CYF0072V33L-150BGXI [CYPRESS]

FIFO, PBGA209, 14 X 22 MM, 1.76 MM HEIGHT, FPBGA-209;
CYF0072V33L-150BGXI
型号: CYF0072V33L-150BGXI
厂家: CYPRESS    CYPRESS
描述:

FIFO, PBGA209, 14 X 22 MM, 1.76 MM HEIGHT, FPBGA-209

先进先出芯片
文件: 总25页 (文件大小:642K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CYFX018VXXX, CYFX036VXXX  
CYFX072VXXX, CYFX144VXXX  
PRELIMINARY  
18/36/72/144 Mbit Programmable FIFOs  
18/36/72/144 Mbit Programmable FIFOs  
Features  
Functional Description  
Memory organization  
Industry's largest first in first out (FIFO) memory densities:  
18 Mbit, 36 Mbit, 72 Mbit, and 144 Mbit  
Selectable memory organization: ×9, ×12, ×16, ×18, ×20,  
×24, ×32, ×36  
The Cypress programmable FIFO family offers the industry’s  
highest-density programmable FIFO memory device. It has  
independent read and write ports, which can be clocked up to  
150 MHz. You can configure input and output bus sizes. The  
maximum bus size of 36 bits enables a maximum data  
throughput of 5.4 Gbps. The read and write ports can support  
multiple I/O voltage standards. The user-programmable  
registers enable you to configure the device operation as  
desired. The device also offers a simple and easy-to-use  
interface to reduce implementation and debugging efforts,  
improve time-to-market, and reduce engineering costs. This  
makes it an ideal memory choice for a wide range of applications  
including multiprocessor interfaces, video and image  
processing, networking and telecommunications, high-speed  
data acquisition, or any system that needs buffering at very high  
speeds across different domains.  
Up to 150-MHz clock operation  
Unidirectional operation  
Independent read and write ports  
Supports simultaneous read and write operations  
Reads and writes operate on independent clocks enabling  
data buffering across clock domains  
Separate input/output (I/O) supply for read and write I/O ports  
Selectable I/O voltage standard: supports 3.3 V, 2.5 V,  
1.8 V, and 1.5 V voltage standards.  
Available in low voltage complementary metal oxide  
semiconductor (LVCMOS) and high-speed transceiver logic  
(HSTL) one-half I/O standard  
As implied by the name, the functionality of the FIFO is such that  
the data is read out of the read port in the same sequence in  
which it was written into the write port. The data is sequentially  
written into the FIFO from the write port. If the writes and inputs  
are enabled, the data on the write port gets written into the device  
at the rising edge of the write clock. Enabling the reads and  
outputs fetches data on the read port at every rising edge of the  
read clock. Both reads and writes can occur simultaneously at  
different speeds. Appropriate flags are set whenever the FIFO is  
empty, full, half-full, almost-full, or almost-empty.  
Input and output enable control for write mask and read skip  
operations  
User configured multi-queue operating mode  
Mark and retransmit: resets read pointer to user marked  
position  
Empty, full, half-full, and programmable almost-empty and  
almost-full status flags with preselected offsets  
The device also supports multi-queue operation, mark and  
retransmit of data, and a mailbox register.  
Mailbox register to send data from input to output port,  
bypassing the FIFO sequence  
All product features and specs are common to all densities  
(CYFX144VXXX, CYFX072VXXX, CYFX036VXXX, and  
CYF018VXXX) unless otherwise specified.  
Configure programmable flags and registers through serial or  
parallel modes  
Separate serial clock (SCLK) input for serial programming  
Master reset to clear entire FIFO  
Partial reset to clear data but retain programmable settings  
Joint test action group (JTAG) port provided for boundary scan  
function  
Industrial temperature range: –40 °C to +85 °C  
Cypress Semiconductor Corporation  
Document Number: 001-53687 Rev. *G  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised January 6, 2011  
PRELIMINARY  
CYFX018VXXX, CYFX036VXXX  
CYFX072VXXX, CYFX144VXXX  
Logic Block Diagram  
Document Number: 001-53687 Rev. *G  
Page 2 of 25  
PRELIMINARY  
CYFX018VXXX, CYFX036VXXX  
CYFX072VXXX, CYFX144VXXX  
Contents  
Pin Diagram .......................................................................4  
Pin Definitions .................................................................. 5  
Architecture ...................................................................... 7  
Reset Logic ................................................................. 7  
Flag Operation ............................................................ 7  
Full Flag ...................................................................... 7  
Half-Full Flag ............................................................... 7  
Empty Flag .................................................................. 7  
Programmable Almost-Empty and  
Almost-Full Flags ................................................................ 7  
Retransmit from Mark Operation ................................. 7  
Mailbox Register .........................................................7  
Selecting Word Sizes .................................................. 8  
Power Up ........................................................................... 8  
Write Mask and Read Skip Operation ......................... 8  
Multi-Queue Operation ................................................ 8  
Programming Flag Offsets and  
Width Expansion Configuration ................................. 11  
Memory Organization for Different Port Sizes .......... 12  
Read/Write Clock Requirements ............................... 12  
Device Specific Functionality Table .......................... 12  
Maximum Ratings ........................................................... 13  
Operating Range ............................................................ 13  
Switching Characteristics ............................................. 15  
Switching Waveforms .................................................... 16  
Ordering Information ..................................................... 21  
Part Numbering Nomenclature ................................. 21  
Package Diagram ........................................................... 22  
Acronyms ........................................................................ 23  
Document History Page ................................................. 24  
Sales, Solutions, and Legal Information ...................... 25  
Worldwide Sales and Design Support ...................... 25  
Products .................................................................... 25  
PSoC Solutions ......................................................... 25  
Configuration Registers ...................................................... 9  
Document Number: 001-53687 Rev. *G  
Page 3 of 25  
PRELIMINARY  
CYFX018VXXX, CYFX036VXXX  
CYFX072VXXX, CYFX144VXXX  
Pin Diagram  
Figure 1. 209-Ball FBGA (Top View)  
1
2
3
4
5
6
PORTSZ1  
PORTSZ2  
DNU  
7
DNU  
8
RQSEL0  
RQSEL1  
RQSEL2  
VCC1  
VCC2  
VSS  
9
10  
Q0  
11  
Q1  
A
B
C
D
E
F
FF  
EF  
D0  
D1  
D3  
WQSEL0 PORTSZ0  
RT  
D2  
WQSEL1  
DNU  
VCC1  
DNU  
REN  
RCLK  
Vss  
Q2  
Q3  
D4  
D5  
WEN WQSEL2  
VCC1  
Q4  
Q5  
D6  
D7  
VSS  
VCC2  
VSS  
VCC1  
VCC2  
VSS  
DNU  
LD  
DNU  
Q6  
Q7  
D8  
D9  
VCCIO_W  
VSS  
VCCIO_W  
VSS  
VCCIO_W  
VSS  
VCCIO_W  
VSS  
VCCIO_W  
VSS  
VCCIO_W  
VCC1  
VCCIO_W  
DNU  
VCCIO_R  
VSS  
VCCIO_R  
VSS  
VCCIO_R  
VSS  
VCCIO_R  
VSS  
VCCIO_R  
VSS  
VCCIO_R  
VCC1  
VCC2  
VSS  
Q8  
Q9  
D10  
D12  
D14  
D16  
DNU  
D18  
D20  
D22  
D24  
D26  
D28  
DVal  
PAF  
TDO  
D11  
D13  
D15  
D17  
DNU  
D19  
D21  
D23  
D25  
D27  
D29  
DNU  
PAE  
HF  
Q10  
Q12  
Q14  
Q16  
Q11  
Q13  
Q15  
Q17  
G
H
J
VCC2  
VSS  
VCC2  
VSS  
VCC1  
VCC2  
VSS  
VCC2  
VSS  
VCC1  
VCC2  
WCLK  
VCC2  
VSS  
VCC2  
DNU  
VCC2  
VSS  
VCC1  
VCC2  
DNU  
VCC2  
VSS  
VCC2  
K
L
IE  
VCCIO_R VCCIO_R VCCIO_R  
VCC1  
VCC2  
VSS  
Q18  
Q20  
Q22  
Q24  
Q26  
Q28  
Q30  
Q32  
Q34  
Q19  
Q21  
Q23  
Q25  
Q27  
Q29  
Q31  
Q33  
Q35  
M
N
P
R
T
VCC1  
VCC2  
VSS  
VCC2  
VSS  
VCC1  
VCC2  
VSS  
VCC2  
VSS  
SPI_SEN  
VCCIO_R  
SPI_SI  
DNU  
VCC2  
VSS  
VCC2  
VCC1  
D31  
VCC2  
VCC1  
Vref  
VCC2  
VSS  
U
V
W
D30  
PRS  
SPI_SCLK  
MB  
OE  
D32  
D33  
DNU  
MRS  
DNU  
TCK  
MARK  
Vref  
D34  
D35  
TDI  
TRST  
TMS  
Document Number: 001-53687 Rev. *G  
Page 4 of 25  
PRELIMINARY  
CYFX018VXXX, CYFX036VXXX  
CYFX072VXXX, CYFX144VXXX  
Pin Definitions  
Pin Name  
D[35:0]  
I/O  
Input  
Pin Description  
Data inputs: Data inputs for a 36-bit bus  
Q[35:0]  
WEN  
REN  
IE  
Output Data outputs: Data outputs for a 36-bit bus  
Input  
Input  
Input  
Write enable: WEN enables WCLK to write data into the FIFO memory and configuration registers.  
Read enable: REN enables RCLK to read data from the FIFO memory and configuration registers.  
Input enable: IE is the data input enable signal that controls the enabling and disabling of the 36-bit data  
input pins. If it is enabled, data on the D[35:0] pins is written into the FIFO. The internal write address  
pointer is always incremented at rising edge of WCLK if WEN is enabled, regardless of the IE level. This  
is used for 'write masking' or incrementing the write pointer without writing into a location.  
OE  
Input  
Input  
Input  
Output enable: When OE is LOW, FIFO data outputs are enabled; when OE is HIGH, the FIFO’s outputs  
are in High Z (high impedance) state.  
WCLK  
RCLK  
Write clock: When enabled by WEN, the rising edge of WCLK writes data into the FIFO if LD is high and  
into the configuration registers if LD is low.  
Read clock: When enabled by REN, the rising edge of RCLK reads data from the FIFO memory if LD is  
high and from the configuration registers if LD is low.  
EF  
Output Empty flag: When EF is LOW, the FIFO is empty. EF is synchronized to RCLK.  
Output Full flag: When FF is LOW, the FIFO is full. FF is synchronized to WCLK.  
FF  
PAE  
Output Programmable almost-empty: When PAE is LOW, the FIFO is almost empty based on the almost-empty  
offset value programmed into the FIFO. It is synchronized to RCLK.  
PAF  
LD  
Output Programmable almost-full: When PAF is LOW, the FIFO is almost full based on the almost-full offset  
value programmed into the FIFO. It is synchronized to WCLK.  
Input  
Load: When LD is LOW, D[7:0] (Q[7:0]) are written (read) into (from) the configuration registers. When  
LD is HIGH, D[35:0] (Q[35:0]) are written (read) into (from) the FIFO  
RT  
Input  
Retransmit: A HIGH pulse on RT resets the internal read pointer to a physical location of the FIFO which  
is marked by the user (using MARK pin). With every valid read cycle after retransmit, previously accessed  
data is read and the read pointer is incremented until it is equal to the write pointer.  
MRS  
Input  
Input  
Input  
Master reset: MRS initializes the read and write pointers to zero and sets the output register to all zeroes.  
During Master Reset, the configuration registers are all set to default values.  
PRS  
Partial reset: PRS initializes the read and write pointers to zero and sets the output register to all zeroes.  
During Partial Reset, the configuration register settings are all retained.  
SPI_SCLK  
Serial clock: A rising edge on SPI_SCLK clocks the serial data present on the SPI_SI input into the offset  
registers if SPI_SEN is enabled.  
SPI_SI  
SPI_SEN  
MARK  
Input  
Input  
Input  
Serial input: Serial input of SPI_SEN is enabled.  
Serial enable: Enables serial loading of programmable flag offsets and configuration registers.  
Mark for retransmit: When this pin is asserted the current location of the read pointer is marked. Any  
subsequent retransmit operation resets the read pointer to this position.  
MB  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Mailbox: When asserted the reads and writes happen to mailbox register.  
Write queue select: Write queue select pin. Select maximum eight queues using pins.  
Read queue select: Read queue select pin. Select maximum eight queues using pins.  
Test clock (TCK) Pin for JTAG  
WQSEL[2:0]  
RQSEL[2:0]  
TCK  
TRST  
TMS  
Reset pin for JTAG  
Test mode select (TMS) pin for JTAG  
TDI  
Test data in (TDI) pin for JTAG  
TDO  
Output Test data out (TDO) for JTAG  
Document Number: 001-53687 Rev. *G  
Page 5 of 25  
PRELIMINARY  
CYFX018VXXX, CYFX036VXXX  
CYFX072VXXX, CYFX144VXXX  
Pin Definitions (continued)  
Pin Name  
HF  
I/O  
Pin Description  
Output Half-full flag: Half-full status flag  
DVal  
Output Data valid: Active low data valid signal  
PORTSZ [2:0]  
VCC1  
Input  
Port word size select: Port word width select pins (common for read and write ports)  
Core voltage supply 1: 1.8-V supply voltage  
Power  
Supply  
VCC2  
Power  
Supply  
Core voltage supply 2: 1.5-V supply voltage  
VCCIO_R  
VCCIO_W  
Vref  
Power  
Supply  
Supply for read port I/Os: Read port inputs and I/O supply  
Supply for write port I/Os: Write port inputs and I/O supply  
Reference voltage: Reference voltage (regardless of I/O standard used)  
Power  
Supply  
Input  
Reference  
VSS  
Ground Ground  
Do not use: These pins need to be left floating or tied to Ground  
DNU  
Document Number: 001-53687 Rev. *G  
Page 6 of 25  
PRELIMINARY  
CYFX018VXXX, CYFX036VXXX  
CYFX072VXXX, CYFX144VXXX  
Half-Full Flag  
Architecture  
The Half-Full (HF) flag goes LOW when half of the memory array  
is written. The assertion of HF is synchronized to WCLK.  
The CYFX144VXXX, CYFX072VXXX, CYFX036VXXX, and  
CYFX018VXXX are of memory arrays of 144 Mbit, 72 Mbit,  
36 Mbit, and 18 Mbit respectively. The memory organization is  
user configurable and word sizes can be selected as x9, x12,  
x16, x18, x20, x24, x32, or x36. The logic blocks to implement  
FIFO functionality and the associated features are built around  
these memory arrays.  
Empty Flag  
The Empty Flag (EF) goes LOW when the device is empty. Read  
operations are inhibited whenever EF is LOW, regardless of the  
state of REN. EF is synchronized to RCLK, that is, it is  
exclusively updated by each rising edge of RCLK.  
The input and output data buses have a width of 36 bits. The  
input data bus goes to an input register and the data flow from  
the input register to the memory is controlled by the write logic  
block. The inputs to the write logic block are WCLK, WEN, IE,  
and WQSEL. When the writes are enabled through WEN and if  
the inputs are enabled by IE, then the data on the input bus is  
written into the memory array at the rising edge of WCLK. This  
also increments the write pointer. Enabling writes but disabling  
the data input pins through IE only increments the write pointer  
without doing any writes or altering the contents of the location.  
In a multi-queue operating mode, the WQSEL selects the queue  
in which the write should occur.  
Programmable Almost-Empty and Almost-Full Flags  
The CYFX072VXXX includes programmable Almost-Empty and  
Almost-Full flags. Each flag is programmed (see Programming  
Flag Offsets and Configuration Registers on page 9) a specific  
distance from the corresponding boundary flags (Empty or Full).  
When the FIFO contains the number of words (or fewer) for  
which the flags are programmed, the PAF or PAE is asserted,  
signifying that the FIFO is either almost-full or almost-empty. The  
PAF flag signal transition is caused by the rising edge of the write  
clock and the PAE flag transition is caused by the rising edge of  
the read clock.  
Similarly, the output register is connected to the data output bus.  
Transfer of contents from the memory to the output register is  
controlled by the read control logic. The inputs to the read control  
logic include RCLK, REN, OE, RQSEL, and MARK. When reads  
are enabled by REN and outputs are enabled through OE, the  
data from the memory pointed by the read pointer is transferred  
to the output data bus at the rising edge of RCLK along with  
active low DVal. If the outputs are disabled but the reads  
enabled, the outputs are in high impedance state, but internally  
the read pointer is incremented. In a multi-queue operating  
mode, the RQSEL selects the queue from which the read occurs.  
Retransmit from Mark Operation  
The retransmit feature is useful for transferring packets of data.  
It enables the receipt of data to be acknowledged by the receiver  
and retransmitted if necessary. The retransmit feature is used  
when the number of writes equal to or less than the depth of the  
FIFO has occurred – and at least one word has been read since  
the last reset cycle. A HIGH pulse on RT resets the internal read  
pointer to a physical location of the FIFO that is marked by the  
user (using the MARK pin). With every valid read cycle after  
retransmit, previously accessed data is read and the read pointer  
is incremented until it is equal to the write pointer. Flags are  
governed by the relative locations of the read and write pointers  
and are updated during a retransmit cycle. Data written to FIFO  
after activation of RT are also transmitted. The full depth of the  
FIFO can be repeatedly retransmitted.  
The MARK signal is used to ‘mark’ the location from which data  
is retransmitted when requested.  
Reset Logic  
The FIFO can be reset in two ways: Master Reset (MRS) and  
Partial Reset (PRS). The MRS initializes the read and write  
pointers to zero and sets the output register to all zeroes. It also  
resets the configuration registers to their default values. The  
word size is configured through pins; values of the PORTSZ pins  
are latched during MRS. A Master Reset is required after  
power-up before accessing the FIFO. The PRS resets only the  
read and write pointer to the first location and does not affect the  
programmed configuration registers.  
To mark a location, the Mark pin is asserted when reading that  
particular location.  
Mailbox Register  
This is used to transfer data from the inputs to the outputs  
directly, bypassing the FIFO sequence. A write operation when  
the Mailbox (MB) signal is asserted writes the data in the mailbox  
register. A read operation when the MB is asserted reads the  
contents from the mailbox register. The width of mailbox register  
always corresponds to port size.  
Flag Operation  
This device provides five flag pins to indicate the condition of the  
FIFO contents.  
Full Flag  
The Full Flag (FF) goes LOW when the device is full. Write  
operations are inhibited whenever FF is LOW regardless of the  
state of WEN. FF is synchronized to WCLK, that is, it is  
exclusively updated by each rising edge of WCLK.  
Document Number: 001-53687 Rev. *G  
Page 7 of 25  
PRELIMINARY  
CYFX018VXXX, CYFX036VXXX  
CYFX072VXXX, CYFX144VXXX  
Selecting Word Sizes  
Write Mask and Read Skip Operation  
The word sizes are configured based on the logic levels on the  
PORTSZ pins during the master reset (MRS) cycle only (latched  
on low to high edge). The port size cannot be changed during  
normal mode of operation and these pins are ignored. If word  
size is less than x36, the unused output pins are tri-stated by the  
device.  
As mentioned in Architecture on page 7, enabling writes but  
disabling the inputs (IE HIGH) increments the write pointer  
without doing any write operations or altering the contents of the  
location.  
This feature is called Write Mask and allows you to move the  
write pointer without actually writing to the locations. This “write  
masking” ability is useful in some video applications such as  
Picture In Picture (PIP).  
Data Valid Signal (DVal)  
Data valid (DVal) is an active low signal and is provided for easy  
capture of output data to the user. When a read operation is  
performed, the DVal signal goes low along with output data. This  
helps you to capture the data without keeping track of REN to  
data output latency. This signal also helps when write and read  
operations are performed continuously at different frequencies  
by indicating when valid data is read out at the output port Q.  
Similarly, during a read operation, if the outputs are disabled by  
having the OE high, the read data does not appear on the output  
bus; however, the read pointer is incremented.  
Multi-Queue Operation  
By default, the FIFO is sequenced considering the complete  
memory as a single block. It is also possible to divide the whole  
array into smaller parts, and each part can be independently  
accessed with a FIFO sequence. This is like having a number of  
independent queues inside the FIFO instead of the FIFO acting  
as one big queue. You can configure the number of queues.  
Power Up  
The device becomes functional after VCC1, VCC2, VCCIO_R/W  
,
and Vref attain minimum stable voltage required as given in  
Recommended DC Operating Conditions on page 13. The  
device can be accessed TPU time after these supplies attain the  
minimum required level (see Switching Characteristics on page  
15).  
If the number of queues is less than 8, the controls for deciding  
the queue number to read from or write to will be through three  
pins each for input and output (RQSEL[2:0] and WQSEL[2:0]).  
The queue to be accessed during a read or a write is decided by  
the states of these pins during the operation (see Table 2).  
However, if a larger number of queues are required to be  
implemented (more than 8), it has to be set in the configuration  
registers; the queue to be accessed is decided by the values  
written into the configuration registers.  
Table 1. Word Size Selection  
PORTSZ[2:0]  
Word Size  
×9  
000  
001  
010  
011  
100  
101  
110  
111  
×12  
The number of queues is configured based on the value in the  
configuration register 3 (refer to Table 4 on page 10). The  
maximum number of queues into which the FIFO can be divided  
is 128. Setting bit 7 (Enable Queue Registers) of the register 3  
to “1” enables registers 1 and 2, which, in turn, determine the  
queue to be written to or read from. In this mode, the pins RQSEL  
and WQSEL are disabled. Setting bit 7 of the register 3 to “0”,  
however, disables the registers 1 and 2. The queue is selected  
based on the logic levels on the WQSEL and RQSEL pins during  
read and write operation.  
×16  
×18  
×20  
×24  
×32  
×36  
When RQSEL is changed, valid data is read after a latency as  
defined in Table 3 on page 9 and Table 11 on page 14; the latency  
is different across parts, depending on number of queues  
supported. For WQSEL, the first write can be performed on the  
next WCLK cycle.  
Table 2. Multi-Queue Configuration  
RQSEL[2:0]/WQSEL[2:0]  
Queue Number Selected  
000  
001  
010  
011  
100  
101  
110  
111  
1
2
3
4
5
6
7
8
Document Number: 001-53687 Rev. *G  
Page 8 of 25  
PRELIMINARY  
CYFX018VXXX, CYFX036VXXX  
CYFX072VXXX, CYFX144VXXX  
Programming Flag Offsets and Configuration  
Registers  
Table 3. Latencies for Queue Change Operation (for 2-queue  
part only - CYF1XXXVXXX - 100BGXI)  
The CYFX072VXXX has 10 8-bit user configurable registers.  
These registers contain the almost-full offset (M) and  
almost-empty (N) values which decide when the PAF and PAE  
flags are flagged, and device configuration such as the queue  
number for the multi-queue operation.  
For 2-Queue Part[1]  
Latencies  
Queue-to-Queue change for  
RQSEL  
0[2]  
RQSEL change to data valid  
LREN_TO_DATA (REN to data  
valid) for all parts  
These registers can be programmed into the FIFO in one of two  
ways: using either the serial or parallel loading method. The  
loading method is selected using the SPI_SEN (Serial Enable)  
pin. A low on the SPI_SEN selects the serial method for writing  
into the registers. For serial programming, there is a separate  
SCLK and a Serial Input (SI). In parallel mode, a low on the load  
(LD) pin causes the write and read operation to these registers.  
The write and read operation happens from the first location  
(0x1) to the last location (0xA) in a sequence. If LD is high, the  
writes occur to the FIFO.  
(see Table 11 on page 14 for  
spec numbers)[3]  
Queue-to-Queue change for  
WQSEL  
Even number of data writes  
(minimum of 2)[4]  
*
.
In addition to loading register values into the FIFO, it is also  
possible to read the current register values. Register values can  
be read through the parallel output port regardless of the  
programming mode selected (serial or parallel). Register values  
cannot be read serially. The registers may be programmed (and  
reprogrammed) any time after master reset, regardless of  
whether serial or parallel programming is selected.  
See Table 5 on page 10 and Table 6 on page 11 for access to  
configuration registers in serial and parallel modes.  
The read and write operations loop back when they reach the  
maximum address location of the configuration registers.  
Simultaneous read and write operations should be avoided on  
the configuration registers.  
Notes  
1. For multi-queue parts having more than two queues, see the individual device datasheets.  
2. The RQSEL can be changed for every clock cycle.  
3. After changing the RQSEL, the valid data is available after REN to data valid latency.  
4. The WQSEL can be changed after writing even number of locations in the current queue (minimum of 2).  
Document Number: 001-53687 Rev. *G  
Page 9 of 25  
PRELIMINARY  
CYFX018VXXX, CYFX036VXXX  
CYFX072VXXX, CYFX144VXXX  
Table 4. Configuration Registers  
ADDR Configuration Register  
Default  
0x00  
Bit [7] Bit [6] Bit [5] Bit [4]  
Bit [3] Bit [2] Bit [1] Bit [0]  
0x1 Read Queue Number Select  
0x2 Write Queue Number Select  
0x3 Number of Queues  
X
X
D6  
D6  
D6  
D5  
D5  
D5  
D4  
D4  
D4  
D3  
D3  
D3  
D2  
D2  
D2  
D1  
D1  
D1  
D0  
D0  
D0  
0x00  
0x00  
Enable  
queue  
registers  
0x4 Almost-Empty Flag generation 0x7F  
address - (LSB) (N)  
D7  
D6  
X
D5  
X
D4  
X
D3  
X
D2  
X
D1  
D9  
D0  
D8  
0x5 Almost-Empty Flag generation 0x00  
address - (MSB) (N)  
X
0x6 Reserved  
X
X
X
X
X
X
X
X
X
0x7 Almost-Full Flag generation  
address - (LSB) (M)  
0x7F  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0x8 Almost-Full Flag generation  
address - (MSB) (M)  
0x00  
X
X
X
X
X
X
D9  
D8  
0x9 Reserved  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0xA Fast CLK Bit Register  
1XXXXXXXb Fast CLK  
bit  
Table 5. Writing and Reading Configuration Registers in Parallel Mode  
SPI_SEN  
LD  
WEN REN  
WCLK  
RCLK  
SPI_SCLK  
Operation  
1
0
0
1
First rising edge  
because both LD and  
REN are low  
X
X
Parallel write to first register  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Second rising edge  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Parallel write to second register  
Third rising edge  
Parallel write to third register  
Fourth rising edge  
Parallel write to fourth register  
Tenth rising edge  
Eleventh rising edge  
Parallel write to tenth register  
Parallel write to first register  
(roll back)  
1
1
0
0
1
1
0
0
X
X
Firstrisingedgesince  
both LD and REN are  
low  
X
X
Parallel read from first register  
Second rising edge  
Parallel read from second  
register  
1
1
0
0
1
1
0
0
X
X
Third rising edge  
Fourth rising edge  
X
X
Parallel read from third register  
Parallel read from fourth  
register  
1
1
1
0
0
0
1
1
1
0
0
0
X
X
X
X
X
X
Document Number: 001-53687 Rev. *G  
Page 10 of 25  
PRELIMINARY  
CYFX018VXXX, CYFX036VXXX  
CYFX072VXXX, CYFX144VXXX  
Table 5. Writing and Reading Configuration Registers in Parallel Mode (continued)  
SPI_SEN  
LD  
WEN REN  
WCLK  
RCLK  
SPI_SCLK  
Operation  
1
0
1
0
X
Tenth rising edge  
X
Parallel read from tenth  
register  
1
0
1
0
X
Eleventh rising edge  
X
Parallel read from first register  
(roll back)  
1
X
X
0
X
1
1
0
1
0
1
X
0
1
X
X
X
X
X
X
No operation  
Rising edge  
X
Write to FIFO memory  
Read from FIFO memory  
Illegal operation  
X
X
X
X
Rising edge  
X
Table 6. Writing into Configuration Registers in Serial Mode  
SPI_SEN  
LD  
WEN  
REN  
WCLK  
RCLK  
SCLK  
Operation  
0
1
X
X
X
X
EachrisingoftheSCLKclocks  
in one bit from the SI (Serial  
In). Any of the 10 registers can  
be addressed and written to,  
following the SPI protocol.  
Rising edge  
X
X
1
1
0
X
0
X
X
X
Parallel write to FIFO memory.  
Rising edge  
X
X
Parallel read from FIFO  
memory.  
Rising edge  
1
0
1
1
X
X
X
This corresponds to parallel  
mode (refer to Table 5).  
Figure 2. Serial WRITE to Configuration Register  
Width Expansion Configuration  
The width of CYFX072VXXX can be expanded to provide word widths greater than 36 bits. During width expansion mode, all control  
line inputs are common and all flags are available. Empty (Full) flags are created by ANDing the Empty (Full) flags of every FIFO; the  
PAE and PAF flags can be detected from any one device. This technique avoids reading data from or writing data to the FIFO that is  
“staggered” by one clock cycle due to the variations in skew between RCLK and WCLK.  
Figure 3 on page 12 demonstrates a 72 bit-word width by using two 36-bit word CYFX072VXXXs.  
Document Number: 001-53687 Rev. *G  
Page 11 of 25  
PRELIMINARY  
CYFX018VXXX, CYFX036VXXX  
CYFX072VXXX, CYFX144VXXX  
Figure 3. Using Two CYFX072VXXXs for Width Expansion  
DATAIN (D)  
72  
36  
36  
READCLOCK(RCLK)  
READENABLE(REN)  
OUTPUT ENABLE(OE)  
WRITE CLOCK(WCLK)  
WRITE ENABLE(WEN)  
PAF  
CYFX072VXXX  
CYFX072VXXX  
PAE  
HF  
EF  
DATAOUT (Q)  
EF  
FF  
FF  
EF  
36  
72  
FF  
36  
The clock frequency for both clocks should be between the  
minimum and maximum range given in Table 9 on page 13.  
Memory Organization for Different Port Sizes  
The 72-Mbit memory has different organization for different port  
sizes. Table 7 shows the depth of the FIFO for all port sizes.  
The device uses internal PLL to achieve high performance.  
Whenever there is change in the frequency of the clock, the  
device takes TPLL time to synchronize with the input clock. (see  
Switching Characteristics on page 15). The PLL requires  
re-synchronization when there is change in the frequency of  
either WCLK or RCLK or when master reset is asserted.  
Note that for all port sizes, four locations are not available for  
writing the data and are used to safeguard against false  
synchronization of empty and full flags.  
Table 7. Word Size Selection  
For proper FIFO operation, the device must determine which of  
the input clocks – RCLK or WCLK – is faster. This is evaluated  
by using counters after the MRS cycle. The device uses two  
10-bit counters inside (one running on RCLK and other on  
WCLK), which count 1,024 cycles of read and write clock after  
MRS. The clock of the counter which reaches its terminal count  
first is used as master clock inside the FIFO.  
PORTSZ[2:0]  
Word Size  
x9  
FIFO Depth  
8 Meg  
Memory Size  
72 Mbit  
48 Mbit  
64 Mbit  
72 Mbit  
40 Mbit  
48 Mbit  
64 Mbit  
72 Mbit  
000  
001  
010  
011  
100  
101  
110  
111  
x12  
4 Meg  
x16  
4 Meg  
x18  
4 Meg  
x20  
2 Meg  
When there is change in the relative frequency of RCLK and  
WCLK during normal operation of FIFO, you can specify it by  
using “Fast CLK bit” in the configuration register (0xA).  
x24  
2 Meg  
x32  
2 Meg  
x36  
2 Meg  
“1” - indicates freq (WCLK) > freq (RCLK)  
“0” - indicates freq (WCLK) < freq (RCLK)  
Read/Write Clock Requirements  
The result of counter evaluated frequency is available in this  
register bit. You can override the counter evaluated frequency for  
faster clock by changing this bit.  
The read and write clocks must satisfy the following  
requirements:  
Both read (RCLK) and write (WCLK) clocks should be  
free-running.  
Whenever there is a change in this bit value, you must wait TPLL  
time before issuing the next read or write to FIFO.  
Device Specific Functionality Table  
Functions  
Write mask  
Partial reset  
CYF0XXXVXXX-150  
CYF0XXXVXXX-133  
CYF0XXXVXXX-110 CYF1XXXVXXX-100  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
PAE, PAF, HF  
Document Number: 001-53687 Rev. *G  
Page 12 of 25  
PRELIMINARY  
CYFX018VXXX, CYFX036VXXX  
CYFX072VXXX, CYFX144VXXX  
Maximum Ratings  
Exceeding maximum ratings may impair the useful life of the  
device. These user guidelines are not tested.  
Voltage applied to I/O pins ...........................–0.3 V to 3.75 V  
Output current into outputs (LOW) .............................. 20 mA  
Storage temperature (without bias) ............ –65 °C to +150 °C  
Static discharge voltage........................................... > 2001 V  
(per MIL–STD–883, Method 3015)  
Ambient temperature with  
power applied  
–55 °C to +125 °C  
Operating Range  
Core supply voltage 1 (VCC 1) to  
ground potential.................................................–0.5 V to 2.5 V  
Range  
Commercial  
Industrial  
Ambient Temperature  
0 °C to +70 °C  
Core supply voltage 2 (VCC 2) to  
ground potential...............................................–0.3 V to 1.65 V  
–40 °C to +85 °C  
I/O port supply voltage (VCCIO_R, VCCIO_W  
)
–0.3 V to 3.7 V  
Table 8. Recommended DC Operating Conditions  
Parameter Description  
VCC1  
Min  
Typ  
1.80  
1.5  
Max  
1.90  
Unit  
Core supply voltage 1  
Core supply voltage 2  
1.70  
1.425  
0.68  
V
V
V
V
V
V
V
V
VCC2  
Vref  
1.575  
0.95  
Reference voltage (irrespective of I/O standard used)  
I/O supply voltage, read and write LVCMOS33  
0.75  
3.30  
2.50  
1.8  
VCCIO_R  
VCCIO_W  
3.00  
3.60  
banks.  
LVCMOS25  
2.30  
2.70  
LVCMOS18  
LVCMOS15  
HSTL1/2  
1.70  
1.90  
1.425  
1.425  
1.5  
1.575  
1.575  
1.5  
Table 9. Electrical Characteristics  
Parameter Description  
Icc Active current  
Conditions  
Density  
Min  
Typ  
Max  
480  
150  
Unit  
mA  
VCC1=VCC1MAX  
VCC2=VCC2MAX  
,
18/36/72M  
,
mA  
All I/O switching,  
150 MHz)  
VCCIO_R/W = VCCIO_R/WMAX  
50  
mA  
(All outputs disabled)  
Icc  
Active current  
VCC1=VCC1MAX  
VCC2=VCC2MAX  
,
,
18/36/72M  
480  
150  
mA  
mA  
All I/O switching,  
110 MHz,)  
VCCIO_R/W = VCCIO_R/WMAX  
50  
mA  
(All outputs disabled)  
II  
Input pin leakage current VIN = VCCIOmax to 0 V  
I/O pin leakage current VO = VCCIOmax to 0 V  
–15  
–15  
6
15  
15  
µA  
µA  
pF  
IOZ  
CPIO  
I/O capacitance  
Document Number: 001-53687 Rev. *G  
Page 13 of 25  
PRELIMINARY  
CYFX018VXXX, CYFX036VXXX  
CYFX072VXXX, CYFX144VXXX  
Table 10. I/O Characteristics  
Nominal  
I/O standard I/O supply  
voltage  
Input Voltage (V)  
Output voltage (V)  
Output Current (mA)  
VIL(max)  
VIH(min)  
VOL(max)  
VOH(min)  
IOL(max)  
IOH(max)  
LVCMOS33  
LVCMOS25  
LVCMOS18  
3.3 V  
2.5 V  
1.8 V  
0.80  
0.70  
2.00  
1.70  
0.40  
0.70  
0.45  
2.40  
1.70  
24  
24  
16  
24  
24  
16  
35%  
VCCIO_R/W  
65% VCCIO_R/W  
VCCIO_R/W – 0.45  
LVCMOS15  
1.5 V  
30%  
VCCIO_R/W  
70% VCCIO_R/W 25% VCCIO_R/W 75% VCCIO_R/W  
12  
12  
HSTL1  
HSTL2  
1.5 V  
1.5 V  
Vref – 0.1  
Vref – 0.1  
Vref + 0.1  
Vref + 0.1  
0.40  
0.40  
VCCIO_R/W – 0.40  
CCIO_R/W – 0.40  
8
8
V
15  
15  
Table 11. Latency Table  
Latency Parameter  
Part No.  
Latency  
Detail  
CYF0XXXVXXX - 150BGXI  
CYF0XXXVXXX - 110BGXI  
LIN - initial latency  
26  
9
Initial latency for data read after FIFO goes empty  
Initial latency for data read after FIFO goes empty  
CYF0XXXVXXX - 133BGXI  
CYF1XXXVXXX - 133BGXI  
LIN - initial latency  
Latency when REN is asserted low to first data output from  
FIFO  
LREN_TO_DATA  
All parts  
All parts  
5
Latency when REN is asserted along with LD to first data  
read from configuration registers  
LREN_TO_CONFIG  
5
Latency from write port to read port when MB = 1 (at same  
frequency)  
LMAILBOX  
LRT  
All parts  
All parts  
3
19  
Latency from RT going low to first new read data  
Document Number: 001-53687 Rev. *G  
Page 14 of 25  
PRELIMINARY  
CYFX018VXXX, CYFX036VXXX  
CYFX072VXXX, CYFX144VXXX  
Switching Characteristics  
-110  
-150  
Parameter  
Description  
Unit  
Min  
Max  
2
Min  
Max  
2
tPU  
tS  
Power-up time after all supplies reach minimum value  
ms  
MHz  
MHz  
MHz  
MHz  
MHz  
ns  
Clock cycle frequency  
Clock cycle frequency  
Clock cycle frequency  
Clock cycle frequency  
Clock cycle frequency  
Data access time  
3.3 V LVCMOS  
2.5 V LVCMOS  
1.8 V LVCMOS  
1.5 V LVCMOS  
1.5 V HSTL  
24  
24  
24  
24  
24  
3
110  
110  
110  
110  
110  
8
24  
24  
24  
24  
24  
3
150  
150  
150  
130  
150  
8
tS  
tS  
tS  
tS  
tA  
tCLK  
tCLKH  
tCLKL  
tDS  
tDH  
tQS  
tQH  
tENS  
tENH  
tRS  
tRSF  
tPRT  
Clock cycle time  
9.09  
4.35  
4.35  
3
41.67  
6.6  
3.15  
3.15  
3
41.67  
ns  
Clock high time  
ns  
Clock low time  
ns  
Data setup time  
ns  
Data hold time  
3
3
ns  
RQSEL and WQSEL setup time  
RQSEL and WQSEL hold time  
Enable setup time  
3
3
ns  
3
3
ns  
3
3
ns  
Enable hold time  
3
3
ns  
Reset pulse width  
100  
100  
ns  
Reset to flag output time  
Retransmit pulse width  
50  
50  
ns  
5
5
RCLK  
cycles  
tOLZ  
tOE  
Output enable to output in Low Z  
Output enable to output valid  
Output enable to output in High Z  
Write clock to FF  
4
15  
15  
15  
8
4
15  
15  
15  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
tOHZ  
tWFF  
tREF  
tPAF  
tPAE  
tHF  
Read clock to EF  
8
8
Clock to PAF flag  
14  
14  
14  
6
14  
14  
14  
6
Clock to PAE flag  
Clock to HF flag  
tPLL  
Time required to synchronize PLL  
Document Number: 001-53687 Rev. *G  
Page 15 of 25  
PRELIMINARY  
CYFX018VXXX, CYFX036VXXX  
CYFX072VXXX, CYFX144VXXX  
Switching Waveforms  
Figure 4. Write Cycle Timing  
t
CLK  
t
t
CLKL  
CLKH  
WCLK  
t
t
DH  
DS  
D
[35:0]  
t
ENH  
t
ENS  
WEN, IE  
NO OPERATION  
Figure 5. Read Cycle Timing  
t
CLK  
RCLK  
REN  
t
t
ENH  
ENS  
NO OPERATION  
LREN_TO_DATA cycles  
t
A
VALID DATA  
Q
[35:0]  
t
OLZ  
t
OHZ  
OE  
DVal  
Document Number: 001-53687 Rev. *G  
Page 16 of 25  
PRELIMINARY  
CYFX018VXXX, CYFX036VXXX  
CYFX072VXXX, CYFX144VXXX  
Switching Waveforms (continued)  
Figure 6. Write Queue Selection  
tQS  
WCLK  
WQSEL [2:0]  
WEN  
Data Valid  
D [35:0]  
Figure 7. Reset Timing  
t
RS  
MRS  
t
t
t
RSF  
RSF  
RSF  
EF,PAE  
FF,PAF,  
HF  
OE=1  
OE=0  
Q
[35:0]  
Document Number: 001-53687 Rev. *G  
Page 17 of 25  
PRELIMINARY  
CYFX018VXXX, CYFX036VXXX  
CYFX072VXXX, CYFX144VXXX  
Switching Waveforms (continued)  
Figure 8. Empty Flag Timing  
RCLK  
t
REF  
EF  
REN  
OE  
Q
Qout  
Qout-Last  
Invalid Data  
Qout  
Qout-Last-1  
[35:0]  
Dval  
Figure 9. Full Flag Timing  
WCLK  
t
DS  
D0 (written)  
D3 (not written)  
D4 (not written)  
D1 (written)  
D2 (not written)  
t
WFF  
FF  
WEN  
Figure 10. Half-Full Timing  
t
t
CLKL  
CLKH  
WCLK  
t
t
ENH  
ENS  
WEN  
HF  
t
HF  
HALF-FULL + 1  
OR MORE  
HALF-FULL OR LESS  
Document Number: 001-53687 Rev. *G  
Page 18 of 25  
PRELIMINARY  
CYFX018VXXX, CYFX036VXXX  
CYFX072VXXX, CYFX144VXXX  
Switching Waveforms (continued)  
Figure 11. Programmable Almost-Empty Flag Timing  
t
t
CLKL  
CLKH  
WCLK  
WEN  
PAE  
t
t
ENH  
ENS  
N +  
1
WORDS  
IN FIFO  
t
PAE  
N is the offset in config register for PAE  
Figure 12. Programmable Almost-Full Flag Timing  
t
t
CLKL  
CLKH  
WCLK  
t
t
ENH  
ENS  
WEN  
PAF  
t
PAF  
FULL – M WORDS  
IN FIFO  
M is the offset in config register for PAE  
Document Number: 001-53687 Rev. *G  
Page 19 of 25  
PRELIMINARY  
CYFX018VXXX, CYFX036VXXX  
CYFX072VXXX, CYFX144VXXX  
Figure 13. Initial Data Latency  
n
L
IN  
1
2
WCLK  
/RCLK  
D0-D35  
D
D
D
D
D
WEN/REN  
OE  
Q0  
Q1  
Q0-Q35  
DVAL  
L
(initial latency)  
IN  
Figure 14. Mailbox Operation  
WCLK  
/RCLK  
D0-D35  
D0  
D3  
D4  
D1  
D2  
WEN/REN  
LMAILBOX  
MB  
tA  
Q0 = D0  
Q1 = D1  
Q0-Q35  
Q3 = D2  
Figure 15. Configuration Register Read  
WCLK  
/RCLK  
REN  
LRENB_TO_CONFIG  
LD  
Q0-Q35  
Reg - 1  
Document Number: 001-53687 Rev. *G  
Page 20 of 25  
PRELIMINARY  
CYFX018VXXX, CYFX036VXXX  
CYFX072VXXX, CYFX144VXXX  
Ordering Information  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Ordering Code  
Package Type  
150 CYF0018V33L-150BGXI  
CYF0036V33L-150BGXI  
51-85167 209-ball fine-pitch ball grid array (FPBGA) (14 × 22 × 1.76 mm) Industrial  
CYF0072V18L-150BGXI  
CYF0072V25L-150BGXI  
CYF0072V33L-150BGXI  
110 CYF0072V33L-110BGXI  
100 CYF0144V18L-100BGXI  
* Contact your local sales representative for availability of these parts.  
Ordering Code Definition  
CY F X XXX VXX X - XXX BGXI  
Speed:  
100 MHz  
110 MHz  
133 MHz  
150 MHz  
I/O Standard:  
L = LVCMOS  
H = HSTL (1.5 V)  
I/O Voltage:  
15 = 1.5 V  
18 = 1.8V  
25 = 2.5 V  
33 = 3.3 V  
Density:  
018 = 18M  
036 = 36M  
072 = 72M  
144 = 144M  
0 - single-queue  
1 - multi-queue (2 queues)  
2 - multi-queue (8 queues*)  
3 - multi-queue (128 queues*)  
FIFO  
Cypress  
Document Number: 001-53687 Rev. *G  
Page 21 of 25  
PRELIMINARY  
CYFX018VXXX, CYFX036VXXX  
CYFX072VXXX, CYFX144VXXX  
Package Diagram  
Figure 16. 209-Ball FBGA (14 × 22 × 1.76 mm), 51-85167  
51-85167 *A  
Document Number: 001-53687 Rev. *G  
Page 22 of 25  
PRELIMINARY  
CYFX018VXXX, CYFX036VXXX  
CYFX072VXXX, CYFX144VXXX  
Acronyms  
Document Conventions  
Units of Measure  
Acronym  
FF  
Description  
Full flag  
Symbol  
°C  
Unit of Measure  
degrees Celsius  
FIFO  
HF  
First in first out  
Half full  
μA  
microampere  
milliampere  
millisecond  
megahertz  
nanosecond  
ohm  
mA  
ms  
MHz  
ns  
HSTL  
IE  
High-speed transceiver logic  
Input enable  
I/O  
Input/output  
FPBGA  
JTAG  
LVCMOS  
fine-pitch ball grid array  
Joint test action group  
Ω
pF  
pico Farad  
volt  
Low voltage complementary metal oxide  
semiconductor  
V
W
watt  
MB  
Mailbox  
MRS  
OE  
Master reset  
Output enable  
Programmable almost-full  
Programmable almost-empty  
Partial reset  
PAF  
PAE  
PRS  
RCLK  
REN  
RCLK  
RQSEL  
SCLK  
TDI  
Read clock  
Read enable  
Read clock  
Read queue select  
Serial clock  
Test data in  
TDO  
TCK  
Test data out  
Test clock  
TMS  
WCLK  
WEN  
Test mode select  
Write clock  
Write enable  
Document Number: 001-53687 Rev. *G  
Page 23 of 25  
PRELIMINARY  
CYFX018VXXX, CYFX036VXXX  
CYFX072VXXX, CYFX144VXXX  
Document History Page  
Document Title: CYFX018VXXX/CYFX036VXXX/CYFX072VXXX/CYFX144VXXX, 18/36/72/144 Mbit Programmable FIFOs  
Document Number: 001-53687  
Orig. of Submission  
Rev.  
**  
ECN No.  
Change  
Date  
Description of Change  
2711566 VKN/PYRS  
05/27/09 New data sheet  
*A  
2725088  
2839536  
NXR  
NXR  
06/26/2009 Included pinout, AC and DC specs, timing diagrams and package diagram  
*B  
01/28/2010 Changed Balls B5, D5, F6, K1, K2, K4, K8 and U2 from NC to DNU,  
Balls C5, C7, G6, H6, J6, L6, M6, N6, T5, T7 FROM NC to VCC1,  
Balls K9, K10, K11 From NC to VCCIOR  
Ball W9 from NC to Vref in pin configuration table  
Swapped Voltage range of VSS1 and VSS  
2
Updated ICC spec  
Removed TSKEW parameter  
Added Ordering Information table  
Added Part Numbering Nomenclature.  
Changed title to  
CYFX018VXXX/CYFX036VXXX/CYFX072VXXX/CYFX144VXXX,  
18/36/72/144 Mbit Programmable FIFOs.  
*C  
*D  
2884377  
2963225  
HKV  
02/25/2010 Post to external web.  
AJU/HPV 06/28/2010 Changed frequency of operation from 250 MHz to 150 MHz  
Removed Depth Expansion feature and changed associated pin functionality  
Removed Independent Port size selectability feature  
Added Data Valid (DVal) signal feature  
Updated Logic Block Diagram to reflect above changes.  
Pinout changes:  
Balls V5, V8, A7, B7, D7, and C6 renamed DNU  
Ball U1 changed from RXO to DVal  
Ball V2 changed from WXO/HF to HF  
Ball A5, A6, B6 changed from WPORTSZ to PORTSZ  
Ball A9 changed from RT/FL to RT  
Renamed pwr as POWER, gnd as GND  
Added Table 3  
Table 6 – LD changed to ‘1’ for serial writes  
Updated Electrical Characteristics and I/O Characteristics  
Switching Characteristics Table:  
Renamed tPC as tPU  
Min frequency changed from 110MH to 24MHz  
Changed tCLKH and tCLKL to 3.15 ns  
Changed All setup and hold times to 3 ns  
Changed tRSF to 50 ns  
Removed tRSR  
Changed All clock-to-flag timing to min=8 ns and max=14 ns  
T
PLL changed to 6 ms  
Changed all OE-related parameters to 15 ns  
Scaled ICC for reduced frequency  
Updated all waveforms  
Added the following tables:  
Word Size Selection, Device Specific Functionality Table, and Latency Table  
Added Acronyms.  
*E  
*F  
2994379  
3101023  
AJU  
07/26/2010 Updated Ordering Information  
SIVS  
12/03/2010 Added supply-wise current consumption data in Electrical Characteristics.  
Changed initial latency LIN from 34 to 26 and added initial latency LIN for  
110 MHz part in Latency Table.  
Added 110 MHz part information in Device Specific Functionality Table  
Added details for the 110 MHz part in Switching Characteristics.  
Added details for the 110 MHz part in Ordering Information.  
*G  
3129722  
HKV  
01/06/2011 Post to external web.  
Document Number: 001-53687 Rev. *G  
Page 24 of 25  
PRELIMINARY  
CYFX018VXXX, CYFX036VXXX  
CYFX072VXXX, CYFX144VXXX  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
Products  
PSoC Solutions  
Automotive  
cypress.com/go/automotive  
cypress.com/go/clocks  
cypress.com/go/interface  
cypress.com/go/powerpsoc  
cypress.com/go/plc  
psoc.cypress.com/solutions  
PSoC 1 | PSoC 3 | PSoC 5  
Clocks & Buffers  
Interface  
Lighting & Power Control  
Memory  
cypress.com/go/memory  
cypress.com/go/image  
cypress.com/go/psoc  
Optical & Image Sensing  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/go/touch  
cypress.com/go/USB  
cypress.com/go/wireless  
© Cypress Semiconductor Corporation, 2009-2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 001-53687 Rev. *G  
Revised January 6, 2011  
Page 25 of 25  
All product and company names mentioned in this document are the trademarks of their respective holders.  

相关型号:

CYF0144V18L-100BGXI

FIFO, PBGA209, 14 X 22 MM, 1.76 MM HEIGHT, FPBGA-209
CYPRESS

CYF0144V18L-133BGXI

FIFO, 4MX36, 10ns, Synchronous, CMOS, PBGA209, FBGA-209
CYPRESS

CYF0144V33L-133BGXI

FIFO, 4MX36, 10ns, Synchronous, CMOS, PBGA209, FBGA-209
CYPRESS

CYF1018V

18/36/72-Mbit Programmable 2-Queue FIFOs Independent read and write ports
CYPRESS

CYF1018V18L-100BGXI

18/36/72-Mbit Programmable 2-Queue FIFOs Independent read and write ports
CYPRESS

CYF1018V33L-100BGXI

18/36/72-Mbit Programmable 2-Queue FIFOs Independent read and write ports
CYPRESS

CYF1018V_12

18/36/72-Mbit Programmable 2-Queue FIFOs
CYPRESS

CYF1036V

18/36/72-Mbit Programmable 2-Queue FIFOs Independent read and write ports
CYPRESS

CYF1036V18L-100BGXI

18/36/72-Mbit Programmable 2-Queue FIFOs Independent read and write ports
CYPRESS

CYF1036V33L-100BGXI

18/36/72-Mbit Programmable 2-Queue FIFOs Independent read and write ports
CYPRESS

CYF1072V

18/36/72-Mbit Programmable 2-Queue FIFOs Independent read and write ports
CYPRESS

CYF1072V18L-100BGXI

18/36/72-Mbit Programmable 2-Queue FIFOs Independent read and write ports
CYPRESS