CY8C20246-24LKXIT [CYPRESS]

CapSense™ Applications; 的CapSense ™应用
CY8C20246-24LKXIT
型号: CY8C20246-24LKXIT
厂家: CYPRESS    CYPRESS
描述:

CapSense™ Applications
的CapSense ™应用

文件: 总34页 (文件大小:662K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY8C20x46, CY8C20x66  
CapSense™ Applications  
Features  
Low Power CapSenseTM Block  
Programmable Pin Configurations  
Configurable Capacitive Sensing Elements  
25 mA Sink Current on All GPIO  
TSouupcphopratsdCs,oTmobuicnhaSticorneeonf sC,aapnSdePnrsoexBimuitttyonSse,nSsloidrsers,  
Pull Up, High Z, Open Drain Drive Modes on All GPIO  
CMOS Drive Mode on Ports 0 and 1  
Up to 36 Analog Inputs on GPIO  
Powerful Harvard Architecture Processor  
M8C Processor Speeds Running to 24 MHz  
Low Power at High Speed  
Interrupt Controller  
1.71V to 5.5V Operating Voltage  
Temperature Range: – 40°C to +85°C  
Configurable Inputs on All GPIO  
Selectable, Regulated Digital IO on Port 1  
Configurable Input Threshold for Port 1  
3.0V, 20 mA Total Port 1 Source Current  
5 mA Source Current Mode on Ports 0 and 1  
Hot-Swap Capability on all Port1 GPIO  
Flexible On-Chip Memory  
Two Program Storage Size Options  
• CY8C20x46: 16K Flash  
Versatile Analog Mux  
Common Internal Analog Bus  
Simultaneous Connection of IO Combinations  
High PSRR Comparator  
• CY8C20x66: 32K Flash  
50,000 Erase/Write Cycles  
2048 Bytes SRAM Data Storage  
Partial Flash Updates  
Low Dropout Voltage Regulator for the Analog Array  
Additional System Resources  
Flexible Protection Modes  
In-System Serial Programming (ISSP)  
I2C™ Slave  
• Selectable to 50 kHz, 100 kHz, or 400 kHz  
• Implementation Requires No Clock Stretching  
Full-Speed USB (12 Maps)  
• Implementation During Sleep Modes with  
Eight Uni-Directional Endpoints  
Less Than 100 µA  
One Bi-Directional Control Endpoint  
USB 2.0 Compliant  
• Hardware Address Detection  
SPI™ Master and SPI Slave  
• Configurable Between 46.9 kHz – 12 MHz  
Three 16-Bit Timers  
Dedicated 512 Byte Buffer  
Internal 3.3V Output Regulator  
Available on 48-Pin QFN and 48-Pin SSOP packages only  
Operating voltage with USB enabled:  
• 3.15 to 3.45V when supply voltage is around 3.3V  
• 4.35 to 5.25V when supply voltage is around 5.0V  
Watchdog and Sleep Timers  
Internal Voltage Reference  
Integrated Supervisory Circuit  
Package Options  
Complete Development Tools  
Free Development Tool (PSoC Designer™)  
Full-Featured, In-Circuit Emulator and Programmer  
Full Speed Emulation  
Complex Breakpoint Structure  
128K Trace Memory  
16-Pin 3x3 x 0.6 mm QFN  
24-Pin 4x4 x 0.6 mm QFN  
32-Pin 5x5 x 0.6 mm QFN  
48-Pin 7x7 x 1.0 mm QFN (CY8C20x66 only)  
48-Pin SSOP  
Precision, Programmable Clocking  
Internal ± 5.0% 6/12/24 MHz Main Oscillator  
SInlteeerpnal Low Speed Oscillator at 32 kHz for Watchdog and  
Optional External 32 kHz Crystal  
0.25% Accuracy for USB with No External Components  
Cypress Semiconductor Corporation  
Document Number: 001-12696 Rev. *C  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised October 13, 2008  
[+] Feedback  
CY8C20x46, CY8C20x66  
Block Diagram  
1.8/2.5/3V  
LDO  
PWRSYS  
Port 4 Port 3  
Port 2  
Port 1  
Port 0  
(Regulator)  
PSoC CORE  
SYSTEM BUS  
Global Analog Interconnect  
16K/32K Flash  
2K SRAM  
Supervisory ROM (SROM)  
Nonvolatile Memory  
Interrupt  
Sleep and  
Watchdog  
Controller  
CPU Core (M8C)  
6/12/24 MHz Internal Main Oscillator  
(IMO)  
Internal Low Speed Oscillator (ILO)  
Multiple Clock Sources  
CAPSENSE  
SYSTEM  
Analog  
Reference  
CapSense  
Module  
Two  
Analog  
Mux  
Comparators  
SYSTEM BUS  
Internal  
Voltage  
POR  
SPI  
Three 16-Bit  
I2C  
System  
Resets  
Digital  
Clocks  
USB  
and  
Master/  
Slave  
Programmable  
Timers  
Slave  
References  
LVD  
SYSTEM RESOURCES  
Document Number: 001-12696 Rev. *C  
Page 2 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
®
Figure 1. Analog System Block Diagram  
PSoC Functional Overview  
The PSoC family consists of many Mixed-Signal Array with On-  
Chip Controller devices. These devices are designed to replace  
multiple traditional MCU-based components with one, low cost  
single-chip programmable component. A PSoC device includes  
configurable analog and digital blocks, as well as programmable  
interconnect. This architecture allows the user to create  
customized peripheral configurations, to match the requirements  
of each individual application. Additionally, a fast CPU, Flash  
program memory, SRAM data memory, and configurable IO are  
included in a range of convenient pinouts.  
The architecture for this device family, as illustrated above, is  
comprised of three main areas: the Core, the CapSense Analog  
System, and the System Resources (including a full-speed USB  
port). A common, versatile bus allows connection between IO  
and the analog system. Each CY8C20x46/CY8C20x66 PSoC  
device includes a dedicated CapSense block that provides  
sensing and scanning control circuitry for capacitive sensing  
applications. Depending on the PSoC package, up to 36 general  
purpose IO (GPIO) are also included. The GPIO provides access  
to the MCU and analog mux.  
IDAC  
Vr  
Reference  
Buffer  
Cinternal  
Comparator  
Mux  
Mux  
Refs  
PSoC Core  
The PSoC Core is a powerful engine that supports a rich  
instruction set. It encompasses SRAM for data storage, an  
interrupt controller, sleep and watchdog timers, and IMO  
(internal main oscillator) and ILO (internal low speed oscillator).  
The CPU core, called the M8C, is a powerful processor with  
speeds up to 24 MHz. The M8C is a four-MIPS, 8-bit Harvard  
architecture microprocessor.  
System Resources provide additional capability, such as config-  
urable USB and I2C slave/SPI master-slave communication  
interface, three 16-bit programmable timers, and various system  
resets supported by the M8C.  
CapSenseCounters  
CSCLK  
CapSense  
ClockSelect  
IMO  
Oscillator  
The Analog Multiplexer System  
The Analog System is composed of the CapSense PSoC block  
and an internal 1.2V analog reference, which together support  
capacitive sensing of up to 36 inputs.  
The Analog Mux Bus can connect to every GPIO pin. Pins are  
connected to the bus individually or in any combination. The bus  
also connects to the analog system for analysis with the  
CapSense block comparator.  
Switch control logic enables selected pins to precharge continu-  
ously under hardware control. This enables capacitive  
measurement for applications such as touch sensing. Other  
multiplexer applications include:  
CapSense Analog System  
The Analog System contains the capacitive sensing hardware.  
Several hardware algorithms are supported. This hardware  
performs capacitive sensing and scanning without requiring  
external components. Capacitive sensing is configurable on  
each GPIO pin. Scanning of enabled CapSense pins are  
completed quickly and easily across multiple ports.  
tCooumchppleaxdsc.apacitive sensing interfaces, such as sliders and  
Chip-wide mux that allows analog input from any IO pin.  
Crosspoint connection between any IO pin combinations.  
When designing capacitive sensing applications, refer to the lat-  
est signal-to-noise signal level requirements Application Notes,  
which can be found under http://www.cypress.com >> Docu-  
mentation >> Application Notes. In general, and unless other-  
wise noted in the relevant Application Notes, the minimum  
signal-to-noise ratio (SNR) for CapSense applications is 5:1.  
Document Number: 001-12696 Rev. *C  
Page 3 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
Additional System Resources  
Getting Started  
System Resources, some of which have been previously listed,  
provide additional capability useful to complete systems.  
Additional resources include low voltage detection and power on  
reset. The merits of each system resource are listed here:  
The quickest path to understanding the PSoC silicon is by  
reading this data sheet and using the PSoC Designer Integrated  
Development Environment (IDE). This data sheet is an overview  
of the PSoC integrated circuit and presents specific pin, register,  
and electrical specifications. For in-depth information, along with  
detailed programming information, reference the PSoC Mixed-  
Signal Array Technical Reference Manual, which can be found  
on http://www.cypress.com/psoc.  
The I2C slave/SPI master-slave module provides 50/100/400  
kHz communication over two wires. SPI communication over  
3 or 4 wires runs at speeds of 46.9 kHz to 3 MHz (lower for a  
slower system clock).  
For up-to-date Ordering, Packaging, and Electrical Specification  
information, reference the latest PSoC device data sheets on the  
web at http://www.cypress.com.  
aTlhreeaId2yClohwardpwowareer acdondrseusmsprteiocnogbnyiteiolinmfienaattuinrge trheedunceeesdthfoer  
CPU intervention until a packet addressed to the target device  
is received.  
Development Kits  
cLaotwioVnoolftafgaellinDgevteoclttaiogne(lLeVvDel)s,inwtehrirleupthtsecaadnvsaingcneadl tPhOe Rappli-  
(Power-On-Reset) circuit eliminates the need for a system  
supervisor.  
Development Kits are available from the following distributors:  
Digi-Key, Avnet, Arrow, and Future. The Cypress Online Store  
contains development kits, C compilers, and all accessories for  
PSoC development. Go to the Cypress Online Store web site at  
http://www.cypress.com/shop/. Under Product Categories click  
PSoC® Mixed Signal Arrays to view a current list of available  
items.  
iAtinveinsteernnsainl rge.ference provides an absolute reference for capac-  
dTrhoep5ou.5tVremgualxaitmoru(mLDinOp)upt,ro1v.8id/2e.s5r/e3gVu-slaetlieocntafobrleIOosu.tApurte,gloiswte-r-  
controlled bypass mode allows the user to disable the LDO.  
Technical Training Modules  
Free PSoC technical training modules are available for users  
new to PSoC. Training modules cover designing, debugging,  
advanced analog and CapSense. Go to  
tShteanCdYa8rdCC20ypx4re6s/Cs YP8SCoC20IxD6E6tfoaomlsilayroefapvaaritlsa.bHleofworedveerb,uthgeging  
additional trace length and a minimal ground plane in the Flex-  
Pod can create noise problems that make it difficult to debug  
a Power PSoC design. A custom bonded On-Chip Debug  
(OCD) device is available in an 48-pin QFN package. The OCD  
device is recommended for debugging designs that have high  
current and/or high analog accuracy requirements. The QFN  
package is compact and is connected to the ICE through a high  
density connector.  
http://www.cypress.com/techtrain.  
Consultants  
Certified PSoC Consultants offer everything from technical  
assistance to completed PSoC designs. To contact or become a  
PSoC Consultant go to http://www.cypress.com, click on Support  
located at the top of the web page, and select CYPros  
Consultants.  
Technical Support  
PSoC application engineers take pride in fast and accurate  
response. They can be reached with a four hour guaranteed  
response at http://www.cypress.com/support.  
Application Notes  
A long list of application notes assists you in every aspect of your  
design effort. To view the PSoC application notes, go to the  
http://www.cypress.com web site and select Application Notes  
under the Documentation list located at the top of the web page.  
Application notes are sorted by date by default.  
Document Number: 001-12696 Rev. *C  
Page 4 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
Development Tools  
PSoC Designer™ is a Microsoft® Windows-based, integrated  
development environment for the Programmable System-on-  
Chip (PSoC) devices. The PSoC Designer IDE and application  
runs on Windows XP and Windows Vista.  
This system provides design database management by project,  
an integrated debugger with In-Circuit Emulator, in-system  
programming support, and built-in support for third-party assem-  
blers and C compilers.  
Code Generation Tools  
PSoC Designer supports multiple third-party C compilers and  
assemblers. The code generation tools work seamlessly within  
the PSoC Designer interface and have been tested with a full  
range of debugging tools. The choice is yours.  
Assemblers. The assemblers allow assembly code to be  
merged seamlessly with C code. Link libraries automatically use  
absolute addressing or are compiled in relative mode, and linked  
with other software modules to get absolute addressing.  
PSoC Designer also supports C language compilers developed  
specifically for the devices in the PSoC family.  
C Language Compilers. C language compilers are available  
that support the PSoC family of devices. The products allow you  
to create complete C programs for the PSoC family devices.  
The optimizing C compilers provide all the features of C tailored  
to the PSoC architecture. They come complete with embedded  
libraries providing port and bus operations, standard keypad and  
display support, and extended math functionality.  
PSoC Designer Software Subsystems  
System-Level View  
The system-level view is a drag-and-drop visual embedded  
system design environment based on PSoC Express. In this  
view you solve design problems the same way you might think  
about the system. Select input and output devices based upon  
system requirements. Add a communication interface and define  
the interface to the system (registers). Define when and how an  
output device changes state based upon any/all other system  
devices. Based upon the design, PSoC Designer automatically  
selects one or more PSoC Mixed-Signal Controllers that match  
your system requirements.  
Debugger  
PSoC Designer has a debug environment that provides  
hardware in-circuit emulation, allowing you to test the program in  
a physical system while providing an internal view of the PSoC  
device. Debugger commands allow the designer to read and  
program and read and write data memory, read and write IO  
registers, read and write CPU registers, set and clear break-  
points, and provide program run, halt, and step control. The  
debugger also allows the designer to create a trace buffer of  
registers and memory locations of interest.  
PSoC Designer generates all embedded code, then compiles  
and links it into a programming file for a specific PSoC device.  
Chip-Level View  
The chip-level view is a more traditional integrated development  
environment (IDE) based on PSoC Designer 4.x. You choose a  
base device to work with and then select different onboard  
analog and digital components called user modules that use the  
PSoC blocks. Examples of user modules are ADCs, DACs,  
Amplifiers, and Filters. You configure the user modules for your  
chosen application and connect them to each other and to the  
proper pins. Then you generate your project. This prepopulates  
your project with APIs and libraries that you can use to program  
your application.  
Online Help System  
The online help system displays online, context-sensitive help  
for the user. Designed for procedural and quick reference, each  
functional subsystem has its own context-sensitive help. This  
system also provides tutorials and links to FAQs and an Online  
Support Forum to aid the designer in getting started.  
In-Circuit Emulator  
A low cost, high functionality ICE (In-Circuit Emulator) is  
available for development support. This hardware has the  
capability to program single devices.  
The tool also supports easy development of multiple configura-  
tions and dynamic reconfiguration. Dynamic reconfiguration  
allows for changing configurations at run time.  
The emulator consists of a base unit that connects to the PC by  
way of a USB port. The base unit is universal and operates with  
all PSoC devices. Emulation pods for each device family are  
available separately. The emulation pod takes the place of the  
PSoC device in the target board and performs full speed (24  
MHz) operation.  
Hybrid Designs  
You can begin in the system-level view, allow it to choose and  
configure your user modules, routing, and generate code, then  
switch to the chip-level view to gain complete control over on-  
chip resources. All views of the project share common code  
editor, builder, and common debug, emulation, and programming  
tools.  
Document Number: 001-12696 Rev. *C  
Page 5 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
Designing with PSoC Designer  
The development process for the PSoC device differs from that  
of a traditional fixed function microprocessor. The configurable  
analog and digital hardware blocks give the PSoC architecture a  
unique flexibility that pays dividends in managing specification  
change during development and by lowering inventory costs.  
These configurable resources, called PSoC Blocks, have the  
ability to implement a wide variety of user-selectable functions.  
Organize and Connect  
You build signal chains at the chip level by interconnecting user  
modules to each other and the IO pins, or connect system-level  
inputs, outputs, and communication interfaces to each other with  
valuator functions.  
In the system-level view selecting a potentiometer driver to  
control a variable speed fan driver and setting up the valuators  
to control the fan speed based on input from the pot selects,  
places, routes, and configures a programmable gain amplifier  
(PGA) to buffer the input from the potentiometer, an analog-to-  
digital converter (ADC) to convert the potentiometer’s output to  
a digital signal, and a PWM to control the fan.  
The PSoC development process can be summarized in the  
following four steps:  
1. Select Components  
2. Configure Components  
3. Organize and Connect  
4. Generate, Verify, and Debug  
In the chip-level view, you perform the selection, configuration,  
and routing so that you have complete control over the use of all  
on-chip resources.  
Select Components  
Both the system-level and chip-level views provide a library of  
pre-built, pre-tested hardware peripheral components. In the  
system-level view these components are called “drivers” and  
correspond to inputs (a thermistor, for example), outputs (a  
brushless DC fan, for example), communication interfaces (I2C-  
bus, for example), and the logic to control how they interact with  
one another (called valuators).  
In the chip-level view the components are called “user modules.”  
User modules make selecting and implementing peripheral  
devices simple, and come in analog, digital, and mixed-signal  
varieties.  
Generate, Verify, and Debug  
When you are ready to test the hardware configuration or move  
on to developing code for the project, you perform the “Generate  
Configuration Files” step. This causes PSoC Designer to  
generate source code that automatically configures the device to  
your specification and provides the software for the system.  
Both system-level and chip-level designs generate software  
based on your design. The chip-level design provides application  
programming interfaces (APIs) with high-level functions to  
control and respond to hardware events at run time and interrupt  
service routines that you can adapt as needed. The system-level  
design also generates a C main() program that completely  
controls the chosen application and contains placeholders for  
custom code at strategic positions allowing you to further refine  
the software without disrupting the generated code.  
Configure Components  
Each of the components you select establishes the basic register  
settings that implement the selected function. They also provide  
parameters and properties that allow you to tailor their precise  
configuration to your particular application. For example, a Pulse  
Width Modulator (PWM) User Module configures one or more  
digital PSoC blocks, one for each 8 bits of resolution. The user  
module parameters permit you to establish the pulse width and  
duty cycle. Configure the parameters and properties to corre-  
spond to your chosen application. Enter values directly or by  
selecting values from drop-down menus.  
Both the system-level drivers and chip-level user modules are  
documented in data sheets that are viewed directly in PSoC  
Designer. These data sheets explain the internal operation of the  
component and provide performance specifications. Each data  
sheet describes the use of each user module parameter or driver  
property, and other information you may need to successfully  
implement your design.  
A complete code development environment allows you to  
develop and customize your applications in C, assembly  
language, or both.  
The last step in the development process takes place inside  
PSoC Designer’s Debugger (access by clicking the Connect  
icon). PSoC Designer downloads the HEX image to the In-Circuit  
Emulator (ICE) where it runs at full speed. PSoC Designer  
debugging capabilities rival those of systems costing many times  
more. In addition to traditional single-step, run-to-breakpoint and  
watch-variable features, the debug interface provides a large  
trace buffer and allows you to define complex breakpoint events  
that include monitoring address and data bus values, memory  
locations and external signals.  
Document Number: 001-12696 Rev. *C  
Page 6 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
Document Conventions  
Acronyms Used  
Units of Measure  
A units of measure table is located in the Electrical Specifications  
section. Units of Measure lists all the abbreviations used to  
measure the PSoC devices.  
The following table lists the acronyms that are used in this  
document.  
Table 1. Acronyms  
Numeric Naming  
Acronym  
AC  
Description  
alternating current  
Hexadecimal numbers are represented with all letters in  
uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or  
‘3Ah’). Hexadecimal numbers may also be represented by a ‘0x’  
prefix, the C coding convention. Binary numbers have an  
appended lowercase ‘b’ (for example, 01010100b’ or  
‘01000011b’). Numbers not indicated by an ‘h’, ‘b’, or 0x are  
decimal.  
API  
CPU  
DC  
application programming interface  
central processing unit  
direct current  
FSR  
GPIO  
GUI  
full scale range  
general purpose IO  
graphical user interface  
in-circuit emulator  
ICE  
ILO  
IMO  
IO  
internal low speed oscillator  
internal main oscillator  
input/output  
LSb  
least-significant bit  
LVD  
low voltage detect  
MSb  
POR  
PPOR  
PSoC®  
SLIMO  
SRAM  
most-significant bit  
power on reset  
precision power on reset  
Programmable System-on-Chip™  
slow IMO  
static random access memory  
Document Number: 001-12696 Rev. *C  
Page 7 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
Pin Information  
This section describes, lists, and illustrates the CY8C20x46/CY8C20x66 PSoC device pins and pinout configurations.  
The CY8C20x46/CY8C20x66 PSoC device is available in a variety of packages which are listed and illustrated in the following tables.  
Every port pin (labeled with a “P”) is capable of Digital IO and connection to the common analog bus. However, Vss, Vdd, and XRES  
are not capable of Digital IO.  
16-Pin Part Pinout  
Table 2. 16-Pin QFN Part Pinout(2)  
Type  
Digital Analog  
Figure 2. CY8C20246, CY8C20266 16-Pin PSoC Device  
Pin  
No.  
Name  
Description  
1
2
3
4
5
6
7
8
IO  
IO  
IOHR  
IOHR  
IOHR  
IOHR  
I
I
I
I
I
I
P2[5]  
P2[3]  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
Vss  
P1[0]  
P1[2]  
P1[4]  
Crystal output (XOut).  
Crystal input (XIn).  
I2C SCL, SPI SS.  
I2C SDA, SPI MISO.  
SPI CLK.  
ISSP CLK(1), I2C SCL, SPI MOSI.  
Ground connection.  
ISSP DATA(1), I2C SDA, SPI CLK.  
AI, XOut, P2[5]  
AI, XIn, P2[3]  
AI, I2C SCL, SPI SS, P1[7]  
AI, I2C SDA, SPI MISO, P1[5]  
1
2
3
4
P0[4], AI  
12  
11  
10  
QFN  
XRES  
(Top View)  
P1[4], EXTCLK, AI  
P1[2], AI  
9
Power  
IOHR  
IOHR  
IOHR  
I
I
I
9
10  
11  
Optional external clock (EXTCLK)  
Input  
XRES Active high external reset with  
internal pull down.  
12  
13  
14  
15  
IOH  
I
P0[4]  
Vdd  
P0[7]  
P0[3]  
Power  
Supply voltage.  
Integrating input.  
IOH  
IOH  
I
I
16  
IOH  
I
P0[1]  
Integrating input.  
LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.  
Notes  
1. These are the ISSP pins, which are not High Z at POR (Power On Reset).  
2. During power up or reset event, device P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter any issues.  
Document Number: 001-12696 Rev. *C  
Page 8 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
24-Pin Part Pinout  
Table 3. 24-Pin QFN Part Pinout(2, 3)  
Type  
Digital Analog  
Figure 3. CY8C20346, CY8C20366 24-Pin PSoC Device  
Pin  
No.  
Name  
Description  
1
2
3
4
5
6
7
IO  
IO  
IO  
IOHR  
IOHR  
IOHR  
IOHR  
I
I
I
I
I
I
I
P2[5]  
P2[3]  
P2[1]  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
Crystal output (XOut).  
Crystal input (XIn).  
18  
17  
16  
15  
AI, XOut, P2[5]  
AI, XIn, P2[3]  
1
2
3
4
5
6
P0[4], AI  
P0[2], AI  
P0[0], AI  
P2[0], AI  
XRES  
I2C SCL, SPI SS.  
I2C SDA, SPI MISO.  
SPI CLK.  
AI, P2[1]  
QFN  
AI, I2C SCL, SPI SS, P1[7]  
AI, I2C SDA, SPI MISO, P1[5]  
AI, SPI CLK, P1[3]  
(Top View)  
14  
13  
ISSP CLK(1), I2C SCL, SPI  
P1[6], AI  
MOSI.  
8
NC  
No connection.  
9
10  
Power  
IOHR  
Vss  
P1[0]  
Ground connection.  
ISSP DATA(1), I2C SDA, SPI  
CLK.  
I
11  
12  
IOHR  
IOHR  
I
I
P1[2]  
P1[4]  
Optional external clock input  
(EXTCLK).  
13  
14  
IOHR  
I
P1[6]  
Input  
XRES Active high external reset with  
internal pull down.  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
CP  
IO  
I
I
I
I
I
P2[0]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
IOH  
IOH  
IOH  
IOH  
Power  
Power  
Vdd  
Supply voltage.  
IOH  
IOH  
IOH  
IOH  
I
I
I
I
P0[7]  
P0[5]  
P0[3]  
P0[1]  
Vss  
Integrating input.  
Integrating input.  
Center pad must be connected  
to ground.  
LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.  
Note  
3. The center pad (CP) on the QFN package must be connected to ground (Vss) for best mechanical, thermal, and electrical performance. If not connected to ground, it  
should be electrically floated and not connected to any other signal.  
Document Number: 001-12696 Rev. *C  
Page 9 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
32-Pin Part Pinout  
Table 4. 32-Pin QFN Part Pinout (2, 3)  
Type  
Digital Analog  
Figure4. CY8C20446,CY8C2046632-PinPSoCDevice  
Pin  
No.  
Name  
Description  
1
2
3
4
5
6
7
8
IOH  
IO  
IO  
IO  
IO  
IO  
IO  
IOHR  
IOHR  
IOHR  
IOHR  
I
I
I
I
I
I
I
I
I
I
I
P0[1]  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
P3[3]  
P3[1]  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
Vss  
Integrating input.  
Crystal output (XOut)  
Crystal input (XIn)  
AI, P0[1]  
AI, P2[7]  
AI, XOut, P2[5]  
AI, XIn, P2[3]  
AI, P2[1]  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
P0[0], AI  
P2[6], AI  
P2[4], AI  
P2[2], AI  
P2[0], AI  
P3[2], AI  
P3[0], AI  
XRES  
QFN  
(Top View)  
AI, P3[3]  
AI, P3[1]  
AI, I2C SCL, SPI SS, P1[7]  
I2C SCL, SPI SS.  
I2C SDA, SPI MISO.  
SPI CLK.  
ISSP CLK(1), I2C SCL, SPI MOSI.  
Ground connection.  
ISSP DATA(1), I2C SDA., SPI CLK  
9
10  
11  
12  
13  
14  
15  
Power  
Input  
IOHR  
IOHR  
IOHR  
I
I
I
P1[0]  
P1[2]  
P1[4]  
Optional external clock input  
(EXTCLK).  
16  
17  
IOHR  
I
P1[6]  
XRES Active high external reset with  
internal pull down.  
18  
IO  
I
P3[0]  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
CP  
IO  
IO  
IO  
IO  
IO  
IOH  
IOH  
IOH  
IOH  
I
I
I
I
I
I
I
I
I
P3[2]  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Power  
Vdd  
Supply voltage.  
IOH  
IOH  
IOH  
I
I
I
P0[7]  
P0[5]  
P0[3]  
Vss  
Integrating input.  
Ground connection.  
Power  
Power  
Vss  
Center pad must be connected to  
ground.  
LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.  
Document Number: 001-12696 Rev. *C  
Page 10 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
48-Pin SSOP Part Pinout  
(2)  
Table 5. 48-Pin SSOP Part Pinout  
Figure 5. CY8C20546, CY8C20566-48-Pin SSOP PSoC Device  
Name  
Description  
P0[7]  
P0[5]  
P0[3]  
P0[1]  
P2[7]  
1
2
3
4
5
6
VDD  
P0[6]  
P0[4]  
P0[2]  
P0[0]  
P2[6]  
P2[4]  
P2[2]  
P2[0]  
P3[6]  
P3[4]  
P3[2]  
P3[0]  
XRES  
NC  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
1
2
3
4
5
6
7
8
IOH  
IOH  
IOH  
IOH  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
P0[7]  
P0[5]  
P0[3]  
P0[1]  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
NC  
P2[5]  
P2[3]  
7
P2[1]  
NC  
NC  
8
XTAL Out  
9
XTAL In  
10  
P4[3]  
P4[1]  
NC  
11  
12  
13  
14  
9
10  
No connection  
No connection  
SSOP  
NC  
P3[7]  
11 IO  
12 IO  
13  
IO  
IO  
P4[3]  
P4[1]  
NC  
P3[7]  
P3[5]  
P3[3]  
P3[1]  
NC  
P3[5] 15  
P3[3] 16  
P3[1] 17  
NC  
NC  
No connection  
NC  
18  
19  
20  
NC  
14 IO  
15 IO  
16 IO  
17 IO  
18  
IO  
IO  
IO  
IO  
NC  
NC  
P1[7]  
NC  
P1[5] 21  
P1[3]  
P1[1] 23  
P1[6]  
22  
P1[4]  
P1[2]  
No connection  
No connection  
VSS  
24  
P1[0]  
19  
NC  
20 IOHR IO  
21 IOHR IO  
22 IOHR IO  
23 IOHR IO  
24  
P1[7]  
P1[5]  
P1[3]  
P1[1]  
VSS  
P1[0]  
I2C SCL, SPI SS  
I2C SDA, SPI MISO  
SPI CLK  
TC CLK(1), I2C SCL, SPI MOSI  
Ground Pin  
25 IOHR IO  
TC DATA(1), I2C SDA, SPI  
CLK  
26 IOHR IO  
27 IOHR IO  
28 IOHR IO  
29  
30  
31  
32  
P1[2]  
P1[4]  
P1[6]  
NC  
NC  
NC  
EXT CLK  
No connection  
No connection  
No connection  
No connection  
NC  
Name  
Description  
33  
34  
35  
NC  
NC  
No connection  
No connection  
41  
42  
IO  
IO  
IO  
IO  
IO  
IO  
P2[2]  
P2[4]  
P2[6]  
XRES Active high external reset with 43  
internal pull down  
36 IO  
37 IO  
38 IO  
39 IO  
40 IO  
IO  
IO  
IO  
IO  
IO  
P3[0]  
P3[2]  
P3[4]  
P3[6]  
P2[0]  
44  
45  
46  
47  
48  
IOH IO  
IOH IO  
IOH IO  
IOH IO  
Power  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
Vdd  
Power Pin  
LEGEND A = Analog, I = Input, O = Output, NC = No Connection, H = 5 mA High Output Drive, R = Regulated Output Option.  
Document Number: 001-12696 Rev. *C  
Page 11 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
48-Pin QFN Part Pinout  
(2, 3)  
Table 6. 48-Pin QFN Part Pinout  
Figure 6. CY8C20666 48-Pin QFN PSoC Device  
Pin  
Name  
No.  
Description  
1
2
3
4
5
6
7
8
NC  
No connection.  
NC  
AI, P2[7]  
AI, XOut, P2[5]  
P2[6],AI  
P2[4],AI  
P2[2],AI  
P2[0],AI  
P4[2],AI  
P4[0],AI  
36  
35  
34  
33  
32  
31  
1
2
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
I
I
I
I
I
I
I
I
I
I
I
P2[7]  
P2[5]  
P2[3]  
P2[1]  
P4[3]  
P4[1]  
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P1[7]  
P1[5]  
NC  
Crystal output (XOut).  
Crystal input (XIn).  
3
4
5
6
AI, XIn , P2[3]  
AI, P2[1]  
AI, P4[3]  
AI, P4[1]  
AI, P3[7]  
QFN  
30  
29  
28  
27  
(Top View)  
P3[6],AI  
P3[4], AI  
7
8
9
10  
AI, P3[5]  
P3[2],AI  
], AI  
P3[0  
AI, P3[3]  
9
AI, P3[1]  
XRES  
P1[6], AI  
26  
25  
11  
12  
10  
11  
12  
13  
14  
15  
16  
17  
AI, I2C SCL, SPI SS, P1[7]  
IO  
IOHR  
IOHR  
I2C SCL, SPI SS.  
I2C SDA, SPI MISO.  
No connection.  
No connection.  
SPI CLK.  
NC  
P1[3]  
P1[1]  
IOHR  
IOHR  
I
I
ISSP CLK(1), I2C SCL, SPI  
MOSI.  
18  
19  
20  
21  
22  
Power  
IO  
IO  
Power  
IOHR  
Vss  
D+  
D-  
Vdd  
P1[0]  
Ground connection.  
Supply voltage.  
I
ISSP DATA(1), I2C SDA, SPI  
CLK.  
23  
24  
IOHR  
IOHR  
I
I
P1[2]  
P1[4]  
Optional external clock input  
(EXTCLK).  
25  
26  
IOHR  
I
P1[6]  
Input  
XRES Active high external reset with  
internal pull down.  
27  
28  
29  
IO  
IO  
IO  
I
I
I
P3[0]  
P3[2]  
P3[4]  
Pin  
No.  
Name  
Description  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IOH  
IOH  
IOH  
I
I
I
I
I
I
I
I
I
I
P3[6]  
P4[0]  
P4[2]  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
40  
41  
42  
43  
44  
45  
46  
47  
48  
CP  
IOH  
Power  
I
P0[6]  
Vdd  
NC  
Supply voltage.  
No connection.  
No connection.  
NC  
IOH  
IOH  
IOH  
Power  
IOH  
I
I
I
P0[7]  
P0[5]  
P0[3]  
Vss  
P0[1]  
Vss  
Integrating input.  
Ground connection.  
I
Power  
Center pad must be connected to ground.  
LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.  
Document Number: 001-12696 Rev. *C  
Page 12 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
48-Pin QFN OCD Part Pinout  
The 48-pin QFN part is for the CY8C20066 On-Chip Debug (OCD) PSoC device. Note that this part is only used for in-circuit  
(4)  
debugging.  
(2, 3)  
Table 7. 48-Pin OCD QFN Part Pinout  
Figure 7. CY8C20066 48-Pin OCD PSoC Device  
Pin  
Name  
Description  
No.  
1
2
3
4
5
6
7
8
OCDOE  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
P4[3]  
P4[1]  
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P1[7]  
P1[5]  
CCLK  
HCLK  
P1[3]  
P1[1]  
OCD mode direction pin.  
OCDO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
I
I
I
I
I
I
I
I
I
I
I
P2[6], AI  
P2[4], AI  
P2[2], AI  
P2[0], AI  
P4[2], AI  
P4[0], AI  
P3[6], AI  
P3[4], AI  
P3[2], AI  
P3[0], AI  
36  
35  
34  
33  
32  
31  
1
2
E
A
, P2[7]  
Crystal output (XOut).  
Crystal input (XIn).  
I
AI, XOut, P2[5]  
3
4
5
6
AI, XIn , P2[3]  
AI, P2[1]  
AI, P4[3]  
AI, P4[1]  
AI, P3[7]  
QFN  
30  
29  
28  
27  
(Top View)  
7
8
9
10  
AI, P3[5]  
AI, P3[3]  
9
AI, P3[1]  
XRES  
P1[6], AI  
26  
25  
11  
12  
10  
11  
12  
13  
14  
15  
16  
17  
AI, I2C SCL, SPI SS, P1[7]  
IO  
IOHR  
IOHR  
I2C SCL, SPI SS.  
I2C SDA, SPI MISO.  
OCD CPU clock output.  
OCD high speed clock output.  
SPI CLK.  
IOHR  
IOHR  
I
I
ISSP CLK(1), I2C SCL, SPI  
MOSI.  
18  
19  
20  
21  
22  
Power  
IO  
IO  
Power  
IOHR  
Vss  
D+  
D-  
Vdd  
P1[0]  
Ground connection.  
Supply voltage.  
I
I
ISSP DATA(1), I2C SDA, SPI  
CLK.  
23  
IOHR  
P1[2]  
Pin  
No.  
Name  
Description  
24  
IOHR  
IOHR  
I
I
P1[4]  
Optional external clock input  
(EXTCLK).  
37  
IOH  
I
P0[0]  
25  
26  
P1[6]  
XRES  
38  
IOH  
IOH  
I
I
P0[2]  
P0[4]  
Input  
Active high external reset with 39  
internal pull down.  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
IO  
I
I
I
I
I
I
I
I
I
I
P3[0]  
P3[2]  
P3[4]  
P3[6]  
P4[0]  
P4[2]  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
40  
41  
42  
43  
44  
45  
46  
47  
48  
CP  
IOH  
Power  
I
P0[6]  
Vdd  
Supply voltage.  
OCDO OCD even data IO.  
OCDE OCD odd data output.  
P0[7]  
P0[5]  
P0[3]  
Vss  
IOH  
IOH  
IOH  
Power  
IOH  
Power  
I
I
I
Integrating input.  
Ground connection.  
I
P0[1]  
Vss  
Center pad must be connected to ground.  
LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.  
Note  
4. This part is available in limited quantities for In-Circuit Debugging during prototype development. It is not available in production volumes.  
Document Number: 001-12696 Rev. *C  
Page 13 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
Electrical Specifications  
This section presents the DC and AC electrical specifications of the CY8C20x46/CY8C20x66 PSoC devices. For the most up-to-date  
electrical specifications, confirm that you have the most recent data sheet by going to the web at http://www.cypress.com/psoc.  
Figure 8. Voltage versus CPU Frequency  
Figure 9. IMO Frequency Trim Options  
5.5V  
5.5V  
SLIMO SLIMO SLIMO  
Mode  
= 01  
Mode  
= 00  
Mode  
= 10  
1.71V  
1.71V  
750 kHz  
3 MHz  
750 kHz  
3 MHz  
6 MHz 12 MHz 24 MHz  
24 MHz  
IMO Frequency  
CPU Frequency  
The following table lists the units of measure that are used in this section.  
Table 8. Units of Measure  
Symbol  
Unit of Measure  
degree Celsius  
decibels  
femto farad  
hertz  
1024 bytes  
1024 bits  
kilohertz  
kilo samples per second  
kilohm  
megahertz  
megaohm  
microampere  
microfarad  
microhenry  
microsecond  
microwatts  
Symbol  
Unit of Measure  
o
C
mA  
ms  
mV  
nA  
ns  
milli-ampere  
milli-second  
milli-volts  
nanoampere  
nanosecond  
nanovolts  
ohm  
picoampere  
picofarad  
dB  
fF  
Hz  
KB  
Kbit  
kHz  
ksps  
kΩ  
MHz  
MΩ  
µA  
nV  
pA  
pF  
pp  
ppm  
ps  
sps  
s
V
peak-to-peak  
parts per million  
picosecond  
samples per second  
sigma: one standard deviation  
volts  
µF  
µH  
µs  
µW  
Document Number: 001-12696 Rev. *C  
Page 14 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
Comparator User Module Electrical Specifications  
The following table lists the guaranteed maximum and minimum specifications. Unless stated otherwise, the specifications are for the  
entire device voltage and temperature operating range: –40°C <= TA <= 85°C, 1.71V <= Vdd <= 5.5V.  
Table 9. Comparator User Module Electrical Specifications  
Symbol  
Description  
Comparator Response Time  
Min  
Typ  
70  
2.5  
20  
Max  
100  
30  
Units  
ns  
mV  
Conditions  
50 mV overdrive  
T
COMP  
Offset  
Current  
PSRR  
80  
µA Average DC current, 50 mV  
overdrive  
Supply voltage >2V  
Supply voltage <2V  
80  
40  
dB Power Supply Rejection Ratio  
dB Power Supply Rejection Ratio  
V
Input  
0
1.5  
Range  
ADC Electrical SpecificationsAbsolute Maximum  
Table 10. ADC User Module Electrical Specifications  
Symbol  
Description  
Min  
Vss  
8
Typ  
Max  
Units  
Conditions  
Input  
V
C
Input Voltage Range  
Input Capacitance  
Resolution  
8-Bit Sample Rate  
1.3  
5
10  
V
pF  
This gives 72% of maximum code  
IN  
IN  
Bits Settings 8, 9, or 10  
-
23.4375  
5.859  
ksps Data Clock set to 6 MHz. Sample  
Rate = 0.001/(2^Resolution/Data  
clock)  
ksps Data Clock set to 6 MHz. Sample  
Rate = 0.001/(2^Resolution/Data  
clock)  
-
10-Bit Sample Rate  
DC Accuracy  
-
-
-
DNL  
INL  
Offset Error  
Operating Current  
Data Clock  
-1  
-2  
0
+2  
+2  
90  
350  
12  
LSB For any configuration  
LSB For any configuration  
mV  
µA  
MHz Source is chip’s internal main oscil-  
lator. See device data sheet for  
accuracy.  
15  
275  
I
F
ADC  
2.25  
CLK  
Monotonicity  
Not guaranteed. See DNL  
PSRR Power Supply Rejection Ration  
-
-
-
-
PSRR (Vdd>3.0V)  
24  
30  
12  
0
dB  
dB  
dB  
dB  
5
PSRR (2.2 < Vdd < 3.0)  
PSRR (2.0 < Vdd < 2.2)  
PSRR (Vdd < 2.0)  
Gain Error  
Input Resistance  
1
1/  
%FSR For any resolution  
R
1/  
1/  
Equivalent switched cap input resis-  
IN  
(500fF*Data- (400fF*Data- (300fF*Data-  
tance for 8-, 9-, or 10-bit resolution.  
Clock)  
Clock)  
Clock)  
Document Number: 001-12696 Rev. *C  
Page 15 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
Ratings  
Table 11. Absolute Maximum Ratings  
Symbol  
Description  
Storage Temperature  
Conditions  
Min  
–55  
Typ  
+25  
Max  
+125  
Units  
C
o
T
Higher storage temperatures reduces data  
retention time. Recommended Storage  
Temperature is +25°C ± 25°C. Extended  
STG  
o
duration storage temperatures above 85 C  
degrades reliability.  
Vdd  
Supply Voltage Relative to Vss  
DC Input Voltage  
DC Voltage Applied to Tri-state  
Maximum Current into any Port Pin  
Electro Static Discharge Voltage  
Latch-up Current  
–0.5  
Vss – 0.5  
Vss –0.5  
–25  
2000  
+6.0  
Vdd + 0.5  
Vdd + 0.5  
+50  
V
V
V
mA  
V
mA  
V
V
I
IO  
IOZ  
MIO  
ESD  
LU  
Human Body Model ESD  
In accordance with JESD78 standard  
200  
Operating Temperature  
Table 12. Operating Temperature  
Symbol  
Description  
Ambient Temperature  
Conditions  
Min  
–40  
Typ  
Max  
+85  
Units  
C
o
T
A
T
Operational Die Temperature  
The temperature rise from ambient to  
junction is package specific. See the table  
Thermal Impedances per Package on page  
28. The user must limit the power  
consumption to comply with this  
requirement.  
J
o
–40  
+100  
C
DC Chip-Level Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 13. DC Chip-Level Specifications  
Symbol  
Vdd  
Description  
Supply Voltage  
Conditions  
Min  
1.71  
Typ  
Max  
5.5  
Units  
V
See the table DC POR and LVD  
Specifications on page 20  
o
I
I
I
Supply Current, IMO = 24 MHz  
Supply Current, IMO = 12 MHz  
Supply Current, IMO = 6 MHz  
Deep Sleep Current  
Conditions are Vdd = 3.0V, T = 25 C, CPU  
2.88  
1.71  
1.16  
4.0  
2.6  
1.8  
mA  
mA  
mA  
DD24  
DD12  
DD6  
A
= 24 MHz. CapSense running at 12 MHz, no  
IO sourcing current  
o
Conditions are Vdd = 3.0V, T = 25 C, CPU  
A
= 12 MHz. CapSense running at 12 MHz, no  
IO sourcing current  
o
Conditions are Vdd = 3.0V, T = 25 C, CPU  
A
= 6 MHz. CapSense running at 6 MHz, no IO  
sourcing current  
Vdd = 3.0V, T = 25 C, IO regulator turned  
o
I
I
0.1  
µA  
µA  
SB0  
SB1  
A
off  
o
Standby Current with POR, LVD  
and Sleep Timer  
Vdd = 3.0V, T = 25 C, IO regulator turned  
1.07  
1.5  
A
off  
Document Number: 001-12696 Rev. *C  
Page 16 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
DC General Purpose IO Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0V to 5.5V and  
–40°C T 85°C, 2.4V to 3.0V and –40°C T 85°C, or 1.71V to 2.4V and –40°C T 85°C, respectively. Typical parameters  
A
A
A
apply to 5V and 3.3V at 25°C and are for design guidance only.  
Table 14. 3.0V to 5.5V DC GPIO Specifications  
Symbol  
Description  
Pull up Resistor  
Conditions  
Min  
4
Typ  
5.6  
Max  
8
Units  
kΩ  
V
R
PU  
V
V
V
High Output Voltage  
IOH < 10 µA, maximum of 10 mA source Vdd - 0.2  
OH1  
Port 2 or 3 Pins  
current in all IOs  
High Output Voltage  
Port 2 or 3 Pins  
IOH = 1 mA, maximum of 20 mA source Vdd - 0.9  
V
V
OH2  
OH3  
current in all IOs  
High Output Voltage  
IOH < 10 µA, maximum of 10 mA source Vdd - 0.2  
Port 0 or 1 Pins with LDO Regulator current in all IOs  
Disabled for Port 1  
V
V
V
V
V
V
V
V
High Output Voltage  
IOH = 5 mA, maximum of 20 mA source Vdd - 0.9  
3.00  
3.3  
V
V
V
V
V
V
V
V
OH4  
OH5  
OH6  
OH7  
OH8  
OH9  
OH10  
OL  
Port 0 or 1 Pins with LDO Regulator current in all IOs  
Disabled for Port 1  
High Output Voltage  
IOH < 10 µA, Vdd > 3.1V, maximum of 4  
2.85  
2.20  
2.35  
1.90  
1.60  
1.20  
Port 1 Pins with LDO Regulator  
Enabled for 3V Out  
IOs all sourcing 5 mA  
High Output Voltage  
IOH = 5 mA, Vdd > 3.1V, maximum of 20  
mA source current in all IOs  
Port 1 Pins with LDO Regulator  
Enabled for 3V Out  
High Output Voltage  
IOH < 10 µA, Vdd > 2.7V, maximum of 20  
2.50  
2.75  
Port 1 Pins with LDO Enabled for 2.5V mA source current in all IOs  
Out  
High Output Voltage  
IOH = 2 mA, Vdd > 2.7V, maximum of 20  
Port 1 Pins with LDO Enabled for 2.5V mA source current in all IOs  
Out  
High Output Voltage  
IOH < 10 µA, Vdd > 2.7V, maximum of 20  
1.80  
2.1  
Port 1 Pins with LDO Enabled for 1.8V mA source current in all IOs  
Out  
High Output Voltage  
IOH = 1 mA, Vdd > 2.7V, maximum of 20  
Port 1 Pins with LDO Enabled for 1.8V mA source current in all IOs  
Out  
Low Output Voltage  
IOL = 25 mA, Vdd > 3.3V, maximum of 60  
0.75  
mA sink current on even port pins (for  
example, P0[2] and P1[4]) and 60 mA sink  
current on odd port pins (for example,  
P0[3] and P1[5])  
V
V
V
Input Low Voltage  
Input High Voltage  
Input Hysteresis Voltage  
Input Leakage (Absolute Value)  
Pin Capacitance  
2.00  
0.5  
80  
0.001  
1.7  
0.80  
V
V
mV  
µA  
pF  
IL  
IH  
H
1
5
I
IL  
C
Package and pin dependent  
PIN  
o
Temp = 25 C  
Document Number: 001-12696 Rev. *C  
Page 17 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
Table 15. 2.4V to 3.0V DC GPIO Specifications  
Symbol Description  
Pull up Resistor  
Conditions  
Min  
4
Vdd - 0.2  
Typ  
5.6  
Max  
8
Units  
kΩ  
V
R
PU  
V
V
V
High Output Voltage  
IOH < 10 µA, maximum of 10 mA  
OH1  
Port 2 or 3 Pins  
source current in all IOs  
High Output Voltage  
Port 2 or 3 Pins  
IOH = 0.2 mA, maximum of 10 mA  
Vdd - 0.4  
Vdd - 0.2  
V
V
OH2  
OH3  
source current in all IOs  
High Output Voltage  
IOH < 10 µA, maximum of 10 mA  
Port 0 or 1 Pins with LDO Regulator  
source current in all IOs  
Disabled for Port 1  
V
V
V
V
High Output Voltage  
IOH = 2 mA, maximum of 10 mA  
source current in all IOs  
Vdd - 0.5  
1.50  
1.20  
1.80  
2.1  
V
V
V
V
OH4  
OH5A  
OH6A  
OL  
Port 0 or 1 Pins with LDO Regulator  
Disabled for Port 1  
High Output Voltage  
IOH < 10 µA, Vdd > 2.4V, maximum of  
Port 1 Pins with LDO Enabled for 1.8V 20 mA source current in all IOs  
Out  
High Output Voltage  
IOH = 1 mA, Vdd > 2.4V, maximum of  
Port 1 Pins with LDO Enabled for 1.8V 20 mA source current in all IOs  
Out  
Low Output Voltage  
IOL = 10 mA, maximum of 30 mA sink  
current on even port pins (for example,  
P0[2] and P1[4]) and 30 mA sink  
current on odd port pins (for example,  
P0[3] and P1[5])  
0.75  
V
V
V
Input Low Voltage  
Input High Voltage  
Input Hysteresis Voltage  
Input Leakage (Absolute Value)  
Capacitive Load on Pins  
1.4  
0.5  
80  
0.001  
1.7  
0.72  
V
V
mV  
µA  
pF  
IL  
IH  
H
1
5
I
IL  
C
Package and pin dependent  
PIN  
o
Temp = 25 C  
Table 16. 1.71V to 2.4V DC GPIO Specifications  
Symbol Description  
Pull up Resistor  
Conditions  
Min  
4
Vdd - 0.2  
Typ  
5.6  
Max  
8
Units  
kΩ  
V
R
PU  
V
V
V
High Output Voltage  
IOH = 10 µA, maximum of 10 mA  
OH1  
Port 2 or 3 Pins  
source current in all IOs  
High Output Voltage  
Port 2 or 3 Pins  
IOH = 0.5 mA, maximum of 10 mA  
Vdd - 0.5  
Vdd - 0.2  
V
V
OH2  
OH3  
source current in all IOs  
High Output Voltage  
IOH = 100 µA, maximum of 10 mA  
Port 0 or 1 Pins with LDO Regulator  
source current in all IOs  
Disabled for Port 1  
V
V
High Output Voltage  
IOH=2mA, maximumof10mAsource Vdd - 0.5  
current in all IOs  
V
V
OH4  
OL  
Port 0 or 1 Pins with LDO Regulator  
Disabled for Port 1  
Low Output Voltage  
IOL = 5 mA, maximum of 20 mA sink  
current on even port pins (for example,  
P0[2] and P1[4]) and 30 mA sink  
current on odd port pins (for example,  
P0[3] and P1[5])  
0.4  
V
Input Low Voltage  
0.3 x Vdd  
V
IL  
Document Number: 001-12696 Rev. *C  
Page 18 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
Table 16. 1.71V to 2.4V DC GPIO Specifications (continued)  
Symbol Description  
Input High Voltage  
Conditions  
Min  
0.65 x Vdd  
Typ  
80  
0.001  
1.7  
Max  
Units  
V
mV  
µA  
V
V
IH  
H
Input Hysteresis Voltage  
Input Leakage (Absolute Value)  
Capacitive Load on Pins  
0.5  
1
5
I
C
IL  
Package and pin dependent  
pF  
PIN  
o
Temp = 25 C  
Table 17.DC Characteristics – USB Interface  
Symbol  
Rusbi  
Rusba  
Vohusb  
Volusb  
Vdi  
Description  
USB D+ Pull Up Resistance  
USB D+ Pull Up Resistance  
Static Output High  
Static Output Low  
Differential Input Sensitivity  
Conditions  
With idle bus  
While receiving traffic  
Min  
0.900  
1.425  
2.8  
Typ  
Max  
1.575  
3.090  
3.6  
Units  
kΩ  
kΩ  
V
V
V
-
-
-
-
-
-
0.3  
0.2  
0.8  
Vcm  
Differential Input Common Mode  
2.5  
V
Range  
Vse  
Cin  
Iio  
Rps2  
Rext  
Single Ended Receiver Threshold  
Transceiver Capacitance  
Hi-Z State Data Line Leakage  
PS/2 Pull Up Resistance  
0.8  
-
-
-
2.0  
50  
+10  
7
V
pF  
µA  
kΩ  
On D+ or D- line  
-10  
3
21.78  
5
22.0  
External USB Series Resistor  
In series with each USB pin  
22.22  
DC Analog Mux Bus Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 18. DC Analog Mux Bus Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
R
Switch Resistance to Common Analog  
800  
SW  
Bus  
R
Resistance of Initialization Switch to  
Vss  
800  
GND  
The maximum pin voltage for measuring R  
and R  
is 1.8V  
SW  
GND  
DC Low Power Comparator Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 19. DC Comparator Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
V
Low Power Comparator (LPC)  
Maximum voltage limited to Vdd  
0.0  
1.8  
V
LPC  
common mode  
I
V
LPC supply current  
LPC voltage offset  
10  
2.5  
40  
30  
µA  
mV  
LPC  
OSLPC  
Document Number: 001-12696 Rev. *C  
Page 19 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
DC POR and LVD Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 20. DC POR and LVD Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Vdd Value for PPOR Trip  
Vdd must be greater than or equal to  
V
PORLEV[1:0] = 00b, HPOR = 0 1.71V during startup, reset from the  
PORLEV[1:0] = 00b, HPOR = 1 XRES pin, or reset from watchdog.  
PORLEV[1:0] = 01b, HPOR = 1  
1.61  
1.66  
2.36  
2.60  
2.82  
1.71  
2.41  
2.66  
2.95  
V
V
V
V
PPOR0  
PPOR1  
PPOR2  
PPOR3  
V
V
V
PORLEV[1:0] = 10b, HPOR = 1  
Vdd Value for LVD Trip  
VM[2:0] = 000b  
VM[2:0] = 001b  
VM[2:0] = 010b  
VM[2:0] = 011b  
VM[2:0] = 100b  
VM[2:0] = 101b  
VM[2:0] = 110b  
VM[2:0] = 111b  
[5]  
[6]  
[7]  
V
V
V
V
V
V
V
V
2.40  
2.64  
2.85  
2.45  
2.71  
2.92  
3.02  
3.13  
1.90  
1.80  
4.73  
2.51  
2.78  
2.99  
3.09  
3.20  
2.32  
1.84  
4.83  
V
V
V
V
V
V
V
V
LVD0  
LVD1  
LVD2  
LVD3  
LVD4  
LVD5  
LVD6  
LVD7  
2.95  
3.06  
1.84  
[8]  
1.75  
4.62  
DC Programming Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 21. DC Programming Specifications  
Symbol  
Vdd  
Description  
Conditions  
Min  
1.71  
Typ  
Max  
Units  
V
Supply Voltage for Flash Write  
IWRITE  
Operations  
I
Supply Current During  
Programming or Verify  
5
25  
mA  
V
DDP  
V
V
Input Low Voltage During  
See the appropriate DC General Purpose  
IO Specifications on page 17  
See appropriate DC General Purpose IO  
Specifications on page 17 table on pages  
15 or 16  
V
IL  
ILP  
Programming or Verify  
Input High Voltage During  
Programming or Verify  
V
V
IHP  
IH  
I
I
Input Current when Applying Driving internal pull down resistor  
0.2  
1.5  
mA  
mA  
ILP  
Vilp to P1[0] or P1[1] During  
Programming or Verify  
Input Current when Applying Driving internal pull down resistor  
IHP  
Vihp to P1[0] or P1[1] During  
Programming or Verify  
V
V
Output Low Voltage During  
Vss + 0.75  
Vdd  
V
V
OLP  
Programming or Verify  
Output High Voltage During  
Programming or Verify  
See appropriate DC General Purpose IO  
Specifications on page 17 table on page  
V
OH  
OHP  
16. For Vdd > 3V use V  
in Table 12 on  
OH4  
page 16.  
Flash  
Flash  
Flash Write Endurance  
Flash Data Retention  
Erase/write cycles per block  
50,000  
10  
20  
Cycles  
Years  
ENPB  
DR  
Following maximum Flash write cycles;  
ambient temperature of 55°C  
Notes  
5. Always greater than 50 mV above V  
6. Always greater than 50 mV above V  
7. Always greater than 50 mV above V  
8. Always greater than 50 mV above V  
voltage for falling supply.  
PPOR1  
PPOR2  
PPOR3  
PPOR0  
voltage for falling supply.  
voltage for falling supply.  
voltage for falling supply.  
Document Number: 001-12696 Rev. *C  
Page 20 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
AC Chip-Level Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 22. AC Chip-Level Specifications  
Symbol  
Description  
Conditions  
Min  
24  
24  
19  
22.8  
Typ  
32  
24  
Max  
50  
25.2  
Units  
MHz  
MHz  
kHz  
F
F
F
F
Maximum Operating Frequency  
Maximum Processing Frequency  
Internal Low Speed Oscillator Frequency  
MAX  
CPU  
32K1  
IMO24  
Internal Main Oscillator Frequency at 24  
MHz  
MHz Setting  
F
F
Internal Main Oscillator Frequency at 12  
MHz Setting  
11.4  
5.7  
12  
12.6  
6.3  
MHz  
MHz  
IMO12  
IMO6  
Internal Main Oscillator Frequency at 6  
6.0  
MHz Setting  
DC  
Duty Cycle of IMO  
Supply Ramp Time  
External Reset Pulse Width at Power Up After supply voltage is valid  
40  
0
1
50  
60  
%
µs  
ms  
µs  
IMO  
RAMP  
XRST  
XRST2  
T
T
T
External Reset Pulse Width after Power Applies after part has booted  
10  
Up  
AC General Purpose IO Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 23. AC GPIO Specifications  
Symbol  
Description  
Conditions  
Min Typ  
Max  
Units  
F
GPIO Operating Frequency  
Normal Strong Mode Port 0, 1  
0
6 MHz for  
MHz  
GPIO  
1.71V<Vdd<2.4V  
0
12 MHz for  
2.4V<Vdd<5.5V  
TRise23  
Rise Time, Strong Mode, Cload = 50 pF  
Ports 2 or 3  
Vdd = 3.0 to 3.6V, 10% – 90%  
Vdd = 1.71 to 3.0V, 10% – 90%  
15  
15  
80  
80  
ns  
ns  
TRise23L  
Rise Time, Strong Mode Low Supply,  
Cload = 50 pF  
Ports 2 or 3  
TRise01  
Rise Time, Strong Mode, Cload = 50 pF  
Vdd = 3.0 to 3.6V, 10% – 90%  
LDO enabled or disabled  
10  
10  
50  
80  
ns  
ns  
Ports 0 or 1  
TRise01L  
Rise Time, Strong Mode Low Supply,  
Cload = 50 pF  
Vdd = 1.71 to 3.0V, 10% – 90%  
LDO enabled or disabled  
Ports 0 or 1  
TFall  
Fall Time, Strong Mode, Cload = 50 pF  
Vdd = 3.0 to 3.6V, 10% – 90%  
10  
10  
50  
70  
ns  
ns  
All Ports  
TFallL  
Fall Time, Strong Mode Low Supply, Cload Vdd = 1.71 to 3.0V, 10% – 90%  
= 50 pF  
All Ports  
Document Number: 001-12696 Rev. *C  
Page 21 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
Figure 10. GPIO Timing Diagram  
90%  
GPIO Pin  
Output  
Voltage  
10%  
TRise23  
TRise01  
TRise23L  
TRise01L  
TFall  
TFallL  
Table 24.AC Characteristics – USB Data Timings  
Symbol Description  
Tdrate Full speed data rate  
Conditions  
Average bit rate  
Min  
12–0.25%  
Typ  
12  
Max  
Units  
MHz  
12 +  
0.25%  
Tdjr1  
Tdjr2  
Tudj1  
Tudj2  
Tfdeop  
Tfeopt  
Tfeopr  
Tfst  
Receiver data jitter tolerance  
Receiver data jitter tolerance  
Driver differential jitter  
To next transition  
To pair transition  
To next transition  
To pair transition  
To SE0 transition  
-18.5  
-9  
-3.5  
-4.0  
-2  
18.5  
9
3.5  
4.0  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Driver differential jitter  
Source jitter for differential transition  
Source SE0 interval of EOP  
Receiver SE0 interval of EOP  
160  
82  
175  
Width of SE0 interval during differential  
14  
transition  
Table 25.AC Characteristics – USB Driver  
Symbol Description  
Tr Transition rise time  
Conditions  
Min  
4
4
Typ  
Max  
20  
20  
Units  
ns  
ns  
50 pF  
50 pF  
Tf  
Transition fall time  
TR  
Vcrs  
Rise/fall time matching  
Output signal crossover voltage  
90.00  
1.3  
111.1  
2.0  
%
V
AC Comparator Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 26. AC Low Power Comparator Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
T
Comparator Response Time, 50 mV  
50 mV overdrive does not  
100  
ns  
LPC  
Overdrive  
include offset voltage.  
Document Number: 001-12696 Rev. *C  
Page 22 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
AC Analog Mux Bus Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 27. AC Analog Mux Bus Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
F
Switch Rate  
Maximum pin voltage when measuring  
6.3  
MHz  
SW  
switch rate is 1.8Vp-p  
AC External Clock Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 28. AC External Clock Specifications  
Symbol  
Description  
Conditions  
Min  
0.750  
20.6  
20.6  
150  
Typ  
Max  
25.2  
5300  
Units  
MHz  
ns  
ns  
µs  
F
Frequency  
High Period  
Low Period  
OSCEXT  
Power Up IMO to Switch  
AC Programming Specifications  
Figure 11. AC Waveform  
SCLK (P1[1])  
TRSCLK  
TFSCLK  
SDATA (P1[0])  
TSSCLK  
THSCLK  
TDSCLK  
The following table lists the guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 29. AC Programming Specifications  
Symbol  
Description  
Rise Time of SCLK  
Fall Time of SCLK  
Data Set up Time to Falling Edge of SCLK  
Data Hold Time from Falling Edge of SCLK  
Frequency of SCLK  
Flash Erase Time (Block)  
Flash Block Write Time  
Data Out Delay from Falling Edge of SCLK 3.6 < Vdd  
Data Out Delay from Falling Edge of SCLK 3.0 Vdd 3.6  
Data Out Delay from Falling Edge of SCLK 1.71 Vdd 3.0  
Conditions  
Min  
1
1
40  
40  
0
Typ  
Max  
20  
20  
8
18  
25  
60  
85  
130  
Units  
ns  
ns  
ns  
ns  
MHz  
ms  
ms  
ns  
ns  
ns  
T
T
T
T
F
T
T
T
T
T
RSCLK  
FSCLK  
SSCLK  
HSCLK  
SCLK  
ERASEB  
WRITE  
DSCLK  
DSCLK3  
DSCLK2  
Document Number: 001-12696 Rev. *C  
Page 23 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
AC SPI Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 30. AC SPI Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
12  
Units  
MHz  
F
Outputclockfrequencyishalfof  
Maximum Input Clock Frequency Selection,  
SPIM  
input clock rate.  
Master 2.4V<Vdd<5.5V  
Outputclockfrequencyishalfof  
input clock rate  
6
MHz  
Maximum Input Clock Frequency Selection,  
Master(21)1.71V<Vdd<2.4V  
F
T
Maximum Input Clock Frequency Selection,  
12  
6
MHz  
MHz  
ns  
SPIS  
SS  
Slave 2.4<Vdd<5.5V  
Maximum Input Clock Frequency Selection,  
Slave 1.71V<Vdd<2.4V  
Width of SS_ Negated Between Transmissions  
50  
AC I2C Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 31. AC Characteristics of the I2C SDA and SCL Pins  
Standard Mode  
Fast Mode  
Symbol  
Description  
SCL Clock Frequency  
Conditions  
Units  
Min  
0
Max  
100  
Min  
0
Max  
400  
F
T
kHz  
µs  
SCLI2C  
Hold Time (repeated) START Condition. After  
4.0  
0.6  
HDSTAI2C  
this period, the first clock pulse is generated.  
T
T
T
T
T
T
T
LOW Period of the SCL Clock  
HIGH Period of the SCL Clock  
Setup Time for a Repeated START Condition  
Data Hold Time  
Data Setup Time  
Setup Time for STOP Condition  
4.7  
4.0  
4.7  
0
250  
4.0  
4.7  
1.3  
0.6  
0.6  
0
100  
0.6  
1.3  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
LOWI2C  
HIGHI2C  
SUSTAI2C  
HDDATI2C  
SUDATI2C  
SUSTOI2C  
BUFI2C  
[9]  
Bus Free Time Between a STOP and START  
Condition  
T
Pulse Width of spikes are suppressed by the  
input filter.  
0
50  
ns  
SPI2C  
Figure 12. Definition for Timing for Fast/Standard Mode on the I2C Bus  
SDA  
SCL  
TSPI2C  
T
LOWI2C  
TSUDATI2C  
THDSTAI2C  
TBUFI2C  
TSUSTOI2C  
TSUSTAI2C  
THDDATI2C  
THDSTAI2C  
THIGHI2C  
S
Sr  
P
S
Note  
9. A Fast-Mode I2C-bus device can be used in a Standard Mode I2C-bus system, but the requirement t  
250 ns must then be met. This automatically be the case  
SU;DAT  
if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit to the  
SDA line t + t = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.  
rmax  
SU;DAT  
Document Number: 001-12696 Rev. *C  
Page 24 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
Packaging Information  
This section illustrates the packaging specifications for the CY8C20x46/CY8C20x66 PSoC device, along with the thermal impedances  
for each package.  
Important Note Emulation tools may require a larger area on the target PCB than the chip’s footprint. For a detailed description of  
the emulation tools’ dimensions, refer to the document titled PSoC Emulator Pod Dimensions at  
http://www.cypress.com/design/MR10161.  
Figure 13. 16-Pin Chip On Lead 3x3 mm (Sawn)  
001-09116 *D  
Figure 14. 24-Pin (4x4 x 0.6 mm) QFN  
001-13937 *B  
Document Number: 001-12696 Rev. *C  
Page 25 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
Figure 15. 32-Pin (5x5 x 0.6 mm) QFN  
001-42168 *B  
Figure 16. 48-Pin (300 MIL) SSOP  
.020  
24  
1
0.395  
0.420  
0.292  
0.299  
DIMENSIONS IN INCHES MIN.  
MAX.  
25  
48  
0.620  
0.630  
0.005  
0.010  
SEATING PLANE  
.010  
0.088  
0.092  
0.095  
0.110  
GAUGE PLANE  
0.004  
0.024  
0.040  
0.025  
BSC  
0°-8°  
0.008  
0.016  
0.008  
0.0135  
51-85061 *C  
Document Number: 001-12696 Rev. *C  
Page 26 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
Figure 17. 48-Pin (7x7 mm) QFN  
001-13191 *C  
Important Note  
For information on the preferred dimensions for mounting QFN packages, see the following Application Note at  
http://www.amkor.com/products/notes_papers/MLFAppNote.pdf.  
Pinned vias for thermal conduction are not required for the low power PSoC device.  
Document Number: 001-12696 Rev. *C  
Page 27 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
Thermal Impedances  
Table 32. Thermal Impedances per Package  
[10]  
Package  
Typical θJA  
o
32.69 C/W  
16 QFN  
o
[11]  
20.90 C/W  
24 QFN  
o
[11]  
19.51 C/W  
32 QFN  
o
69 C/W  
48 SSOP  
o
[11]  
17.68 C/W  
48 QFN  
Solder Reflow Peak Temperature  
Following is the minimum solder reflow peak temperature to achieve good solderability.  
Table 33. Solder Reflow Peak Temperature  
[12]  
Package  
16 QFN  
24 QFN  
32 QFN  
48 SSOP  
48 QFN  
Maximum Peak Temperature  
Minimum Peak Temperature  
o
o
240 C  
260 C  
o
o
240 C  
260 C  
o
o
240 C  
260 C  
o
o
220 C  
260 C  
o
o
240 C  
260 C  
Notes  
10. T = T + Power x θ .  
JA  
J
A
11. To achieve the thermal impedance specified for the QFN package, the center thermal pad should be soldered to the PCB ground plane.  
o
o
12. Higher temperatures may be required based on the solder melting point. Typical temperatures for solder are 220 ± 5 C with Sn-Pb or 245 ± 5 C with Sn-Ag-Cu paste.  
Refer to the solder manufacturer specifications.  
Document Number: 001-12696 Rev. *C  
Page 28 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
Development Kits  
Development Tool Selection  
This section presents the development tools available for all  
current PSoC device families including the CY8C20x46/  
CY8C20x66 family.  
All development kits can be purchased from the Cypress Online  
Store.  
CY3215-DK Basic Development Kit  
The CY3215-DK is for prototyping and development with PSoC  
Designer. This kit supports in-circuit emulation and the software  
interface allows users to run, halt, and single step the processor  
and view the content of specific memory locations. Advance  
emulation features also supported through PSoC Designer. The  
kit includes:  
Software  
PSoC Designer™  
At the core of the PSoC development software suite is PSoC  
Designer. Utilized by thousands of PSoC developers, this robust  
software has been facilitating PSoC designs for half a decade.  
PSoC Designer is available free of charge at  
PSoC Designer Software CD  
http://www.cypress.com under Software.  
ICE-Cube In-Circuit Emulator  
PSoC Express™  
ICE Flex-Pod for CY8C29x66 Family  
Cat-5 Adapter  
As the newest addition to the PSoC development software suite,  
PSoC Express is the first visual embedded system design tool  
that allows a user to create an entire PSoC project and generate  
a schematic, BOM, and data sheet without writing a single line  
of code. Users work directly with application objects such as  
LEDs, switches, sensors, and fans. PSoC Express is available  
free of charge at http://www.cypress.com/psocexpress.  
Mini-Eval Programming Board  
110 ~ 240V Power Supply, Euro-Plug Adapter  
iMAGEcraft C Compiler (Registration Required)  
ISSP Cable  
PSoC Programmer  
USB 2.0 Cable and Blue Cat-5 Cable  
2 CY8C29466-24PXI 28-PDIP Chip Samples  
Flexible enough to be used on the bench in development, yet  
suitable for factory programming, PSoC Programmer works  
either as a standalone programming application or it can operate  
directly from PSoC Designer or PSoC Express. PSoC  
Programmer software is compatible with both PSoC ICE-Cube  
In-Circuit Emulator and PSoC MiniProg. PSoC programmer is  
available free of charge at http://www.cypress.com/psocpro-  
grammer.  
CY3210-ExpressDK PSoC Express Development Kit  
The CY3210-ExpressDK is for advanced prototyping and devel-  
opment with PSoC Express (may be used with ICE-Cube In-  
2
Circuit Emulator). It provides access to I C buses, voltage  
reference, switches, upgradeable modules and more. The kit  
includes:  
CY3202-C iMAGEcraft C Compiler  
PSoC Express Software CD  
Express Development Board  
4 Fan Modules  
CY3202 is the optional upgrade to PSoC Designer that enables  
the iMAGEcraft C compiler. It can be purchased from the  
Cypress Online Store. At http://www.cypress.com/shop/ under  
Product Categories, click PSoC® Mixed Signal Arrays to view a  
current list of available items.  
2 Proto Modules  
MiniProg In-System Serial Programmer  
MiniEval PCB Evaluation Board  
Jumper Wire Kit  
USB 2.0 Cable  
Serial Cable (DB9)  
110 ~ 240V Power Supply, Euro-Plug Adapter  
2 CY8C24423A-24PXI 28-PDIP Chip Samples  
2 CY8C27443-24PXI 28-PDIP Chip Samples  
2 CY8C29466-24PXI 28-PDIP Chip Samples  
Document Number: 001-12696 Rev. *C  
Page 29 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
Evaluation Tools  
Device Programmers  
All evaluation tools can be purchased from the Cypress Online  
All device programmers can be purchased from the Cypress  
Store.  
Online Store.  
CY3210-MiniProg1  
CY3216 Modular Programmer  
The CY3210-MiniProg1 kit allows a user to program PSoC  
devices via the MiniProg1 programming unit. The MiniProg is a  
small, compact prototyping programmer that connects to the PC  
via a provided USB 2.0 cable. The kit includes:  
The CY3216 Modular Programmer kit features a modular  
programmer and the MiniProg1 programming unit. The modular  
programmer includes three programming module cards and  
supports multiple Cypress products. The kit includes:  
MiniProg Programming Unit  
Modular Programmer Base  
3 Programming Module Cards  
MiniProg Programming Unit  
PSoC Designer Software CD  
Getting Started Guide  
MiniEval Socket Programming and Evaluation Board  
28-Pin CY8C29466-24PXI PDIP PSoC Device Sample  
28-Pin CY8C27443-24PXI PDIP PSoC Device Sample  
PSoC Designer Software CD  
Getting Started Guide  
USB 2.0 Cable  
USB 2.0 Cable  
CY3207ISSP In-System Serial Programmer (ISSP)  
The CY3207ISSP is a production programmer. It includes  
protection circuitry and an industrial case that is more robust than  
the MiniProg in a production-programming environment.  
Note CY3207ISSP needs special software and is not compatible  
with PSoC Programmer. The kit includes:  
CY3210-PSoCEval1  
The CY3210-PSoCEval1 kit features an evaluation board and  
the MiniProg1 programming unit. The evaluation board includes  
an LCD module, potentiometer, LEDs, and plenty of bread-  
boarding space to meet all of your evaluation needs. The kit  
includes:  
CY3207 Programmer Unit  
PSoC ISSP Software CD  
Evaluation Board with LCD Module  
MiniProg Programming Unit  
110 ~ 240V Power Supply, Euro-Plug Adapter  
USB 2.0 Cable  
28-Pin CY8C29466-24PXI PDIP PSoC Device Sample (2)  
PSoC Designer Software CD  
Getting Started Guide  
USB 2.0 Cable  
CY3214-PSoCEvalUSB  
The CY3214-PSoCEvalUSB evaluation kit features a devel-  
opment board for the CY8C24794-24LFXI PSoC device. Special  
features of the board include both USB and capacitive sensing  
development and debugging support. This evaluation board also  
includes an LCD module, potentiometer, LEDs, an enunciator  
and plenty of bread boarding space to meet all of your evaluation  
needs. The kit includes:  
PSoCEvalUSB Board  
LCD Module  
MIniProg Programming Unit  
Mini USB Cable  
PSoC Designer and Example Projects CD  
Getting Started Guide  
Wire Pack  
Document Number: 001-12696 Rev. *C  
Page 30 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
Accessories (Emulation and Programming)  
Table 34. Emulation and Programming Accessories  
[13]  
[14]  
[15]  
Part Number  
CY8C20246-24LKXI  
CY8C20266-24LKXI  
CY8C20346-24LQXI  
CY8C20366-24LQXI  
CY8C20446-24LQXI  
CY8C20466-24LQXI  
CY8C20546-24PVXI  
CY8C20566-24PVXI  
CY8C20666-24LTXI  
Pin Package  
16 QFN  
Flex-Pod Kit  
Foot Kit  
Adapter  
CY3250-20266QFN  
CY3250-20266QFN  
CY3250-20366QFN  
CY3250-20366QFN  
CY3250-20466QFN  
CY3250-20466QFN  
CY3250-20X66  
CY3250-16QFN-FK  
CY3250-16QFN-FK  
CY3250-24QFN-FK  
CY3250-24QFN-FK  
CY3250-32QFN-FK  
CY3250-32QFN-FK  
CY3250-48SSOP-FK  
CY3250-48SSOP-FK  
CY3250-48QFN-FK  
See note 15  
See note 15  
See note 15  
See note 15  
See note 15  
See note 15  
See note 15  
See note 15  
See note 15  
16 QFN  
24 QFN  
24 QFN  
32 QFN  
32 QFN  
48 SSOP  
48 SSOP  
48 QFN  
CY3250-20X66  
CY3250-20666QFN  
Third-Party Tools  
Build a PSoC Emulator into Your Board  
Several tools have been specially designed by the following  
third-party vendors to accompany PSoC devices during  
development and production. Specific details for each of these  
tools can be found at http://www.cypress.com under  
Documentation >> Evaluation Boards.  
For details on how to emulate your circuit before going to volume  
production using an on-chip debug (OCD) non-production PSoC  
device, refer Application Note “Debugging - Build a PSoC  
Emulator into Your Board - AN2323” at http://www.cypress.com/  
AN2323.  
Notes  
13. Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods.  
14. Foot kit includes surface mount feet that can be soldered to the target PCB.  
15. Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters can be found at  
http://www.emulation.com.  
Document Number: 001-12696 Rev. *C  
Page 31 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
Ordering Information  
The following table lists the CY8C20x46 and CY8C20x66 PSoC devices key package features and ordering codes.  
Table 35. PSoC Device Key Features and Ordering Information  
Flash  
SRAM CapSense Digital IO Analog XRES  
Package  
Ordering Code  
USB  
(Bytes) (Bytes)  
Blocks  
Pins  
Inputs  
Pin  
[16]  
16 Pin (3x3 x 0.6 mm) QFN  
CY8C20246-24LKXI  
CY8C20246-24LKXIT  
16K  
16K  
2048  
2048  
1
13  
Yes  
No  
No  
13  
[16]  
16 Pin (3x3 x 0.6 mm) QFN  
1
13  
Yes  
13  
(Tape and Reel)  
[16]  
24 Pin (4x4 x 0.6 mm) QFN  
CY8C20346-24LQXI  
CY8C20346-24LQXIT  
16K  
16K  
2048  
2048  
1
1
20  
20  
Yes  
Yes  
No  
No  
20  
[16]  
24 Pin (4x4 x 0.6 mm) QFN  
20  
(Tape and Reel)  
[16]  
32 Pin (5x5 x 0.6 mm) QFN  
CY8C20446-24LQXI  
CY8C20446-24LQXIT  
16K  
16K  
2048  
2048  
1
1
28  
28  
Yes  
Yes  
No  
No  
28  
[16]  
32 Pin (5x5 x 0.6 mm) QFN  
28  
(Tape and Reel)  
[16]  
48-Pin SSOP  
CY8C20546-24PVXI  
CY8C20546-24PVXIT  
16K  
16K  
2048  
2048  
1
1
36  
36  
Yes  
Yes  
Yes  
Yes  
36  
[16]  
48-Pin SSOP  
36  
(Tape and Reel)  
[16]  
16 Pin (3x3 x 0.6 mm) QFN  
CY8C20266-24LKXI  
CY8C20266-24LKXIT  
32K  
32K  
2048  
2048  
1
1
13  
13  
Yes  
Yes  
No  
No  
13  
[16]  
16 Pin (3x3 x 0.6 mm) QFN  
13  
(Tape and Reel)  
[16]  
24 Pin (4x4 x 0.6 mm) QFN  
CY8C20366-24LQXI  
CY8C20366-24LQXIT  
32K  
32K  
2048  
2048  
1
1
20  
20  
Yes  
Yes  
No  
No  
20  
[16]  
24 Pin (4x4 x 0.6 mm) QFN  
20  
(Tape and Reel)  
[16]  
32 Pin (5x5 x 0.6 mm) QFN  
CY8C20466-24LQXI  
CY8C20466-24LQXIT  
32K  
32K  
2048  
2048  
1
1
28  
28  
Yes  
Yes  
No  
No  
28  
[16]  
32 Pin (5x5 x 0.6 mm) QFN  
28  
(Tape and Reel)  
[16]  
48-Pin SSOP  
CY8C20566-24PVXI  
CY8C20566-24PVXIT  
32K  
32K  
2048  
2048  
1
1
36  
36  
Yes  
Yes  
Yes  
Yes  
36  
[16]  
48-Pin SSOP  
36  
(Tape and Reel)  
[16]  
48 Pin (7x7 mm) QFN  
CY8C20666-24LTXI  
CY8C20666-24LTXIT  
32K  
32K  
2048  
2048  
1
1
36  
36  
Yes  
Yes  
Yes  
Yes  
36  
[16]  
48 Pin (7x7 mm) QFN  
36  
(Tape and Reel)  
(4)  
[16]  
48 Pin (7x7 mm) QFN (OCD)  
CY8C20066-24LTXI  
32K  
2048  
1
36  
Yes  
Yes  
36  
Notes  
16. Dual-function Digital IO Pins also connect to the common analog mux.  
Document Number: 001-12696 Rev. *C  
Page 32 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
Document History Page  
Document Title: CY8C20x46 CY8C20x66 CapSenseTM Applications  
Document Number: 001-12696  
Revision  
**  
ECN  
766857  
Origin of Change Submission Date  
Description of Change  
New silicon and document (Revision **).  
HMT  
See ECN  
*A  
1242866 HMT  
See ECN  
Add features. Update all applicable sections. Update specs.  
Fix 24-pin QFN pinout moving pins inside. Update package  
revisions. Update and add to Emulation and Programming  
Accessories table.  
*B  
2174006 AESA  
See ECN  
Added 48-Pin SSOP Part Pinout  
Modified symbol R  
Specification  
to R  
in Table DC Analog Mux Bus  
VDD  
GND  
Added footnote in Table DC Analog Mux Bus Specification  
Added 16K FLASH Parts. Updated Notes, Package Diagrams  
and Ordering Information table. Updated Thermal Impedance  
and Solder Reflow tables  
*C  
2587518 TOF/JASM/MNU/ 10/13/08  
HMT  
Converted from Preliminary to Final  
Fixed broken links. Updated data sheet template.  
Added operating voltage ranges with USB  
ADC resolution changed from 10-bit to 8-bit  
Included ADC specifications table  
Included Comparator specification table  
Included Voh7, Voh8, Voh9, Voh10 specs  
Flash data retention – condition added to Note  
Input leakage spec changed to 1 µA max  
GPIO rise time for ports 0,1 and ports 2,3 made common  
AC Programming specifications updated  
Included AC Programming cycle timing diagram  
AC SPI specification updated  
The VIH for 3.0<Vdd<2.4 changed to 1.6 from 2.0  
Added USB specification  
Added SPI CLK to P1[0]  
Updated package diagrams  
Updated thermal impedances for QFN packages  
Updated F  
parameter in Table 23  
GPIO  
Updated voltage ranges for F  
and F  
in Table 30  
SPIM  
SPIS  
Update Development Tools, add Designing with PSoC  
Designer. Edit, fix links, notes and table format. Update R  
IN  
formula, fix TRise parameter names in GPIO figure, fix Switch  
Rate note. Update maximum data in Table 20. DC POR and  
LVD Specifications.  
Document Number: 001-12696 Rev. *C  
Page 33 of 34  
[+] Feedback  
CY8C20x46, CY8C20x66  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at cypress.com/sales.  
Products  
PSoC  
Clocks & Buffers  
Wireless  
Memories  
Image Sensors  
PSoC Solutions  
General  
Low Power/Low Voltage  
Precision Analog  
LCD Drive  
psoc.cypress.com  
clocks.cypress.com  
wireless.cypress.com  
memory.cypress.com  
image.cypress.com  
psoc.cypress.com/solutions  
psoc.cypress.com/low-power  
psoc.cypress.com/precision-analog  
psoc.cypress.com/lcd-drive  
psoc.cypress.com/can  
CAN 2.0b  
USB  
psoc.cypress.com/usb  
CapSense™, PSoC Designer™, Programmable System-on-Chip™, and PSoC Express™ are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corporation. All other  
trademarks or registered trademarks referenced herein are property of the respective corporations. Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys  
a license under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips. All products and  
company names mentioned in this document may be the trademarks of their respective holders.  
© Cypress Semiconductor Corporation, 2007-2008. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 001-12696 Rev. *C  
Revised October 13, 2008  
Page 34 of 34  
[+] Feedback  

相关型号:

CY8C20246A-24LKXI

CapSense Applications
CYPRESS

CY8C20246A-24LKXIT

CapSense Applications
CYPRESS

CY8C20246AS-24LKXI

1.8 V Programmable CapSense® Controller with SmartSense™ Auto-tuning 1–33 Buttons, 0–6 Sliders
CYPRESS

CY8C20246AS-24LKXIT

1.8 V Programmable CapSense® Controller with SmartSense™ Auto-tuning 1–33 Buttons, 0–6 Sliders
CYPRESS

CY8C20247-24LKXI

1.8 V CapSense® Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors
CYPRESS

CY8C20247-24SXI

Microprocessor Circuit, CMOS, PDSO16, 0.150 MM, LEAD FREE, MS-012, SOIC-16
CYPRESS

CY8C20247/S-24LKXI

1.8 V CapSense® Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors
CYPRESS

CY8C20247/S-24LKXIT

1.8 V CapSense® Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors
CYPRESS

CY8C20247/S-24SXI

1.8 V CapSense® Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors
CYPRESS

CY8C20247S-24LKXI

1.8 V CapSense® Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors
CYPRESS

CY8C20247S-24LKXIT

1.8 V CapSense® Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors
CYPRESS

CY8C20247S-24SXI

1.8 V CapSense® Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors
CYPRESS