  
8
9
10  
4
PRELIMINARY  
W196  
Writing Data Bytes  
Table 5 details additional frequency selections that are avail-  
able through the serial data interface.  
Each bit in the data bytes control a particular device function  
except for the reservedbits which must be written as a logic  
0. Bits are written MSB (most significant bit) first, which is bit  
7. Table 4 gives the bit formats for registers located in Data  
Bytes 36.  
Table 6 details the select functions for Byte 3, bits 1 and 0.  
Table 4. Data Bytes 36 Serial Configuration Map  
Affected Pin  
Bit Control  
Bit(s)  
Pin No.  
Pin Name  
Control Function  
SEL_3  
0
1
Default  
Data Byte 3  
7
6
5
4
3
--  
--  
--  
--  
--  
--  
--  
--  
--  
--  
Refer to Table 5  
Refer to Table 5  
Refer to Table 5  
Refer to Table 5  
0
0
0
0
0
SEL_2  
SEL_1  
SEL_0  
Frequency Table  
Selection  
Frequency Controlled Frequency Controlled  
byexternalFS0:1 pins by BYT3 SEL_(3:0)  
(Table 1)  
Table 5  
2
--  
--  
--  
--  
(Reserved)  
Bit 1 Bit 0  
--  
--  
0
10  
Function (See Table 6 for function details)  
Spread Spectrum Off  
10  
0
0
1
1
0
1
0
1
Test Mode  
Spread Spectrum On (default)  
All Outputs Three-stated  
Data Byte 4  
7
--  
14  
--  
--  
(Reserved)  
--  
--  
Active  
--  
0
1
0
0
0
1
0
1
6
24/48MHz Clock Output Disable  
Low  
--  
5
--  
--  
(Reserved)  
4
--  
(Reserved)  
--  
--  
3
--  
--  
(Reserved)  
--  
--  
2
21  
--  
CPU1  
--  
Clock Output Disable  
(Reserved)  
Low  
--  
Active  
--  
1
0
22  
CPU0  
Clock Output Disable  
Low  
Active  
Data Byte 5  
7
4
11  
10  
-
PCI_F  
PCI6  
PCI5  
--  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
(Reserved)  
Low  
Low  
Low  
--  
Active  
Active  
Active  
--  
1
1
1
0
1
1
1
1
6
5
4
3
8
PCI4  
PCI3  
PCI2  
PCI1  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Clock Output Disable  
Low  
Low  
Low  
Low  
Active  
Active  
Active  
Active  
2
7
1
6
0
5
Data Byte 6  
7
6
5
4
3
2
1
--  
--  
--  
(Reserved)  
--  
--  
--  
--  
0
0
1
0
0
0
--  
IOAPIC  
--  
(Reserved)  
24  
--  
Clock Output Disable  
(Reserved)  
Low  
--  
Active  
--  
--  
--  
(Reserved)  
--  
--  
--  
--  
(Reserved)  
--  
--  
[1]  
27  
27  
REF2X  
REF2X  
Clock Output Disable  
Clock Output Disable  
Low  
Low  
Active  
Active  
1
[1]  
0
1
Note:  
1. Bits 0 and 1 of Data Byte 6 in Table 4 must be programmed as the same value.  
5
PRELIMINARY  
W196  
Table 5. Additional Frequency Selections through Serial Data Interface Data Bytes  
Input Conditions  
Data Byte 3, Bit [7:4, 1:0]  
Output Frequency  
If Spread Is On  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
CPU, SDRAM  
Clocks (MHz)  
PCI Clocks  
(MHz)  
Spread Percentage  
Bit [1:0]  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
SEL_3  
SEL_2  
SEL_1  
SEL_0  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
78  
81  
39  
40.5  
37.8  
33.4  
39  
OFF  
OFF  
113.5  
66.8  
117  
118.5  
122  
100  
126  
135  
137  
138.5  
142  
144  
155  
133.3  
124  
75  
OFF  
OFF  
OFF  
39.5  
37.3  
33.3  
31.5  
33.75  
34.25  
34.62  
35.5  
36  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
38.75  
33.3  
41.3  
37.5  
41.65  
33.4  
30  
OFF  
OFF  
±0.5% Center  
±0.5% Center  
±0.5% Center  
±0.5% Center  
±0.5% Center  
±0.5% Center  
±0.5% Center  
±0.5% Center  
±0.5% Center  
±0.5% Center  
±0.5% Center  
±0.5% Center  
±0.5% Center  
±0.5% Center  
±0.5% Center  
±0.5% Center  
83.3  
66.8  
90  
112  
95  
37.3  
31.67  
33.3  
40  
100  
120  
115  
110  
105  
140  
150  
124  
133.3  
38.3  
36.67  
35  
35  
37.5  
31  
33.3  
Table 6. Select Function for Data Byte 3, Bits 0:1  
Input Conditions  
Output Conditions  
REF2X,  
Data Byte 3  
Function  
Spread Spectrum OFF  
Test Mode  
Bit 1  
Bit 0  
CPU0:1 PCI_F, PCI1:6  
IOAPIC  
14.318 MHz  
X1  
48MHZ  
48 MHz  
X1/2  
24MHZ  
24 MHz  
X1/4  
0
0
1
1
0
1
0
1
Note 2  
X1/2  
Note 2  
CPU/2, 3, or 4  
±0.5%  
Spread Spectrum ON (default)  
±0.5%  
Hi-Z  
14.318 MHz  
Hi-Z  
48 MHz  
Hi-Z  
24 MHz  
Hi-Z  
Three-state  
Hi-Z  
Note:  
2. CPU and PCI frequency selections are listed in Table 1 and Table 5.  
6
PRELIMINARY  
W196  
Absolute Maximum Ratings  
Stresses greater than those listed in this table may cause per-  
manent damage to the device. These represent a stress rating  
only. Operation of the device at these or any other conditions  
above those specified in the operating sections of this specifi-  
cation is not implied. Maximum conditions for extended peri-  
ods may affect reliability.  
Parameter  
Description  
Voltage on any pin with respect to GND  
Storage Temperature  
Rating  
0.5 to +7.0  
65 to +150  
0 to +70  
Unit  
V
V
, V  
DD IN  
T
°C  
°C  
°C  
kV  
STG  
T
Operating Temperature  
A
T
Ambient Temperature under Bias  
Input ESD Protection  
55 to +125  
2 (min.)  
B
ESD  
PROT  
DC Electrical Characteristics: T = 0°C to +70°C, V  
= 3.3V±5%, V = 2.5V±5%  
DDQ2  
A
DDQ3  
Parameter  
Description  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Supply Current  
I
Combined 3.3V Supply Current  
CPU0:1 =100 MHz  
Outputs Loaded  
85  
30  
mA  
mA  
DDQ3  
[3]  
I
Combined 2.5V Supply Current  
CPU0:1 =100 MHz  
DDQ3  
[3]  
Outputs Loaded  
Logic Inputs  
V
V
Input Low Voltage  
Input High Voltage  
GND 0.3  
0.8  
V + 0.3  
DD  
V
V
IL  
2.0  
IH  
[4]  
I
I
Input Low Current  
25  
µA  
µA  
IL  
IH  
[4]  
Input High Current  
10  
Clock Outputs  
V
Output Low Voltage  
I
I
I
= 1 mA  
= 1 mA  
= 1 mA  
= 1.25V  
= 1.5V  
50  
mV  
V
OL  
OL  
OH  
OH  
V
Output High Voltage  
3.1  
2.2  
45  
OH  
V
Output High Voltage CPU0:1/IOAPIC  
V
OH  
I
Output Low Current  
CPU0:1  
V
V
V
V
V
V
V
V
V
V
60  
110  
90  
80  
140  
140  
170  
90  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
OL  
PCI_F, PCI1:6  
IOAPIC  
85  
= 1.25V  
= 1.5V  
65  
REF2X  
110  
50  
140  
70  
48MHz, 24MHz  
= 1.5V  
I
Output High Current CPU0:1  
PCI_F, PCI1:6  
= 1.25V  
= 1.5V  
35  
50  
80  
OH  
60  
95  
130  
140  
150  
90  
IOAPIC  
= 1.25V  
= 1.5V  
45  
87  
REF2X  
100  
50  
130  
70  
48MHz, 24MHz  
= 1.5V  
Crystal Oscillator  
X1 Input Threshold Voltage  
[5]  
V
V
= 3.3V  
1.65  
14  
V
TH  
DDQ3  
C
Load Capacitance, as seen by  
External Crystal  
pF  
LOAD  
[6]  
[7]  
C
X1 Input Capacitance  
Pin X2 unconnected  
28  
pF  
IN,X1  
Notes:  
3. All clock outputs loaded with maximum lump capacitance test load specified in the AC Electrical Characteristics section.  
4. W196 logic inputs have internal pull-up resistors, except SEL100/66# (pull-ups not full CMOS level).  
5. X1 input threshold voltage (typical) is VDD/2.  
6. The W196 contains an internal crystal load capacitor between pin X1 and ground and another between pin X2 and ground. Total load placed on crystal is  
14 pF; this includes typical stray capacitance of short PCB traces to crystal.  
7. X1 input capacitance is applicable when driving X1 with an external clock source (X2 is left unconnected).  
7
PRELIMINARY  
W196  
DC Electrical Characteristics: T = 0°C to +70°C, V  
= 3.3V±5%, V  
= 2.5V±5% (continued)  
DDQ2  
A
DDQ3  
Parameter  
Description  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
Pin Capacitance/Inductance  
C
C
Input Pin Capacitance  
Output Pin Capacitance  
Input Pin Inductance  
Except X1 and X2  
5
6
7
pF  
pF  
nH  
IN  
OUT  
IN  
L
AC Electrical Characteristics  
T = 0°C to +70°C, V  
= 3.3V±5%,V  
= 2.5V± 5%, f  
= 14.31818 MHz  
XTL  
A
DDQ3  
DDQ2  
AC clock parameters are tested and guaranteed over stated operating conditions using the stated lump capacitive load at the  
clock output; Spread Spectrum clocking is disabled.  
CPU Clock Outputs, CPU0:1 (Lump Capacitance Test Load = 20 pF)  
CPU = 66.8 MHz  
CPU = 100 MHz  
Parameter  
Description  
Period  
Test Condition/Comments  
Measured on rising edge at 1.25V  
Duration of clock cycle above 2.0V  
Duration of clock cycle below 0.4V  
Min. Typ. Max. Min. Typ. Max. Unit  
t
t
t
t
t
t
15  
5.2  
5.0  
1
15.5  
10  
3.0  
2.8  
1
10.5  
ns  
ns  
P
H
L
High Time  
Low Time  
ns  
Output Rise Edge Rate Measured from 0.4V to 2.0V  
Output Fall Edge Rate Measured from 2.0V to 0.4V  
4
4
4
4
V/ns  
V/ns  
%
R
F
D
1
1
Duty Cycle  
Measured on rising and falling edge at  
45  
55  
45  
55  
1.25V  
t
Jitter, Cycle-to-Cycle  
Measured on rising edge at 1.25V. Max-  
imum difference of cycle time between  
two adjacent cycles.  
200  
250  
ps  
JC  
t
f
Output Skew  
Measured on rising edge at 1.25V  
175  
3
175  
3
ps  
SK  
Frequency Stabiliza-  
tion from Power-up  
(cold start)  
Assumes full supply voltage reached  
within 1 ms from power-up. Short cycles  
exist prior to frequency stabilization.  
ms  
ST  
Z
AC Output Impedance Average value during switching transi-  
tion. Used for determining series termi-  
nation value.  
20  
20  
o
8
PRELIMINARY  
W196  
PCI Clock Outputs, PCI1:6 and PCI_F (Lump Capacitance Test Load = 30 pF  
CPU = 66.8/100 MHz  
Parameter  
Description  
Test Condition/Comments  
Measured on rising edge at 1.5V  
Min.  
30  
12  
12  
1
Typ. Max. Unit  
t
t
t
t
t
t
t
Period  
ns  
ns  
ns  
P
High Time  
Duration of clock cycle above 2.4V  
Duration of clock cycle below 0.4V  
Measured from 0.4V to 2.4V  
H
L
Low Time  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
4
4
V/ns  
V/ns  
%
R
F
Measured from 2.4V to 0.4V  
1
Measured on rising and falling edge at 1.5V  
45  
55  
250  
D
JC  
Jitter, Cycle-to-Cycle  
Measured on rising edge at 1.5V. Maximum  
ps  
difference of cycle time between two adjacent cycles.  
t
t
Output Skew  
Measured on rising edge at 1.5V  
500  
4
ps  
ns  
SK  
CPU to PCI Clock Skew  
Covers all CPU/PCI outputs. Measured on rising  
edge at 1.5V. CPU leads PCI output.  
1
O
f
Frequency Stabilization  
from Power-up (cold start) from power-up. Short cycles exist prior to frequency  
stabilization.  
Assumes full supply voltage reached within 1 ms  
3
ms  
ST  
Z
AC Output Impedance  
Average value during switching transition. Used for  
determining series termination value.  
20  
o
IOAPIC Clock Output (Lump Capacitance Test Load = 20 pF)  
CPU = 66.8/100 MHz  
Parameter  
Description  
Frequency, Actual  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
Test Condition/Comments  
Frequency generated by crystal oscillator  
Measured from 0.4V to 2.0V  
Min.  
Typ.  
Max.  
Unit  
MHz  
V/ns  
V/ns  
%
f
14.31818  
t
t
t
f
1
1
4
4
R
Measured from 2.0V to 0.4V  
F
Measured on rising and falling edge at 1.25V  
45  
55  
1.5  
D
Frequency Stabilization  
Assumes full supply voltage reached within  
ms  
ST  
from Power-up (cold start) 1 ms from power-up. Short cycles exist prior to  
frequency stabilization.  
Z
AC Output Impedance  
Average value during switching transition. Used  
for determining series termination value.  
15  
o
REF2X Clock Output (Lump Capacitance Test Load = 20 pF)  
CPU = 66.8/100 MHz  
Parameter  
Description  
Frequency, Actual  
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
Test Condition/Comments  
Frequency generated by crystal oscillator  
Measured from 0.4V to 2.4V  
Min.  
Typ.  
Max. Unit  
f
14.318  
MHz  
t
t
t
f
0.5  
0.5  
45  
2
2
V/ns  
V/ns  
%
R
Measured from 2.4V to 0.4V  
F
Measured on rising and falling edge at 1.5V  
55  
3
D
FrequencyStabilizationfrom Assumes full supply voltage reached within  
ms  
ST  
Power-up (cold start)  
AC Output Impedance  
1 ms from power-up. Short cycles exist prior to  
frequency stabilization.  
Z
Average value during switching transition. Used  
for determining series termination value.  
15  
o
9
PRELIMINARY  
W196  
48-MHZ and 24-MHz Clock Output (Lump Capacitance Test Load = 20 pF)  
Parameter  
Description  
Test Condition/Comments  
Min.  
Typ.  
Max. Unit  
f
Frequency, Actual  
Determined by PLL divider ratio (see m/n below)  
48.008  
24.004  
MHz  
f
Deviation from 48 MHz  
PLL Ratio  
(48.008 48)/48  
+167  
ppm  
D
m/n  
(14.31818 MHz x 57/17 = 48.008 MHz)  
Measured from 0.4V to 2.4V  
57/17, 57/34  
t
t
t
f
Output Rise Edge Rate  
Output Fall Edge Rate  
Duty Cycle  
0.5  
0.5  
45  
2
2
V/ns  
V/ns  
%
R
Measured from 2.4V to 0.4V  
F
Measured on rising and falling edge at 1.5V  
Assumes full supply voltage reached within 1 ms  
55  
3
D
Frequency Stabilization  
ms  
ST  
from Power-up (cold start) from power-up. Short cycles exist prior to fre-  
quency stabilization.  
Z
AC Output Impedance  
Average value during switching transition. Used  
for determining series termination value.  
25  
o
Ordering Information  
Package  
Name  
Ordering Code  
Package Type  
W196  
G
28-pin SOIC (300 mils)  
Document #: 38-00842  
10  
PRELIMINARY  
W196  
Package Diagram  
28-Pin Small Outline Integrated Circuit (SOIC, 300 mils)  
© Cypress Semiconductor Corporation, 1999. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  

相关型号:

W196GT

Processor Specific Clock Generator, 150MHz, CMOS, PDSO28, 0.300 INCH, SOIC-28
CYPRESS

W196_02

Spread Spectrum FTG for 440BX and VIA Apollo Pro-133
CYPRESS

W198HT

Clock Generator, 108MHz, CMOS, PDSO16, 0.209 INCH, MO-150AB, SSOP-16
CYPRESS

W199

Spread Spectrum FTG for VIA Apollo Pro-133
CYPRESS

W1991

LTE Stealth Blade Antenna
PULSE

W1991AV

LTE Stealth Blade Antenna
PULSE

W199ABMX-7

Advantages of the W199 Power Relay
ETC

W199ADBX-4

Advantages of the W199 Power Relay
ETC

W199AX-15

RELAY OPEN CHASSIS 240VAC
ETC

W199AX-8

Advantages of the W199 Power Relay
ETC

W199AX-9

Electromechanical Relay, DPST, 40A (Contact), 28VDC (Contact), AC/DC Output,
SCHNEIDER

W199DEX-3

Advantages of the W199 Power Relay
ETC