CYF1018V [CYPRESS]

18/36/72-Mbit Programmable 2-Queue FIFOs Independent read and write ports; 36分之18 / 72- Mbit的可编程2 -队列FIFO的独立读写端口
CYF1018V
型号: CYF1018V
厂家: CYPRESS    CYPRESS
描述:

18/36/72-Mbit Programmable 2-Queue FIFOs Independent read and write ports
36分之18 / 72- Mbit的可编程2 -队列FIFO的独立读写端口

先进先出芯片
文件: 总28页 (文件大小:892K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CYF1018V, CYF1036V  
CYF1072V  
18/36/72-Mbit Programmable  
2-Queue FIFOs  
18/36/72-Mbit Programmable 2-Queue FIFOs  
Features  
Functional Description  
Memory organization  
Industry’s largest first in first out (FIFO) memory densities:  
18-Mbit, 36-Mbit, 72-Mbit  
Selectable memory organization: × 9, × 12, × 16, × 18, × 20,  
× 24, × 32, × 36  
The Cypress programmable FIFO family offers the industry’s  
highest-density programmable FIFO memory device. It has  
independent read and write ports, which can be clocked up to  
100 MHz. User can configure input and output bus sizes. The  
maximum bus size of 36 bits enables a maximum data  
throughput of 3.6 Gbps. The read and write ports can support  
multiple I/O voltage standards. The user-programmable  
registers enable user to configure the device operation as  
desired. The device also offers a simple and easy-to-use  
interface to reduce implementation and debugging efforts,  
improve time-to-market, and reduce engineering costs. This  
makes it an ideal memory choice for a wide range of applications  
including multiprocessor interfaces, video and image  
processing, networking and telecommunications, high-speed  
data acquisition, or any system that needs buffering at very high  
speeds across different domains.  
Up to 100-MHz clock operation  
Unidirectional operation  
Independent read and write ports  
Supports simultaneous read and write operations  
Reads and writes operate on independent clocks upto a  
maximum clock ratio of 2, enabling data buffering across  
clock domains  
Supports multiple I/O voltage standard: Low voltage  
complementary metal oxide semiconductor (LVCMOS) 3.3 V  
and 1.8 V voltage standards.  
As implied by the name, the functionality of the FIFO is such that  
the data is read out of the read port in the same sequence in  
which it was written into the write port. The data is sequentially  
written into the FIFO from the write port. If the writes and inputs  
are enabled, the data on the write port gets written into the device  
at the rising edge of the write clock. Enabling the reads and  
outputs fetches data on the read port at every rising edge of the  
read clock. Both reads and writes can occur simultaneously at  
different speeds provided the ratio of read to write clock is  
between 0.5 and 2. Appropriate flags are set whenever the FIFO  
is empty or full.  
output enable control for read skip operations  
User configured two-Queue operating mode  
Mark and retransmit: resets read pointer to user marked  
position  
Empty and full status flags  
Flow-through mailbox register to send data from input to output  
port, bypassing the FIFO sequence  
Configure programmable flags and registers through serial or  
parallel modes  
The device also supports two-Queue operation, mark and  
retransmit of data, and a flow-through mailbox register.  
Separate serial clock (SCLK) input for serial programming  
Master reset to clear entire FIFO  
All product features and specs are common to all densities  
(CYF1072V, CYF1036V, and CYF1018V) unless otherwise  
specified. All descriptions are given assuming the device is  
CYF1072V operated in × 36 mode. They hold good for other  
densities (CYF1036V, and CYF1018V) and all port sizes × 9,  
×12, × 16, × 18, × 20, × 24 and × 32 unless otherwise specified.  
the only difference will be in the input and output bus width.  
Table 1 on page 8 shows the part of bus with valid data from  
D[35:0] and Q[35:0] in × 9, × 12, × 16, × 18, × 20, × 24, × 32 and  
× 36 modes.  
Joint test action group (JTAG) port provided for boundary scan  
function  
Industrial temperature range: –40 °C to +85 °C  
Cypress Semiconductor Corporation  
Document Number: 001-68321 Rev. **  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised April 12, 2011  
[+] Feedback  
CYF1018V, CYF1036V  
CYF1072V  
Logic Block Diagram  
Document Number: 001-68321 Rev. **  
Page 2 of 28  
[+] Feedback  
CYF1018V, CYF1036V  
CYF1072V  
Contents  
Pin Diagram for CYF1XXXV .............................................4  
Pin Definitions ..................................................................5  
Architecture ......................................................................7  
Reset Logic .................................................................7  
Flag Operation .............................................................7  
Full Flag .......................................................................7  
Empty Flag ..................................................................7  
Retransmit from Mark Operation .................................7  
Flow-through mailbox Register ....................................7  
Selecting Word Sizes ..................................................8  
Data Valid Signal .........................................................8  
Power Up ...........................................................................8  
Read Skip Operation ...................................................8  
Multi-Queue Operation ................................................8  
Width Expansion Configuration .................................10  
Memory Organization for Different Port Sizes ...........11  
Read/Write Clock Requirements ...............................11  
JTAG operation .........................................................11  
Maximum Ratings ...........................................................13  
Operating Range .............................................................13  
Recommended DC Operating Conditions ....................13  
Electrical Characteristics ...............................................13  
I/O Characteristics ..........................................................14  
Latency Table ..................................................................14  
Switching Characteristics ..............................................15  
Switching Waveforms ....................................................16  
Ordering Information ......................................................24  
Ordering Code Definitions .........................................24  
Package Diagram ............................................................25  
Acronyms ........................................................................26  
Document Conventions .................................................26  
Units of Measure .......................................................26  
Document History Page .................................................27  
Sales, Solutions, and Legal Information ......................28  
Worldwide Sales and Design Support .......................28  
Products ....................................................................28  
PSoC Solutions .........................................................28  
Document Number: 001-68321 Rev. **  
Page 3 of 28  
[+] Feedback  
CYF1018V, CYF1036V  
CYF1072V  
Pin Diagram for CYF1XXXV  
Figure 1. 209-ball FBGA (Top View)  
1
2
3
4
5
6
PORTSZ1  
PORTSZ2  
DNU  
7
DNU  
8
RQSEL0  
DNU  
9
10  
Q0  
11  
Q1  
A
B
C
D
E
F
FF  
D0  
D1  
WQSEL0 PORTSZ0  
RT  
EF  
D2  
D3  
DNU  
DNU  
VCC1  
VCC2  
VSS  
DNU  
VCC1  
DNU  
DNU  
REN  
RCLK  
VSS  
Q2  
Q3  
D4  
D5  
WEN  
VSS  
VCC2  
VSS  
VCC2  
VSS  
VCC2  
WCLK  
VCC2  
VSS  
VCC2  
VSS  
VCC2  
VSS  
D30  
VCC1  
DNU  
DNU  
Q4  
Q5  
D6  
D7  
LD  
VCC1  
VCC2  
VSS  
Q6  
Q7  
D8  
D9  
VCCIO  
VSS  
VCCIO  
DNU  
VCCIO  
VSS  
VCC2  
VSS  
Q8  
Q9  
D10  
D12  
D14  
D16  
DNU  
D18  
D20  
D22  
D24  
D26  
D28  
DVal0  
DNU  
TDO  
D11  
D13  
D15  
D17  
DNU  
D19  
D21  
D23  
D25  
D27  
D29  
DNU  
DNU  
DVal1  
Q10  
Q12  
Q14  
Q16  
VCCIO  
Q18  
Q20  
Q22  
Q24  
Q26  
Q28  
Q30  
Q32  
Q34  
Q11  
Q13  
Q15  
Q17  
VCCIO  
Q19  
Q21  
Q23  
Q25  
Q27  
Q29  
Q31  
Q33  
Q35  
G
H
J
VCC2  
VSS  
VCCIO  
VSS  
VCC1  
VCC1  
VCC1  
DNU  
VCCIO  
VSS  
VCC2  
VSS  
VCC2  
VSS  
VCC2  
DNU  
VCC2  
VSS  
VCCIO  
VSS  
VCCIO  
VSS  
VCC2  
DNU  
VCC2  
VCCIO  
VCC2  
VSS  
K
L
VCCIO  
VSS  
VCC1  
VCC1  
VCC1  
SPI_SEN  
VCCIO  
SPI_SI  
DNU  
VCCIO  
VSS  
VCC2  
VSS  
M
N
P
R
T
VCC2  
VSS  
VCCIO  
VSS  
VCCIO  
VSS  
VCC2  
VSS  
VCC2  
VSS  
VCC2  
VCC1  
D31  
VCCIO  
VCC1  
DNU  
VCCIO  
VCC1  
SPI_SCLK  
MB  
VCC2  
VCC1  
Vref  
VCC2  
VSS  
U
V
W
OE  
D32  
D33  
DNU  
MRS  
DNU  
MARK  
Vref  
D34  
D35  
TDI  
TRST  
TMS  
TCK  
Document Number: 001-68321 Rev. **  
Page 4 of 28  
[+] Feedback  
CYF1018V, CYF1036V  
CYF1072V  
Pin Definitions  
Pin Name  
D[35:0]  
I/O  
Input  
Output Data outputs: Data outputs for a 36-bit bus.  
Pin Description  
Data inputs: Data inputs for a 36-bit bus.  
Q[35:0]  
WEN  
REN  
OE  
Input  
Input  
Input  
Write enable: WEN enables WCLK to write data into the FIFO memory and configuration registers.  
Read enable: REN enables RCLK to read data from the FIFO memory and configuration registers.  
Output enable: When OE is LOW, FIFO data outputs are enabled; when OE is HIGH, the FIFO’s outputs  
are in High Z (high impedance) state.  
WCLK  
RCLK  
Input  
Input  
Write clock: When enabled by WEN, the rising edge of WCLK writes data into the FIFO if LD is high and  
into the configuration registers if LD is low.  
Read clock: When enabled by REN, the rising edge of RCLK reads data from the FIFO memory if LD is  
high and from the configuration registers if LD is low.  
DVal0  
DVal1  
EF  
Output Data valid for Queue-0 : Active low signal indicating valid data read for Queue-0 from Q[35:0].  
Output Data valid for Queue-1 : Active low signal indicating valid data read for Queue-1 from Q[35:0].  
Output Empty flag: When EF is LOW, the Queue is empty. EF is synchronized to RCLK.  
Output Full flag: When FF is LOW, the Queue is full. FF is synchronized to WCLK.  
FF  
LD  
Input  
Load: When LD is LOW, D[7:0] (Q[7:0]) are written (read) into (from) the configuration registers. When  
LD is HIGH, D[35:0] (Q[35:0]) are written (read) into (from) the FIFO.  
RT  
Input  
Retransmit: A HIGH pulse on RT resets the internal read pointer to a physical location of the FIFO which  
is marked by the user (using MARK pin). With every valid read cycle after retransmit, previously accessed  
data is read and the read pointer is incremented until it is equal to the write pointer.  
MRS  
Input  
Input  
Master reset: MRS initializes the read and write pointers to zero and sets the output register to all zeroes.  
During Master Reset, the configuration registers are all set to default values and flags are reset.  
SPI_SCLK  
Serial clock: A rising edge on SPI_SCLK clocks the serial data present on the SPI_SI input into the offset  
registers if SPI_SEN is enabled.  
SPI_SI  
SPI_SEN  
MARK  
Input  
Input  
Input  
Serial input: Serial input when SPI_SEN is enabled.  
Serial enable: Enables serial loading of programmable flag offsets and configuration registers.  
Mark for retransmit: When this pin is asserted the current location of the read pointer is marked. Any  
subsequent retransmit operation resets the read pointer to this position.  
MB  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Mailbox: When asserted the reads and writes happen to flow-through mailbox register.  
Write Queue select: select Queue-0 when low and Queue-1 when high.  
Read Queue select: select Queue-0 when low and Queue-1 when high.  
Test clock (TCK) pin for JTAG.  
WQSEL0  
RQSEL0  
TCK  
TRST  
TMS  
Reset pin for JTAG.  
Test mode select (TMS) pin for JTAG.  
TDI  
Test data in (TDI) pin for JTAG.  
TDO  
Output Test data out (TDO) for JTAG.  
PORTSZ [2:0]  
VCC1  
Input  
Port word size select: Port word width select pins (common for read and write ports).  
Power  
Supply  
Core voltage supply 1: 1.8 V supply voltage  
VCC2  
Power  
Supply  
Core voltage supply 2: 1.5 V supply voltage  
Document Number: 001-68321 Rev. **  
Page 5 of 28  
[+] Feedback  
CYF1018V, CYF1036V  
CYF1072V  
Pin Definitions (continued)  
Pin Name  
VCCIO  
I/O  
Pin Description  
Power  
Supply  
Supply for I/Os.  
Vref  
Input  
Reference  
Reference voltage: Reference voltage (regardless of I/O standard used)  
VSS  
Ground Ground  
Do not use: These pins need to be left floating.  
DNU  
Document Number: 001-68321 Rev. **  
Page 6 of 28  
[+] Feedback  
CYF1018V, CYF1036V  
CYF1072V  
Flag Operation  
Architecture  
This device provides two flag pins to indicate the condition of the  
FIFO contents.  
The CYF1072V, CYF1036V, and CYF1018V are of memory  
arrays of 72-Mbit, 36-Mbit, and 18-Mbit respectively. The  
memory organization is user configurable and word sizes can be  
selected as × 9, × 12, × 16, × 18, × 20, × 24, × 32, or × 36. The  
logic blocks to implement FIFO functionality and the associated  
features are built around these memory arrays.  
Full Flag  
The Full Flag (FF) goes LOW when the device is full. All write  
operations are ignored whenever FF is LOW regardless of the  
state of WEN. FF is synchronized to WCLK, that is, it is  
exclusively updated by each rising edge of WCLK. In 2Q mode,  
FF indicates the status of the Queue selected by WQSEL0.The  
worst case assertion latency for Full Flag is four. As the user  
cannot know that the FIFO is full for four clock cycles, it is  
possible that user continues writing data during this time. In this  
case, the four data word written will be stored to prevent data loss  
and these words have to be read back in order for full flag to get  
de-asserted. The minimum number of reads required to  
de-assert full-flag is two and the maximum number of reads  
required to de-assert full flag is six. The assertion and  
de-assertion of full flag with associated latencies is explained in  
Latency Table on page 14.  
The input and output data buses have a maximum width of  
36 bits configurable through PORTSZ[2:0]. The input data bus  
goes to an input register and the data flow from the input register  
to the memory is controlled by the write logic block. The inputs  
to the write logic block are WCLK, WEN and WQSEL0. When the  
writes are enabled through WEN, the data on the input bus is  
written into the memory array at the rising edge of WCLK. This  
also increments the write pointer. WQSEL0 selects the Queue  
for write operation.  
Similarly, the output register is connected to the data output bus.  
Transfer of contents from the memory to the output register is  
controlled by the read control logic. The inputs to the read control  
logic include RCLK, REN, OE, RQSEL0, RT and MARK. When  
reads are enabled by REN and outputs are enabled through OE,  
the data from the memory pointed by the read pointer is  
transferred to the output data bus at the rising edge of RCLK  
along with active low Dval0 or Dval1 based on the Queue  
number selected using RQSEL0. If the outputs are disabled  
through OE but the reads enabled, the outputs are in high  
impedance state, but internally the read pointer is incremented.  
The MARK signal is used to ‘mark’ the location from which data  
is retransmitted when requested.  
Empty Flag  
The Empty Flag (EF) goes LOW when the device is empty. Read  
operations are ignored whenever EF is LOW, regardless of the  
state of REN. EF is synchronized to RCLK, i.e., it is exclusively  
updated by each rising edge of RCLK. In 2Q mode, EF indicates  
the status of the Queue selected by RQSEL0. The assertion and  
de-assertion of empty flag with associated latencies is explained  
in Latency Table on page 14.  
Retransmit from Mark Operation  
During write operation, the number of writes performed is always  
a even number (i.e., minimum write burst length is two and  
number of writes always a multiple of two), whereas during read  
operation, the number of reads performed can be even or odd  
(i.e., minimum read burst length is one).  
The retransmit feature is useful for transferring packets of data  
repeatedly. It enables the receipt of data to be acknowledged by  
the receiver and retransmitted if necessary. The retransmit  
feature is used when the number of writes equal to or less than  
the depth of the FIFO has occurred – and at least one word has  
been read since the last reset cycle. A HIGH pulse on RT resets  
the internal read pointer to a physical location of the FIFO that is  
marked by the user (using the MARK pin). In 2-Queue mode the  
MARK and RT signals are validated with RQSEL0, i.e., Mark or  
Retransmit function will be performed for the Queue that is  
selected by RQSEL0. With every valid read cycle after  
retransmit, previously accessed data is read and the read pointer  
is incremented until it is equal to the write pointer. Flags are  
governed by the relative locations of the read and write pointers  
and are updated during a retransmit cycle. Data written to FIFO  
after activation of RT are also transmitted. The full depth of the  
FIFO can be repeatedly retransmitted. To mark a location, the  
Mark pin is asserted when reading that particular location.  
By default, the FIFO is accessed as a single Queue device. It is  
possible to divide the whole memory space into 2 equal sized  
array, and each array can be independently accessed as an  
independent FIFO. This is like having two independent Queues  
inside the FIFO instead of entire memory space acting as single  
Queue FIFO. User can configure the number of Queues by  
setting the value of D0 of configuration register 3(refer Table 3  
on page 9). Table 2 on page 8 shows the value to be set in D0 of  
configuration register 3 to configure the device in single-Queue  
or two-Queue mode.  
Reset Logic  
The Master Reset (MRS) initializes the read and write pointers  
to zero, sets the output registers to all zeros and sets the status  
of the flags to FF deasserted and EF asserted. MRS also resets  
the configuration register and the mark address to their default  
values. MRS affects all the Queues in the FIFO. A MRS is  
required after power up before accessing the FIFO. After MRS,  
a minimum latency of 1024 clocks is necessary before the first  
access. The word size is configured through pins; values of the  
three PORTSZ pins are latched during rising edge of MRS. After  
MRS, the device is configured in single Queue mode by default.  
Flow-through mailbox Register  
This feature transfers data from input to output directly by  
bypassing the FIFO sequence. When MB signal is asserted the  
data present in D[35:0] will be available at Q[35:0] after two  
WCLK cycles. Normal read and write operations are not allowed  
during flow-through mailbox operation. Before starting  
Flow-through mailbox operation FIFO read should be completed  
to make data valid (DVal0/DVal1) high in order to avoid data loss  
from FIFO. The width of flow-through mailbox register always  
corresponds to port size.  
Document Number: 001-68321 Rev. **  
Page 7 of 28  
[+] Feedback  
CYF1018V, CYF1036V  
CYF1072V  
valid data on Q bus for either Queue-0 or Queue-1. This helps to  
capture the data without keeping track of REN and RQSEL0 to  
data output latency. These signals also help to capture the output  
data when write and read operations are performed continuously  
at different frequencies by indicating when valid data is read out  
at the output port Q[35:0].  
Selecting Word Sizes  
The word sizes are configured based on the logic levels on the  
PORTSZ pins during the master reset (MRS) cycle only (latched  
on low to high edge). The port size cannot be changed during  
normal mode of operation and these pins are ignored. Table 1.  
explains the pins of D[35:0] and Q[35:0] that will have valid data  
in modes where the word size is less than × 36. If word size is  
less than × 36, the unused output pins are tri-stated by the device  
and unused input pins will be ignored by the internal logic. The  
pins with valid data input D[N:0] and output Q[N:0] is given in  
Table 1.  
Power Up  
The device becomes functional after VCC1, VCC2, VCCIO, and  
Vref attain minimum stable voltage required as given in  
Recommended DC Operating Conditions on page 13. The  
device can be accessed tPU time after these supplies attain the  
minimum required level  
Data Valid Signal  
Data valid (Dval0, Dval1) are active low signals provided for easy  
capture of output data. When a read operation is performed, the  
DVal0/DVal1 signal goes low along with output data indicating  
(see Switching Characteristics on page 15). There is no power  
sequencing requirement for the device.  
Table 1. Word Size Selection  
PORTSZ[2:0]  
Word Size  
×9  
Active input data pins D[X:0] Active output data pins Q[X:0]  
000  
001  
010  
011  
100  
101  
110  
111  
D[8:0]  
D[11:0]  
D[15:0]  
D[17:0]  
D[19:0]  
D[23:0]  
D[31:0]  
D[35:0]  
Q[8:0]  
Q[11:0]  
Q[15:0]  
Q[17:0]  
Q[19:0]  
Q[23:0]  
Q[31:0]  
Q[35:0]  
×12  
×16  
×18  
×20  
×24  
×32  
×36  
Table 2. Multi-Queue Configuration  
operating mode  
RQSEL0/WQSEL0  
Queue Number Selected  
1Q mode  
register 0x3[0]=0  
0
1
0
1
0
invalid  
2Q mode  
register 0x3[0]=1  
0
1
In multi Queue mode , the entire memory space is divided into  
equal sized memory array and each individual memory array can  
be accessed as an independent FIFO based on additional  
control signals. These independent memory arrays are called as  
Queues. For example, when 72M device, is configured into two  
Queue mode, the entire memory space of 72M is divided into two  
36M memory array called as Queue-0 and Queue-1. These  
Queues can be accessed independently as a FIFO by selecting  
the Queue select signals WQSEL0 and RQSEL0. In this way, two  
Queues can be created for a given device where data can be  
stored independently and read out independently.  
Read Skip Operation  
As mentioned in Architecture on page 7, during a read operation,  
if the outputs are disabled by having the OE high, the read data  
does not appear on the output bus; however, the read pointer is  
incremented.  
Multi-Queue Operation  
In general, the entire memory space is accessed as a First In  
First Out (FIFO) order for the write and read operation. In this  
case, the entire memory space is called a single Queue. For  
example, for 72M device, the entire memory space is available  
as a single Queue FIFO operation.  
Document Number: 001-68321 Rev. **  
Page 8 of 28  
[+] Feedback  
CYF1018V, CYF1036V  
CYF1072V  
Table 3. Configuration Registers  
ADDR Configuration Register  
Default  
0x00  
Bit [7] Bit [6] Bit [5] Bit [4]  
Bit [3] Bit [2] Bit [1] Bit [0]  
0x1 Reserved  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
0x2 Reserved  
0x00  
0x00  
0x7F  
0x00  
0x00  
0x7F  
0x00  
0x00  
0x3 Number of Queues  
0x4 Reserved  
D0  
X
0x5 Reserved  
X
0x6 Reserved  
X
0x7 Reserved  
X
0x8 Reserved  
X
0x9 Reserved  
X
0xA Fast CLK Bit Register  
1XXXXXXXb Fast CLK  
bit  
X
Table 4. Writing and Reading Configuration Registers in Parallel Mode  
SPI_SEN  
LD  
WEN REN  
WCLK  
RCLK  
SPI_SCLK  
Operation  
1
0
0
1
First rising edge  
because both LD and  
REN are low  
X
X
Parallel write to first register  
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Second rising edge  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Parallel write to second register  
Third rising edge  
Parallel write to third register  
Fourth rising edge  
Parallel write to fourth register  
  
  
  
  
  
  
Tenth rising edge  
Eleventh rising edge  
Parallel write to tenth register  
Parallel write to first register  
(roll back)  
1
1
0
0
1
1
0
0
X
X
Firstrisingedgesince  
both LD and REN are  
low  
X
X
Parallel read from first register  
Second rising edge  
Parallel read from second  
register  
1
1
0
0
1
1
0
0
X
X
Third rising edge  
Fourth rising edge  
X
X
Parallel read from third register  
Parallel read from fourth  
register  
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
X
X
X
X
  
X
X
X
X
  
  
  
  
  
Tenth rising edge  
Parallel read from tenth  
register  
1
0
1
0
X
Eleventh rising edge  
X
Parallel read from first register  
(roll back)  
1
X
1
1
0
1
X
X
X
X
X
No operation  
X
X
Rising edge  
Write to FIFO memory  
Document Number: 001-68321 Rev. **  
Page 9 of 28  
[+] Feedback  
CYF1018V, CYF1036V  
CYF1072V  
Table 4. Writing and Reading Configuration Registers in Parallel Mode (continued)  
SPI_SEN  
LD  
1
WEN REN  
WCLK  
RCLK  
Rising edge  
X
SPI_SCLK  
Operation  
Read from FIFO memory  
Illegal operation  
X
0
X
X
0
1
X
X
X
X
0
Table 5. Writing into Configuration Registers in Serial Mode  
SPI_SEN  
LD  
WEN  
REN  
WCLK  
RCLK  
SCLK  
Operation  
0
1
X
X
X
X
EachrisingoftheSCLKclocks  
in one bit from the SI (Serial  
In). Any of the 10 registers can  
be addressed and written to,  
following the SPI protocol.  
Rising edge  
X
X
1
1
0
X
0
X
X
X
Parallel write to FIFO memory.  
Rising edge  
X
X
Parallel read from FIFO  
memory.  
Rising edge  
1
0
1
1
X
X
X
This corresponds to parallel  
mode (refer to Table 4).  
Figure 2. Serial WRITE to Configuration Register  
This technique avoids reading data from or writing data to the  
FIFO that is “staggered” by one clock cycle due to the variations  
in skew between RCLK and WCLK. Figure 3 on page 11  
demonstrates a 72 bit-word width by using two 36-bit word  
CYF1072Vs.  
Width Expansion Configuration  
The width of CYF1072V can be expanded to provide word widths  
greater than 36 bits. During width expansion mode, all control  
line inputs are common and all flags are available. Empty (Full)  
flags are created by ANDing the Empty (Full) flags of every FIFO.  
Document Number: 001-68321 Rev. **  
Page 10 of 28  
[+] Feedback  
CYF1018V, CYF1036V  
CYF1072V  
Figure 3. Using Two CYF1072V for Width Expansion  
DATAIN (D)  
72  
36  
36  
READCLOCK(RCLK)  
READENABLE(REN)  
OUTPUT ENABLE(OE)  
WRITE CLOCK(WCLK)  
WRITE ENABLE(WEN)  
CYF1072V  
CYF1072V  
EF  
EF  
FF  
FF  
EF  
DATAOUT (Q)  
36  
72  
FF  
36  
The ratio of RCLK to WCLK must be in the range of 0.5 to 2.  
Memory Organization for Different Port Sizes  
The device uses internal PLL to achieve high performance.  
Whenever there is change in the frequency of the clock, the  
device takes tPLL time to synchronize with the input clock. (see  
Switching Characteristics on page 15). The PLL requires  
re-synchronization when there is change in the frequency of  
either WCLK or RCLK or when master reset is asserted.  
The 72-Mbit memory has different organization for different port  
sizes. Table 6 shows the depth of the FIFO for all port sizes.  
Note that for all port sizes, four to eight locations are not available  
for writing the data and are used to safeguard against false  
synchronization of empty and full flags.  
Table 6. Word Size Selection  
For proper FIFO operation, the device must determine which of  
the input clocks – RCLK or WCLK – is faster. This is evaluated  
by using counters after the MRS cycle. The device uses two  
10-bit counters inside (one running on RCLK and other on  
WCLK), which count 1,024 cycles of read and write clock after  
MRS. The clock of the counter which reaches its terminal count  
first is used as master clock inside the FIFO.  
PORTSZ[2:0]  
Word Size  
× 9  
FIFO Depth  
8 Meg  
Memory Size  
72 Mbit  
48 Mbit  
64 Mbit  
72 Mbit  
40 Mbit  
48 Mbit  
64 Mbit  
72 Mbit  
000  
001  
010  
011  
100  
101  
110  
111  
× 12  
4 Meg  
× 16  
4 Meg  
× 18  
4 Meg  
When there is change in the relative frequency of RCLK and  
WCLK during normal operation of FIFO, user can specify it by  
using “Fast CLK bit” in the configuration register (0xA).  
× 20  
2 Meg  
× 24  
2 Meg  
× 32  
2 Meg  
“1” - indicates freq (WCLK) > freq (RCLK)  
“0” - indicates freq (WCLK) < freq (RCLK)  
× 36  
2 Meg  
The memory size mentioned is when the device is configured in  
single-Queue mode.  
The result of counter evaluated frequency is available in this  
register bit. User can override the counter evaluated frequency  
for faster clock by changing this bit.  
Read/Write Clock Requirements  
Whenever there is a change in this bit value, user must wait tPLL  
time before issuing the next read or write to FIFO.  
The read and write clocks must satisfy the following  
requirements:  
JTAG operation  
Both read (RCLK) and write (WCLK) clocks should be  
free-running.  
CYF1072V has two devices connected internally in a JTAG chain  
as shown in Figure 4 on page 12.  
The clock frequency for both clocks should be between the  
minimum and maximum range given in Switching  
Characteristics on page 15.  
Document Number: 001-68321 Rev. **  
Page 11 of 28  
[+] Feedback  
CYF1018V, CYF1036V  
CYF1072V  
Figure 4. JTAG Operation  
Table 7 shows the IR register length and device ID .  
Table 7. JTAG IDCODES  
IR Register length  
Device ID (HEX)  
“Ignore”  
Bypass register length  
Device-1  
Device-2  
3
8
1
1
1E3261CF  
For boundary scan, device-1 should be in bypass mode.  
Table 8 and Table 9 shows the JTAG instruction set for devices 1 and 2.  
Table 8. JTAG Instructions  
Device-1  
BYPASS  
opcode (Binary)  
111  
Table 9. JTAG Instructions  
Device-2  
EXTEST  
HIGHZ  
SAMPLE/PRELOAD  
BYPASS  
IDCODE  
opcode (HEX)  
00  
07  
01  
FF  
0F  
Document Number: 001-68321 Rev. **  
Page 12 of 28  
[+] Feedback  
CYF1018V, CYF1036V  
CYF1072V  
Maximum Ratings  
Exceeding maximum ratings may impair the useful life of the  
device. These user guidelines are not tested.  
I/O port supply voltage (VCCIO).......................–0.3 V to 3.7 V  
Voltage applied to I/O pins............................–0.3 V to 3.75 V  
Output current into outputs (LOW) .............................. 20 mA  
Storage temperature (without bias) ......... –65 C to +150 C  
Ambient temperature with  
power applied .......................................... –55 C to +125 C  
Static discharge voltage...........................................> 2001 V  
(per MIL–STD–883, Method 3015)  
Core supply voltage 1 (VCC1) to  
ground potential..............................................–0.3 V to 2.5 V  
Operating Range  
Core supply voltage 2 (VCC2) to  
ground potential............................................–0.3 V to 1.65 V  
Range  
Ambient Temperature  
–40 C to +85 C  
Industrial  
Latch-up current .................................................. >100mA  
Recommended DC Operating Conditions  
Parameter  
VCC1  
Description  
Min  
1.70  
1.425  
0.7  
Typ  
1.80  
1.5  
Max  
1.90  
1.575  
0.8  
Unit  
Core supply voltage 1  
Core supply voltage 2  
V
V
V
V
V
VCC2  
Vref  
Reference voltage (irrespective of I/O standard used)  
I/O supply voltage, read and write LVCMOS33  
0.75  
3.30  
1.8  
VCCIO  
3.00  
1.70  
3.60  
1.90  
banks.  
LVCMOS18  
Electrical Characteristics  
Parameter  
Icc  
Description  
Active current  
Conditions  
VCC1 = VCC1MAX  
CC2 = VCC2MAX  
Min  
Typ  
Max  
Unit  
mA  
mA  
300  
500  
V
,
All I/O switching, 100 MHz  
VCCIO = VCCIOMAX  
100  
mA  
(All outputs disabled)  
II  
Input pin leakage current VIN = VCCIOmax to 0 V  
I/O pin leakage current VO = VCCIOmax to 0 V  
–15  
–15  
15  
15  
16  
µA  
µA  
pF  
IOZ  
CP  
Capacitance for TMS  
and TCK  
CPIO  
Capacitance for all I/Os  
apart from TMS and TCK  
8
pF  
Document Number: 001-68321 Rev. **  
Page 13 of 28  
[+] Feedback  
CYF1018V, CYF1036V  
CYF1072V  
I/O Characteristics  
Nominal  
I/O standard I/O supply  
voltage  
Input Voltage (V)  
VIL(max) VIH(min)  
Output voltage (V)  
Output Current (mA)  
VOL(max)  
VOH(min)  
IOL(max)  
IOH(max)  
LVCMOS33  
LVCMOS18  
3.3 V  
1.8 V  
0.80  
2.20  
0.45  
0.45  
2.40  
24  
16  
24  
16  
30% VCCIO  
65% VCCIO  
VCCIO – 0.45  
Latency Table  
Latency Parameter  
Number of cycles  
Detail  
Min = 0  
LFF_ASSERT  
Max = 4  
Last data write to FF going low  
Last data read to EF going low  
LEF_ASSERT  
0
1
2
2
4
LRQSEL_CHANGE  
LWQSEL_CHANGE  
LMAILBOX  
Minimum RCLK cycles before RQSEL0 can change  
Minimum WCLK cycles before WQSEL0 can change  
Latency from write port to read port when MB = 1 (w.r.t WCLK)  
Latency when REN is asserted low to first data output from FIFO  
LREN_TO_DATA  
Latency when REN is asserted along with LD to first data read from  
configuration registers  
LREN_TO_CONFIG  
LFF_DEASSERT  
LRT_TO_REN  
4
7
9
Read to FF going high  
RT 5th cycle to REN going low for read  
Min = 20  
Max = 23  
LRT_TO_DATA  
LIN  
RT 5th cycle to valid data on Q[35:0]  
Min = 8  
Max = 29  
Initial latency for data read after FIFO goes empty during  
simultaneous read/write  
Min = 6  
Max = 27  
LEF_DEASSERT  
Write to EF going high  
Figure 5. AC test load conditions  
(a) VCCIO = 1.8 Volt  
(b) VCCIO = 3.3 Volt  
(c) All Input Pulses  
Document Number: 001-68321 Rev. **  
Page 14 of 28  
[+] Feedback  
CYF1018V, CYF1036V  
CYF1072V  
Switching Characteristics  
Over the operating Range  
-100  
Parameter  
Description  
Power-up time after all supplies reach minimum value  
Unit  
Max  
Min  
tPU  
2
100  
100  
10  
41.67  
ms  
MHz  
MHz  
ns  
tS  
Clock cycle frequency  
Clock cycle frequency  
Data access time  
Clock cycle time  
Clock high time  
3.3 V LVCMOS  
1.8 V LVCMOS  
24  
24  
tS  
tA  
tCLK  
tCLKH  
tCLKL  
tDS  
10  
4.5  
4.5  
3
ns  
ns  
Clock low time  
ns  
Data setup time  
Data hold time  
ns  
tDH  
3
ns  
tQS  
RQSEL0 and WQSEL0 setup time  
RQSEL0 and WQSEL0 hold time  
Enable setup time  
3
ns  
tQH  
3
ns  
tENS  
tENH  
tENS_SI  
tENH_SI  
tRATE_SPI  
tRS  
3
ns  
Enable hold time  
3
ns  
setup time for SPI_SI and SPI_SEN pin  
hold time for SPI_SI and SPI_SEN pin  
frequency of SPI_SCLK  
5
ns  
5
ns  
25  
MHz  
ns  
Reset pulse width  
100  
25  
25  
tPZS  
tPZH  
tRSF  
tPRT  
Port size select to MRS seup time  
MRS to port size select hold time  
Reset to flag output time  
ns  
ns  
50  
ns  
Retransmit pulse width  
5
RCLK  
cycles  
tOLZ  
Output enable to output in Low Z  
Output enable to output valid  
Output enable to output in High Z  
Write clock to FF  
4
15  
15  
15  
9
ns  
ns  
tOE  
tOHZ  
ns  
tWFF  
ns  
tREF  
Read clock to EF  
9
ns  
tPLL  
Time required to synchronize PLL  
JTAG TCK cycle time  
1024  
cycles  
ns  
tRATE_JTAG  
tS_JTAG  
tH_JTAG  
tCO_JTAG  
100  
8
setup time for JTAG TMS,TDI  
hold time for JTAG TMS,TDI  
JTAG TCK low to TDO valid  
ns  
8
ns  
20  
ns  
Document Number: 001-68321 Rev. **  
Page 15 of 28  
[+] Feedback  
CYF1018V, CYF1036V  
CYF1072V  
Switching Waveforms  
Figure 6. Write Cycle Timing  
t
CLK  
t
t
CLKL  
CLKH  
WCLK  
t
t
DH  
DS  
D[35:0]  
t
ENH  
t
ENS  
WEN  
NO OPERATION  
Figure 7. Read Cycle Timing  
t
CLK  
RCLK  
t
t
ENH  
ENS  
REN  
NO OPERATION  
L
REN_TO_DATA  
t
A
VALID DATA  
Q[35:0]  
t
OLZ  
t
OHZ  
OE  
DVal0 or Dval1  
Figure 8. Reset Timing  
t
RS  
MRS  
t
t
t
RSF  
RSF  
RSF  
EF  
FF  
OE=1  
OE=0  
Q[35:0]  
Document Number: 001-68321 Rev. **  
Page 16 of 28  
[+] Feedback  
CYF1018V, CYF1036V  
CYF1072V  
Switching Waveforms (continued)  
Figure 9. MRS to PORTSZ [2:0]  
WCLK/RCLK  
MRS  
tPZS  
tPZH  
PORTSZ[2:0]  
Figure 10. Flow-through mailbox Operation  
2
3
1
WCLK  
D[35:0]  
DO  
D1  
D2  
D3  
D4  
REN / WEN  
L MAILBOX  
MB  
Q[35:0]  
QO  
Q1  
Q2  
Q3  
Q4  
DVal0/  
DVal1  
Document Number: 001-68321 Rev. **  
Page 17 of 28  
[+] Feedback  
CYF1018V, CYF1036V  
CYF1072V  
Figure 11. Configuration Register Write  
WCLK  
WEN  
tENS  
LD  
tDH  
tDS  
D[35:0]  
config-reg 0  
config-reg 1  
config-reg 2  
config-reg 3  
config-reg 4  
config-reg 5  
Figure 12. Configuration Register Read  
WCLK  
/RCLK  
REN  
LREN_TO_CONFIG  
LD  
Q[35:0]  
Reg - 1  
Figure 13. WQSEL to FF  
WCLK  
WQSEL0  
FF  
FF for QUE-0  
FF for QUE-1  
tQS  
tWFF  
Document Number: 001-68321 Rev. **  
Page 18 of 28  
[+] Feedback  
CYF1018V, CYF1036V  
CYF1072V  
Figure 14. RQSEL0 to EF  
1
2
3
4
5
RCLK  
RQSEL0  
EF  
L REN_TO_DATA  
EF for QUE-1  
EF for QUE-0  
tREF  
tQS  
Figure 15. Write to Empty Flag De-assertion  
WCLK  
WEN  
D[35:0]  
EF  
LEF_DEASSERT  
EF for QUE-0  
RCLK  
REN  
WQSEL0/  
RQSEL0  
Document Number: 001-68321 Rev. **  
Page 19 of 28  
[+] Feedback  
CYF1018V, CYF1036V  
CYF1072V  
Figure 16. Read to Empty Flag Assertion  
1
2
3
4
5
RCLK  
REN  
Q
LAST  
Q[35:0]  
DVal0  
LREN_TO_DATA  
EF  
EF for QUE-0  
tREF  
WQSEL0/  
RQSEL0  
Figure 17. Full Flag Assertion  
WCLK  
WEN  
D[35:0]  
FF  
NOT  
D
0
D
1
D
x
D
D
LAST  
NOT  
WRITTEN  
LAST-1  
WRITTEN  
FF for QUE-0  
tWFF  
WQSEL0/  
RQSEL0  
Document Number: 001-68321 Rev. **  
Page 20 of 28  
[+] Feedback  
CYF1018V, CYF1036V  
CYF1072V  
Figure 18. Full Flag De-assertion  
WCLK  
WEN  
D[35:0]  
FF  
D
D
D
D
D
LAST  
LAST-4  
LAST-3  
LAST-2  
LAST-1  
LFF_DEASSERT  
RCLK  
REN  
WQSEL0/  
RQSEL0  
Figure 19. Switching between Queues - Write  
WCLK  
WEN  
WQSEL0  
D[35:0]  
QUE-0  
wdata - 0  
QUE-0  
wdata - 1  
QUE-1  
wdata - 0  
QUE-1  
wdata - 1  
QUE-0  
wdata - 2  
QUE-0  
wdata - 3  
Document Number: 001-68321 Rev. **  
Page 21 of 28  
[+] Feedback  
CYF1018V, CYF1036V  
CYF1072V  
Figure 20. Switching between Queues - Read  
1
2
3
4
5
RCLK  
REN  
L REN_TO_DATA  
RQSEL0  
QUE-0  
QUE-1  
QUE-0  
Q[35:0]  
DVal0  
DVal1  
rdata - 0  
rdata - 0  
rdata - 1  
Figure 21. Simultaneous Write & Read QUE - 0  
WCLK  
WEN  
D
0
D
1
D
2
D
3
D
N
D
N+1  
D
N+2  
D
N+3  
D[35:0]  
RCLK  
L IN  
REN  
Q
3
Q
0
Q
1
Q
2
Q[35:0]  
DVal0  
WQSEL0/  
RQSEL0  
Document Number: 001-68321 Rev. **  
Page 22 of 28  
[+] Feedback  
CYF1018V, CYF1036V  
CYF1072V  
Figure 22. Mark  
RCLK  
REN  
MARK  
RQSEL0  
Q[35:0]  
DVal0  
Q (N+3)  
Q (N+5)  
Q (N-2)  
Q (N-1)  
Q (N)  
Q (N+1)  
Q (N+2)  
Q (N+4)  
Q (N+6)  
DATA MARKED IN QUE-0  
Figure 23. Retransmit  
RCLK  
REN  
LRT_TO_REN  
tPRT  
LRT_TO_DATA  
RT  
RQSEL0  
Q (N+1)  
Q (N)  
Q[35:0]  
DVal0  
RETRANSMIT FROM  
DATA MARKED IN QUE-0  
Document Number: 001-68321 Rev. **  
Page 23 of 28  
[+] Feedback  
CYF1018V, CYF1036V  
CYF1072V  
Ordering Information  
Speed  
(MHz)  
Package  
Diagram  
Operating  
Range  
Ordering Code  
Package Type  
100 CYF1018V33L-100BGXI  
CYF1036V33L-100BGXI  
CYF1072V33L-100BGXI  
CYF1018V18L-100BGXI  
CYF1036V18L-100BGXI  
CYF1072V18L-100BGXI  
51-85167 209-ball fine-pitch ball grid array (FBGA) (14 × 22 × 1.76 mm)  
Industrial  
Ordering Code Definitions  
CY F X XXX VXX X - XXX BGXI  
Speed:  
100 MHz  
I/O Standard:  
L = LVCMOS  
I/O Voltage:  
18 = 1.8V  
33 = 3.3 V  
Density:  
018 = 18M  
036 = 36M  
072 = 72M  
1 - Multi-Queue (2 Queues)  
FIFO  
Cypress  
Document Number: 001-68321 Rev. **  
Page 24 of 28  
[+] Feedback  
CYF1018V, CYF1036V  
CYF1072V  
Package Diagram  
Figure 24. 209-ball FBGA (14 × 22 × 1.76 mm), 51-85167  
51-85167 *A  
Document Number: 001-68321 Rev. **  
Page 25 of 28  
[+] Feedback  
CYF1018V, CYF1036V  
CYF1072V  
Acronyms  
Document Conventions  
Units of Measure  
Acronym  
FF  
Description  
Full flag  
Symbol  
Unit of Measure  
degree Celsius  
FIFO  
First in first out  
Empty flag  
Input/output  
°C  
A  
mA  
ms  
MHz  
ns  
micro Amperes  
milli Amperes  
milli seconds  
Mega Hertz  
nano seconds  
ohms  
EF  
I/O  
FBGA  
JTAG  
LVCMOS  
fine-pitch ball grid array  
Joint test action group  
Low voltage complementary metal oxide  
semiconductor  
pF  
V
pico Farad  
Volts  
MB  
Mailbox  
MRS  
Master reset  
Output enable  
Read clock  
W
Watts  
OE  
RCLK  
REN  
Read enable  
Read clock  
RCLK  
RQSEL0  
SCLK  
TDI  
Read Queue select  
Serial clock  
Test data in  
TDO  
Test data out  
Test clock  
TCK  
TMS  
Test mode select  
Write clock  
WCLK  
WEN  
WQSEL0  
QUE-0  
QUE-1  
Write enable  
Write Queue select  
Queue number 0  
Queue number 1  
Document Number: 001-68321 Rev. **  
Page 26 of 28  
[+] Feedback  
CYF1018V, CYF1036V  
CYF1072V  
Document History Page  
Document Title: CYF1018V/CYF1036V/CYF1072V, 18/36/72-Mbit Programmable 2-Queue FIFOs  
Document Number: 001-68321  
Orig. of Submission  
Rev.  
ECN No.  
Change  
Date  
Description of Change  
**  
3209860  
SIVS  
03/30/2011 New data sheet  
Document Number: 001-68321 Rev. **  
Page 27 of 28  
[+] Feedback  
CYF1018V, CYF1036V  
CYF1072V  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
Products  
PSoC Solutions  
Automotive  
cypress.com/go/automotive  
cypress.com/go/clocks  
cypress.com/go/interface  
cypress.com/go/powerpsoc  
cypress.com/go/plc  
psoc.cypress.com/solutions  
PSoC 1 | PSoC 3 | PSoC 5  
Clocks & Buffers  
Interface  
Lighting & Power Control  
Memory  
cypress.com/go/memory  
cypress.com/go/image  
cypress.com/go/psoc  
Optical & Image Sensing  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/go/touch  
cypress.com/go/USB  
cypress.com/go/wireless  
© Cypress Semiconductor Corporation, 2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any  
circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical,  
life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical  
components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 001-68321 Rev. **  
Revised April 12, 2011  
Page 28 of 28  
All products and company names mentioned in this document may be the trademarks of their respective holders.  
[+] Feedback  

相关型号:

CYF1018V18L-100BGXI

18/36/72-Mbit Programmable 2-Queue FIFOs Independent read and write ports
CYPRESS

CYF1018V33L-100BGXI

18/36/72-Mbit Programmable 2-Queue FIFOs Independent read and write ports
CYPRESS

CYF1018V_12

18/36/72-Mbit Programmable 2-Queue FIFOs
CYPRESS

CYF1036V

18/36/72-Mbit Programmable 2-Queue FIFOs Independent read and write ports
CYPRESS

CYF1036V18L-100BGXI

18/36/72-Mbit Programmable 2-Queue FIFOs Independent read and write ports
CYPRESS

CYF1036V33L-100BGXI

18/36/72-Mbit Programmable 2-Queue FIFOs Independent read and write ports
CYPRESS

CYF1072V

18/36/72-Mbit Programmable 2-Queue FIFOs Independent read and write ports
CYPRESS

CYF1072V18L-100BGXI

18/36/72-Mbit Programmable 2-Queue FIFOs Independent read and write ports
CYPRESS

CYF1072V33L-100BGXI

18/36/72-Mbit Programmable 2-Queue FIFOs Independent read and write ports
CYPRESS

CYF2018V

18/36/72-Mbit Programmable Multi-Queue FIFOs Independent read and write ports
CYPRESS

CYF2018V18L-100BGXI

18/36/72-Mbit Programmable Multi-Queue FIFOs Independent read and write ports
CYPRESS

CYF2018V33L-100BGXI

18/36/72-Mbit Programmable Multi-Queue FIFOs Independent read and write ports
CYPRESS