CY8C20247-24SXI [CYPRESS]

Microprocessor Circuit, CMOS, PDSO16, 0.150 MM, LEAD FREE, MS-012, SOIC-16;
CY8C20247-24SXI
型号: CY8C20247-24SXI
厂家: CYPRESS    CYPRESS
描述:

Microprocessor Circuit, CMOS, PDSO16, 0.150 MM, LEAD FREE, MS-012, SOIC-16

微控制器 光电二极管 外围集成电路
文件: 总45页 (文件大小:757K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY8C20xx7/S  
1.8 V CapSense® Controller with SmartSense™  
Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors  
1.8  
V CapSense® Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors  
4 Clock Sources  
Features  
Internal main oscillator (IMO): 6/12/24 MHz  
Internal low-speed oscillator (ILO) at 32 kHz for watchdog  
QuietZone™ Controller  
Patented Capacitive Sigma Delta PLUS (CSD PLUS™)  
sensing algorithm for robust performance  
High Sensitivity (0.1 pF) and best-in-class SNR performance  
to support:  
and sleep timers  
External 32 KHz Crystal Oscillator  
External Clock Input  
Programmable pin configurations  
Up to 34 general-purpose I/Os (GPIOs)  
Dual mode GPIO (Analog and Digital)  
High sink current of 25 mA per GPIO  
• Max sink current 120 mA for all I/Os combined  
Source Current  
• 5 mA on ports 0 and 1  
• 1 mA on ports 2, 3 and 4  
Configurable internal pull-up, high-Z and open drain modes  
Selectable, regulated digital I/O on port 1  
Configurable input threshold on port 1  
• Overlay thickness of 15 mm for glass and 5 mm plastic  
• Proximity Solutions  
Superiornoiseimmunityperformanceagainstconductedand  
radiated noise and ultra low radiated emissions  
• Standardized user modules for overcoming noise  
Low power CapSense® block with SmartSense Auto-tuning  
Low average power consumption –  
• 28 µA/sensor in run time (wake-up and scan once every  
125 ms)  
SmartSense_EMC_PLUS Auto-Tuning  
• Sets and maintains optimal sensor performance during run  
time  
Versatile Analog functions  
Internal analog bus supports connection of multiple sensors  
• Eliminates system tuning during development and  
production  
• Compensates for variations in manufacturing process  
to form ganged proximity sensor  
Internal Low-Dropout voltage regulator for high power supply  
rejection ratio (PSRR)  
Driven shield available on five GPIO pins  
Delivers best-in class water tolerant designs  
Robust proximity sensing in the presence of metal objects  
Supports longer trace lengths  
Additional system resources  
I2C Slave:  
• Selectable to 50 kHz, 100 kHz, or 400 kHz  
• Selectable Clock stretch or Forced Nack Mode  
• I2C wake from sleep with Hardware address match  
12 MHz (Configurable) SPI master and slave  
Three 16-bit timers  
Max load of 100 pF (3 MHz)  
Powerful Harvard-architecture processor  
M8C CPU with a max speed of 24 MHz  
Watchdog and sleep timers  
Integrated supervisory circuit  
10-bit incremental analog-to-digital converter (ADC) with  
internal voltage reference  
Two general-purpose high speed, low power analog  
comparators  
Operating Range: 1.71 V to 5.5 V  
Standby Mode 1.1 μA (Typ)  
Deep Sleep 0.1 μA (Typ)  
Operating Temperature range: –40 oC to +85 oC  
Flexible on-chip memory  
Complete development tools  
8 KB flash, 1 KB SRAM  
16 KB flash, 2 KB SRAM  
Free development tool (PSoC Designer™)  
32 KB flash, 2 KB SRAM  
Sensor and Package options  
50,000 flash erase/write cycles  
Read while Write with EEPROM emulation  
In-system programming simplifies manufacturing process  
10 Sensing Inputs – 16-pin QFN, 16-pin SOIC  
16 Sensing Inputs – 24-pin QFN  
24 Sensing Inputs – 30-pin WLCSP  
25 Sensing Inputs – 32-pin QFN  
31 Sensing Inputs – 48-pin QFN  
Errata: For information on silicon errata, see “Errata” on page 37. Details include trigger conditions, devices affected, and proposed workaround.  
Cypress Semiconductor Corporation  
Document Number: 001-69257 Rev. *P  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised May 19, 2017  
 
CY8C20xx7/S  
Logic Block Diagram  
1.8/2.5/3 V  
LDO  
PWRSYS  
[1]  
(Regulator)  
Port 4  
Port 3  
Port2  
Port 1  
Port 0  
PSoC CORE  
SYSTEM BUS  
Global Analog Interconnect  
1K/2K  
SRAM  
8K/16K/32K Flash  
Nonvolatile Memory  
Supervisory ROM(SROM)  
Interrupt  
Controller  
Sleep and  
Watchdog  
CPU Core(M8C)  
6/12/24 MHz Internal Main Oscillator  
(IMO)  
Internal Low Speed Oscillator (ILO)  
Multiple Clock Sources  
CAPSENSE  
SYSTEM  
Analog  
Reference  
CapSense  
Module  
Comparator #1  
Comparator #2  
Analog  
Mux  
SYSTEM BUS  
Internal  
Voltage  
References  
POR  
and  
LVD  
SPI  
Master/  
Slave  
Three16-Bit  
Programmable  
Timers  
I2C  
Slave  
System  
Resets  
Digital  
Clocks  
SYSTEM RESOURCES  
Note  
1. Internal voltage regulator for internal circuitry  
Document Number: 001-69257 Rev. *P  
Page 2 of 45  
 
 
CY8C20xx7/S  
Contents  
PSoC® Functional Overview ............................................4  
PSoC Core ..................................................................4  
CapSense System .......................................................4  
Additional System Resources .....................................5  
Getting Started ..................................................................5  
Application Notes/Design Guides ................................5  
Development Kits ........................................................5  
Training .......................................................................5  
CYPros Consultants ....................................................5  
Solutions Library ..........................................................5  
Technical Support .......................................................5  
Designing with PSoC Designer .......................................6  
Select Components .....................................................6  
Configure Components ...............................................6  
Organize and Connect ................................................6  
Generate, Verify, and Debug .......................................6  
Pinouts ..............................................................................7  
16-pin SOIC (10 Sensing Inputs) ................................7  
16-pin QFN (10 Sensing Inputs)[9] ..............................8  
24-pin QFN (16 Sensing Inputs)[15] ............................9  
30-ball WLCSP (24 Sensing Inputs) ..........................10  
32-pin QFN (25 Sensing Inputs)[26] ..........................11  
48-pin QFN (31 Sensing Inputs)[32] ..........................12  
Electrical Specifications ................................................13  
Absolute Maximum Ratings .......................................13  
Operating Temperature .............................................13  
DC Chip-Level Specifications ....................................14  
DC GPIO Specifications ............................................15  
DC Analog Mux Bus Specifications ...........................17  
DC Low Power Comparator Specifications ...............17  
Comparator User Module Electrical Specifications ...18  
ADC Electrical Specifications ....................................18  
DC POR and LVD Specifications ..............................19  
DC Programming Specifications ...............................19  
DC I2C Specifications ...............................................20  
Shield Driver DC Specifications ................................20  
DC IDAC Specifications ............................................20  
AC Chip-Level Specifications ....................................21  
AC General Purpose I/O Specifications ....................22  
AC Comparator Specifications ..................................22  
AC External Clock Specifications ..............................22  
AC Programming Specifications ................................23  
AC I2C Specifications ................................................24  
Packaging Information ...................................................27  
Thermal Impedances .................................................30  
Capacitance on Crystal Pins .....................................30  
Solder Reflow Peak Temperature .............................30  
Development Tool Selection .........................................31  
Software ....................................................................31  
Development Kits ......................................................31  
Evaluation Tools ........................................................31  
Device Programmers .................................................32  
Third Party Tools .......................................................32  
Ordering Information ......................................................33  
Ordering Code Definitions .........................................34  
Acronyms ........................................................................35  
Reference Documents ....................................................35  
Document Conventions .............................................35  
Units of Measure .......................................................35  
Numeric Naming ........................................................36  
Glossary ..........................................................................36  
Errata ...............................................................................37  
CY8C20xx7/S Qualification Status ............................37  
CY8C20xx7/S Errata Summary .................................37  
Document History Page .................................................41  
Sales, Solutions, and Legal Information ......................45  
Worldwide Sales and Design Support .......................45  
Document Number: 001-69257 Rev. *P  
Page 3 of 45  
CY8C20xx7/S  
®
Figure 1. CapSense System Block Diagram  
PSoC Functional Overview  
The PSoC family consists of many devices with on-chip  
controllers. These devices are designed to replace multiple  
traditional MCU-based system components with one low-cost  
single-chip programmable component. A PSoC device includes  
configurable blocks of analog and digital logic, and  
programmable interconnect. This architecture makes it possible  
for you to create customized peripheral configurations, to match  
the requirements of each individual application. Additionally, a  
fast central processing unit (CPU), flash program memory,  
SRAM data memory, and configurable I/O are included in a  
range of convenient pinouts.  
CS1  
CS2  
IDAC  
CSN  
Vr  
The architecture for this device family, as shown in the “Logic  
Block Diagram” on page 2, consists of three main areas:  
Reference  
Buffer  
The core  
Cexternal (P0[1]  
or P0[3])  
Comparator  
CapSense analog system  
System resources  
Mux  
Mux  
Refs  
A common, versatile bus allows connection between I/O and the  
analog system.  
Each CY8C20x37/47/67/S PSoC device includes a dedicated  
CapSense block that provides sensing and scanning control  
circuitry for capacitive sensing applications. Depending on the  
PSoC package, up to 34 GPIOs are also included. The GPIOs  
provide access to the MCU and analog mux.  
Cap Sense Counters  
CSCLK  
PSoC Core  
CapSense  
Clock Select  
IMO  
Oscillator  
The PSoC core is a powerful engine that supports a rich  
instruction set. It encompasses SRAM for data storage, an  
interrupt controller, sleep and watchdog timers, and IMO and  
ILO. The CPU core, called the M8C, is a powerful processor with  
speeds up to 24 MHz. The M8C is a 4-million instructions per  
second (MIPS), 8-bit Harvard-architecture microprocessor.  
Analog Multiplexer System  
The analog mux bus can connect to every GPIO pin. Pins are  
connected to the bus individually or in any combination. The bus  
also connects to the analog system for analysis with the  
CapSense block comparator.  
CapSense System  
The analog system contains the capacitive sensing hardware.  
Several hardware algorithms are supported. This hardware  
performs capacitive sensing and scanning without requiring  
external components. The analog system is composed of the  
CapSense PSoC block and an internal 1 V or 1.2 V analog  
reference, which together support capacitive sensing of up to 31  
inputs[2]. Capacitive sensing is configurable on each GPIO pin.  
Scanning of enabled CapSense pins is completed quickly and  
easily across multiple ports.  
Switch-control logic enables selected pins to precharge  
continuously under hardware control. This enables capacitive  
measurement for applications such as touch sensing. Other  
multiplexer applications include:  
Complex capacitive sensing interfaces, such as sliders and  
touchpads.  
Chip-wide mux that allows analog input from any I/O pin.  
Crosspoint connection between any I/O pin combinations.  
SmartSenseAuto-tuning  
SmartSense auto-tuning is an innovative solution from Cypress  
that removes manual tuning of CapSense applications. This  
solution is easy to use and provides robust noise immunity. It is  
the only auto-tuning solution that establishes, monitors, and  
maintains all required tuning parameters of each sensor during  
run time. SmartSense auto-tuning allows engineers to go from  
prototyping to mass production without retuning for  
manufacturing variations in PCB and/or overlay material  
properties.  
Note  
2. 34 GPIOs = 31 pins for capacitive sensing+2 pins for I2C + 1 pin for modulator capacitor.  
Document Number: 001-69257 Rev. *P  
Page 4 of 45  
 
 
CY8C20xx7/S  
Additional System Resources  
Getting Started  
System resources provide additional capability, such as  
configurable I2C slave, SPI master/slave communication  
interface, three 16-bit programmable timers, various system  
resets supported by the M8C low voltage detection and power-  
on reset. The merits of each system resource are listed here:  
The quickest way to understand PSoC silicon is to read this  
datasheet and then use the PSoC Designer Integrated  
Development Environment (IDE). This datasheet is an overview  
of the PSoC integrated circuit and presents specific pin, register,  
and electrical specifications.  
The I2C slave/SPI master-slave module provides 50/100/  
400 kHz communication over two wires. SPI communication  
over three or four wires runs at speeds of 46.9 kHz to 3 MHz  
(lower for a slower system clock).  
For in depth information, along with detailed programming  
details, see the Technical Reference Manual for the CY8C20x37/  
47/67/S PSoC devices.  
For up-to-date ordering, packaging, and electrical specification  
information, see the latest PSoC device datasheets on the web  
at www.cypress.com/psoc.  
The I2C hardware address recognition feature reduces the  
already low power consumption by eliminating the need for  
CPU intervention until a packet addressed to the target device  
is received.  
Application Notes/Design Guides  
The I2C enhanced slave interface appears as a 32-byte RAM  
buffer to the external I2C master. Using a simple predefined  
protocol, the master controls the read and write pointers into  
the RAM. When this method is enabled, the slave does not stall  
the bus when receiving data bytes in active mode. For more  
details, refer to the I2CSBUF User Module datasheet.  
Application notes and design guides are an excellent  
introduction to the wide variety of possible PSoC designs. They  
are located at www.cypress.com/gocapsense. Select  
Application Notes under the Related Documentation tab.  
Development Kits  
PSoC Development Kits are available online from Cypress at  
www.cypress.com/shop and through a growing number of  
regional and global distributors, which includeArrow, Avnet, Digi-  
Key, Farnell, Future Electronics, and Newark. See “Development  
Kits” on page 31.  
Low-voltage detection (LVD) interrupts can signal the  
application of falling voltage levels, while the advanced power-  
on reset (POR) circuit eliminates the need for a system  
supervisor.  
An internal reference provides an absolute reference for  
capacitive sensing.  
Training  
Free PSoC and CapSense technical training (on demand,  
webinars, and workshops) is available online at  
www.cypress.com/training. The training covers a wide variety of  
topics and skill levels to assist you in your designs.  
A register-controlled bypass mode allows the user to disable  
the LDO regulator.  
CYPros Consultants  
Certified PSoC Consultants offer everything from technical  
assistance to completed PSoC designs. To contact or become a  
PSoC Consultant go to www.cypress.com/cypros.  
Solutions Library  
Visit our growing library of solution focused designs at  
www.cypress.com/solutions. Here you can find various  
application designs that include firmware and hardware design  
files that enable you to complete your designs quickly.  
Technical Support  
For assistance with technical issues, search KnowledgeBase  
articles and forums at www.cypress.com/support. If you cannot  
find an answer to your question, create a technical support case  
or call technical support at 1-800-541-4736.  
Document Number: 001-69257 Rev. *P  
Page 5 of 45  
 
CY8C20xx7/S  
Organize and Connect  
Designing with PSoC Designer  
You build signal chains at the chip level by interconnecting user  
modules to each other and the I/O pins. You perform the  
selection, configuration, and routing so that you have complete  
control over all on-chip resources.  
The PSoC development process can be summarized in the  
following four steps:  
1. Select User Modules  
2. Configure User Modules  
3. Organize and Connect  
4. Generate and Verify  
Generate, Verify, and Debug  
When you are ready to test the hardware configuration or move  
on to developing code for the project, you perform the “Generate  
Configuration Files” step. This causes PSoC Designer to  
generate source code that automatically configures the device to  
your specification and provides the software for the system. The  
generated code provides application programming interfaces  
(APIs) with high-level functions to control and respond to  
hardware events at run time and interrupt service routines that  
you can adapt as needed.  
Select Components  
PSoC Designer provides a library of pre-built, pre-tested  
hardware peripheral components called “user modules”. User  
modules make selecting and implementing peripheral devices,  
both analog and digital, simple.  
Configure Components  
A complete code development environment allows you to  
develop and customize your applications in C, assembly  
language, or both.  
Each of the User Modules you select establishes the basic  
register settings that implement the selected function. They also  
provide parameters and properties that allow you to tailor their  
precise configuration to your particular application. The user  
module parameters permit you to establish the pulse width and  
duty cycle. Configure the parameters and properties to  
correspond to your chosen application. Enter values directly or  
by selecting values from drop-down menus. All the user modules  
are documented in datasheets that may be viewed directly in  
PSoC Designer or on the Cypress website. These user module  
datasheets explain the internal operation of the User Module and  
provide performance specifications. Each datasheet describes  
the use of each user module parameter, and other information  
you may need to successfully implement your design.  
Document Number: 001-69257 Rev. *P  
Page 6 of 45  
CY8C20xx7/S  
Pinouts  
The CY8C20x37/47/67/S PSoC device is available in a variety of packages, which are listed and illustrated in the following tables.  
Every port pin (labeled with a “P”) is capable of digital I/O and connection to the common analog bus. However, VSS, VDD, and XRES  
are not capable of digital I/O.  
16-pin SOIC (10 Sensing Inputs)  
Table 1. Pin Definitions – CY8C20237-24SXI, CY8C20247/S-24SXI [3]  
Type  
Figure 2. CY8C20237-24SXI, CY8C20247/S-24SXI  
Device  
Pin  
No.  
Name  
Description  
Digital Analog  
1
2
3
4
5
6
7
8
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
I
I
I
I
I
I
I
P0[3] Integrating Input  
P0[1] Integrating Input  
P2[5] Crystal output (XOut)  
P2[3] Crystal input (XIn)  
P1[7] I2C SCL, SPI SS  
P1[5] I2C SDA, SPI MISO  
P1[3]  
AI, P0[3]  
P0[7], AI  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
AI, P0[1]  
AI, P2[5]  
VDD  
P0[4], AI  
AI, P2[3]  
AI, P1[7]  
XRES  
P1[4], EXTCLK  
SOIC  
AI, P1[5]  
AI, P1[3]  
P1[2], AI  
P1[0], ISSP DATA, I2C SDA, SPI CLK, AI  
AI, ISSP CLK, I2C SCL, SPI MOSI, P1[1]  
VSS  
P1[1] ISSP CLK[4], I2C SCL, SPI  
MOSI  
9
Power  
VSS Ground connection[7]  
10  
I/O  
I
P1[0] ISSP DATA[4], I2C SDA, SPI  
CLK[5]  
11  
12  
I/O  
I/O  
I
I
P1[2] Driven Shield Output (optional)  
P1[4] Optional external clock  
(EXTCLK)  
13  
INPUT  
Power  
XRES Active high external reset with  
internal pull-down[6]  
14  
15  
16  
I/O  
I/O  
I
I
P0[4]  
VDD Supply voltage  
P0[7]  
LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.  
Notes  
3. 13 GPIOs = 10 pins for capacitive sensing+2 pins for I2C + 1 pin for modulator capacitor.  
4. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives  
resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive  
resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use  
alternate pins if you encounter issues.  
5. Alternate SPI clock.  
6. The internal pull down is 5KOhm.  
7. All VSS pins should be brought out to one common GND plane.  
Document Number: 001-69257 Rev. *P  
Page 7 of 45  
 
 
 
 
 
 
 
 
 
CY8C20xx7/S  
[8]  
16-pin QFN (10 Sensing Inputs)  
Table 2. Pin Definitions – CY8C20237, CY8C20247/S [9]  
Type  
Pin  
Figure 3. CY8C20237, CY8C20247/S Device  
Name  
Description  
No.  
Digital Analog  
1
2
3
4
5
I/O  
I
I
I
I
I
P2[5] Crystal output (XOut)  
P2[3] Crystal input (XIn)  
P1[7] I2C SCL, SPI SS  
P1[5] I2C SDA, SPI MISO  
P1[3] SPI CLK  
I/O  
AI, XOut,P2[5]  
AI, XIn,P2[3]  
1
2
P0[4] , AI  
XRES  
IOHR  
IOHR  
IOHR  
12  
11  
QFN  
3
4
(Top View)10 P1[4], EXTCLK, AI  
AI,I2 C SCL, SPI SS, P1[7]  
AI,I2 C SDA, SPI MISO, P1[5]  
9
P1[2] , AI  
ISSP CLK[10], I2C SCL, SPI  
6
7
IOHR  
I
P1[1]  
MOSI  
Power  
VSS Ground connection[13]  
ISSP DATA[10], I2C SDA, SPI  
8
IOHR  
IOHR  
IOHR  
I
I
I
P1[0]  
CLK[11]  
9
P1[2] Driven Shield Output (optional)  
Optional external clock  
(EXTCLK)  
10  
P1[4]  
Active high external reset with  
XRES  
11  
Input  
internal pull-down[12]  
12  
13  
14  
15  
16  
IOH  
Power  
I
P0[4]  
VDD Supply voltage  
P0[7]  
IOH  
IOH  
IOH  
I
I
I
P0[3] Integrating input  
P0[1] Integrating input  
LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.  
Notes  
8. No center pad.  
9. 13 GPIOs = 10 pins for capacitive sensing+2 pins for I2C + 1 pin for modulator capacitor.  
10. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives  
resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive  
resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use  
alternate pins if you encounter issues.  
11. Alternate SPI clock.  
12. The internal pull down is 5KOhm.  
13. All VSS pins should be brought out to one common GND plane.  
Document Number: 001-69257 Rev. *P  
Page 8 of 45  
 
 
 
 
 
 
 
 
 
CY8C20xx7/S  
[14]  
24-pin QFN (16 Sensing Inputs)  
Table 3. Pin Definitions – CY8C20337, CY8C20347/S [15]  
Type  
Pin  
Figure 4. CY8C20337, CY8C20347/S Device  
Name  
Description  
No.  
Digital Analog  
1
2
3
4
5
6
7
I/O  
I/O  
I
I
I
I
I
I
I
P2[5] Crystal output (XOut)  
P2[3] Crystal input (XIn)  
P2[1]  
P1[7] I2C SCL, SPI SS  
P1[5] I2C SDA, SPI MISO  
P1[3] SPI CLK  
18  
17  
16  
15  
AI, XOut, P2[5]  
AI, XIn, P2[3]  
1
2
3
4
5
6
P0[2], AI  
P0[0], AI  
P2[4], AI  
P2[2], AI  
XRES  
I/O  
IOHR  
IOHR  
IOHR  
IOHR  
AI, P2[1]  
QFN  
(Top View)  
AI, I2C SCL, SPI SS, P1[7]  
AI, I2C SDA, SPI MISO, P1[5]  
AI, SPI CLK, P1[3]  
14  
13  
P1[6], AI  
P1[1] ISSP CLK[16], I2C SCL, SPI  
MOSI  
8
NC  
No connection  
9
Power  
VSS  
Ground connection[19]  
10  
IOHR  
IOHR  
IOHR  
IOHR  
I
I
I
I
P1[0] ISSPDATA[16], I2CSDA, SPI  
CLK[17]  
11  
12  
P1[2] Driven Shield Output  
(optional)  
P1[4] Optional external clock input  
(EXTCLK)  
13  
14  
P1[6]  
Input  
XRES Active high external reset  
with internal pull-down[18]  
15  
16  
17  
18  
I/O  
I/O  
I
I
I
I
I
P2[2] Driven Shield Output  
(optional)  
P2[4] Driven Shield Output  
(optional)  
IOH  
IOH  
IOH  
P0[0] Driven Shield Output  
(optional)  
P0[2] Driven Shield Output  
(optional)  
19  
20  
21  
22  
23  
24  
CP  
P0[4]  
Power  
VDD  
Supply voltage  
IOH  
IOH  
I
I
P0[7]  
P0[3] Integrating input  
Power  
IOH  
Power  
VSS  
Ground connection[19]  
I
P0[1] Integrating input  
VSS  
Center pad must be  
connected to ground  
LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.  
Notes  
14. The center pad (CP) on the QFN package must be connected to ground (VSS) for best mechanical, thermal, and electrical performance. If not connected to ground,  
it must be electrically floated and not connected to any other signal.  
15. 19 GPIOs = 16 pins for capacitive sensing+2 pins for I2C + 1 pin for modulator capacitor.  
16. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives  
resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive  
resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use  
alternate pins if you encounter issues.  
17. Alternate SPI clock.  
18. The internal pull down is 5KOhm.  
19. All VSS pins should be brought out to one common GND plane.  
Document Number: 001-69257 Rev. *P  
Page 9 of 45  
 
 
 
 
 
 
 
 
 
CY8C20xx7/S  
30-ball WLCSP (24 Sensing Inputs)  
Table 4. Pin Definitions – CY8C20767, CY8C20747 30-ball Part Pinout (WLCSP) [20]  
Type  
Pin No.  
Name  
Description  
Figure 5. CY8C20767, CY8C20747 30-ball  
WLCSP  
Digital  
Analog  
A1  
A2  
A3  
A4  
A5  
B1  
B2  
B3  
B4  
B5  
C1  
C2  
C3  
C4  
C5  
D1  
D2  
D3  
D4  
D5  
IOH  
IOH  
I
I
P0[2]  
P0[6]  
VDD  
Driven Shield Output (optional)  
Bottom View  
5
4
3
2
1
Power  
Supply voltage  
A
B
C
D
E
F
IOH  
I/O  
I/O  
IOH  
IOH  
IOH  
I/O  
I/O  
I/O  
I/O  
IOH  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
P0[1]  
P2[7]  
P4[2]  
P0[0]  
P0[4]  
P0[3]  
P2[5]  
P2[2]  
P2[4]  
P0[7]  
P3[2]  
P2[3]  
P2[0]  
P3[0]  
P3[1]  
P3[3]  
P2[1]  
Integrating Input  
Driven Shield Output (optional)  
Integrating Input  
Crystal Output (Xout)  
Driven Shield Output (optional)  
Driven Shield Output (optional)  
Top View  
Crystal Input (Xin)  
1
2
3
4
5
A
B
C
Active high external reset with  
internal pull-down[21]  
E1  
E2  
E3  
E4  
Input  
XRES  
P1[6]  
P1[4]  
P1[7]  
IOHR  
IOHR  
IOHR  
I
I
I
D
E
Optional external clock input  
(EXT CLK)  
I2C SCL, SPI SS  
F
E5  
IOHR  
I
P1[5]  
I2C SDA, SPI MISO  
F1  
F2  
F3  
F4  
F5  
IOHR  
IOHR  
I
I
P1[2]  
P1[0]  
VSS  
Driven Shield Output (optional)  
ISSP DATA[22], I2C SDA, SPI  
CLK[23]  
Power  
IOHR  
IOHR  
Supply ground[24]  
ISSP CLK[22], I2C SCL, SPI  
MOSI  
I
I
P1[1]  
P1[3]  
SPI CLK  
LEGEND: A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output  
Notes  
20. 27 GPIOs = 24 pins for capacitive sensing+2 pins for I2C + 1 pin for modulator capacitor.  
21. The internal pull down is 5KOhm.  
22. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives  
resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive  
resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use  
alternate pins if you encounter issues.  
23. Alternate SPI clock.  
24. All VSS pins should be brought out to one common GND plane.  
Document Number: 001-69257 Rev. *P  
Page 10 of 45  
 
 
 
 
 
 
 
CY8C20xx7/S  
[25]  
32-pin QFN (25 Sensing Inputs)  
Table 5. Pin Definitions – CY8C20437, CY8C20447/S, CY8C20467/S [26]  
Type  
Figure 6. CY8C20437, CY8C20447/S, CY8C20467/S Device  
Pin  
No.  
Name  
Description  
Digital Analog  
1
IOH  
I/O  
I
I
I
I
I
I
I
I
I
I
I
P0[1] Integrating input  
P2[5] Crystal output (XOut)  
P2[3] Crystal input (XIn)  
P2[1]  
2
3
I/O  
AI  
,P0[1]  
AI, XOut,P2[5]  
AI  
1
2
3
4
5
6
7
8
24 P2[4] , AI  
23 P2[2] , AI  
22 P2[0] , AI  
21 P4[2] , AI  
20 P4[0] , AI  
19 P3[2] , AI  
18 P3[0] , AI  
17 XRES  
4
I/O  
5
I/O  
P4[3]  
,XIn, P2[3]  
AI  
AI, P4[3]  
AI, P3[3]  
AI, P3[1]  
, P2[1]  
6
I/O  
P3[3]  
QFN  
(Top View)  
7
I/O  
P3[1]  
8
IOHR  
IOHR  
IOHR  
IOHR  
P1[7] I2C SCL, SPI SS  
P1[5] I2C SDA, SPI MISO  
P1[3] SPI CLK.  
AI, I2C SCL, SPI SS,P1[7]  
9
10  
11  
P1[1] ISSP CLK[27], I2C SCL, SPI  
MOSI.  
12  
13  
Power  
VSS  
Ground connection[30]  
IOHR  
I
P1[0] ISSP DATA[27], I2C SDA,  
SPI CLK[28]  
14  
15  
IOHR  
IOHR  
I
I
P1[2] Driven Shield Output (optional)  
P1[4] Optional external clock input  
(EXTCLK)  
16  
17  
IOHR  
I
P1[6]  
Input  
XRES Active high external reset with  
internal pull-down[29]  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
CP  
I/O  
I/O  
I
I
I
I
I
I
I
I
I
I
I
P3[0]  
P3[2]  
I/O  
P4[0]  
I/O  
P4[2]  
I/O  
P2[0]  
I/O  
P2[2] Driven Shield Output (optional)  
I/O  
P2[4] Driven Shield Output (optional)  
IOH  
IOH  
IOH  
IOH  
P0[0] Driven Shield Output (optional)  
P0[2] Driven Shield Output (optional)  
P0[4]  
P0[6]  
Power  
VDD  
IOH  
IOH  
I
I
P0[7]  
P0[3] Integrating input  
Power  
Power  
VSS  
VSS  
Ground connection[30]  
Centerpadmustbeconnectedto  
ground  
LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.  
Notes  
25. The center pad (CP) on the QFN package must be connected to ground (VSS) for best mechanical, thermal, and electrical performance. If not connected to ground,  
it must be electrically floated and not connected to any other signal.  
26. 28 GPIOs = 25 pins for capacitive sensing+2 pins for I2C + 1 pin for modulator capacitor.  
27. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives  
resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive  
resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use  
alternate pins if you encounter issues.  
28. Alternate SPI clock.  
29. The internal pull down is 5KOhm.  
30. All VSS pins should be brought out to one common GND plane.  
Document Number: 001-69257 Rev. *P  
Page 11 of 45  
 
 
 
 
 
 
 
 
 
CY8C20xx7/S  
[31]  
48-pin QFN (31 Sensing Inputs)  
Table 6. Pin Definitions – CY8C20637, CY8C20647/S, CY8C20667/S [32]  
Figure 7. CY8C20637, CY8C20647/S, CY8C20667/S Device  
1
2
3
4
5
6
7
8
NC  
No connection  
NC  
AI ,P2[7]  
NC  
36  
35  
34  
33  
32  
31  
1
2
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
I
I
I
I
I
I
I
I
I
I
I
P2[7]  
P2[5]  
P2[3]  
P2[1]  
P4[3]  
P4[1]  
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P1[7]  
P1[5]  
NC  
P2[4],  
AI  
Crystal output (XOut)  
Crystal input (XIn)  
AI , XOut,P2[5]  
3
4
5
6
P2[2],  
P2[0],  
P4[2],  
P4[0],  
AI  
AI  
AI  
AI  
AI , XIn ,P2[3]  
AI ,P2[1]  
AI ,P4[3]  
AI ,P4[1]  
AI ,P3[7]  
AI ,P3[5]  
AI ,P3[3]  
QFN  
(Top View)  
30  
29  
28  
27  
P3[6],  
P3[4],  
P3[2],  
7
8
9
10  
AI  
AI  
9
AI  
AI  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
],  
P3[0  
I/O  
IOHR  
IOHR  
AI P  
3[1]  
XRES  
26  
25  
11  
12  
2
I C SCL, SPI SS  
AI ,I2 C SCL, SPI SS,P1[7]  
P1[6],AI  
2
I C SDA, SPI MISO  
No connection  
No connection  
SPI CLK  
NC  
P1[3]  
P1[1]  
IOHR  
IOHR  
I
I
[33]  
2
ISSP CLK , I C SCL, SPI MOSI  
[36]  
Power  
V
Ground connection  
SS  
NC  
NC  
No connection  
No connection  
Supply voltage  
Power  
IOHR  
IOHR  
IOHR  
V
DD  
[33]  
2
[34]  
I
I
I
P1[0]  
P1[2]  
P1[4]  
ISSP DATA , I C SDA, SPI CLK  
Driven Shield Output (optional)  
Optional external clock input  
(EXTCLK)  
25  
26  
IOHR  
I
P1[6]  
XRES  
Input  
Active high external reset with  
internal pull-down  
[35]  
27  
28  
29  
I/O  
I/O  
I/O  
I
I
I
P3[0]  
P3[2]  
P3[4]  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
I
I
I
I
I
P3[6]  
P4[0]  
P4[2]  
P2[0]  
P2[2]  
P2[4]  
NC  
P0[0]  
P0[2]  
P0[4]  
40  
41  
42  
43  
44  
45  
46  
47  
48  
CP  
IOH  
I
P0[6]  
Power  
V
Supply voltage  
No connection  
No connection  
DD  
NC  
NC  
P0[7]  
NC  
P0[3]  
Driven Shield Output (optional)  
Driven Shield Output (optional)  
No connection  
Driven Shield Output (optional)  
Driven Shield Output (optional)  
IOH  
IOH  
Power  
IOH  
I
I
No connection  
Integrating input  
Ground connection  
Integrating input  
[36  
IOH  
IOH  
IOH  
I
I
I
V
SS  
P0[1]  
I
Power  
V
Center pad must be connected to ground  
SS  
LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.  
Notes  
31. The center pad (CP) on the QFN package must be connected to ground (VSS) for best mechanical, thermal, and electrical performance. If not connected to ground,  
it must be electrically floated and not connected to any other signal.  
32. 34 GPIOs = 31 pins for capacitive sensing+2 pins for I2C + 1 pin for modulator capacitor.  
33. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives  
resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive  
resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use  
alternate pins if you encounter issues.  
34. Alternate SPI clock.  
35. The internal pull down is 5KOhm.  
36. All VSS pins should be brought out to one common GND plane.  
Document Number: 001-69257 Rev. *P  
Page 12 of 45  
 
 
 
 
 
 
 
 
 
CY8C20xx7/S  
Electrical Specifications  
This section presents the DC and AC electrical specifications of the CY8C20x37/47/67/S PSoC devices. For the latest electrical  
specifications, confirm that you have the most recent datasheet by visiting the web at http://www.cypress.com/psoc.  
Figure 8. Voltage versus CPU Frequency  
5.5 V  
1.71 V  
750kHz  
3 MHz  
24MHz  
CPU Frequency  
Absolute Maximum Ratings  
Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.  
Table 7. Absolute Maximum Ratings  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Higher storage temperatures reduce data  
retention time. Recommended Storage  
Temperature is +25 °C ± 25 °C. Extended  
duration storage temperatures above 85 °C  
degrades reliability.  
TSTG  
Storage temperature  
–55  
+25  
+125  
°C  
VDD  
VIO  
Supply voltage relative to VSS  
DC input voltage  
–0.5  
VSS – 0.5  
VSS – 0.5  
–25  
+6.0  
VDD + 0.5  
VDD + 0.5  
+50  
V
V
VIOZ  
IMIO  
ESD  
LU  
DC voltage applied to tristate  
Maximum current into any port pin  
Electro static discharge voltage  
Latch up current  
V
mA  
V
Human body model ESD  
In accordance with JESD78 standard  
2000  
200  
mA  
Operating Temperature  
Table 8. Operating Temperature  
Symbol  
TA  
Description  
Ambient temperature  
Conditions  
Min  
–40  
0
Typ  
Max  
+85  
70  
Units  
°C  
TC  
Commercial temperature range  
°C  
The temperature rise from ambient to junction  
is package specific. See the Thermal Imped-  
ances on page 30. The user must limit the  
power consumption to comply with this  
requirement.  
TJ  
Operational die temperature  
–40  
+100  
°C  
Document Number: 001-69257 Rev. *P  
Page 13 of 45  
 
CY8C20xx7/S  
DC Chip-Level Specifications  
Table 9 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 9. DC Chip-Level Specifications  
Symbol  
[37, 38, 39]  
Description  
Supply voltage  
Conditions  
See Table 14 on page 17.  
Min  
Typ  
Max Units  
VDD  
1.71  
5.50  
V
Conditions are VDD 3.0 V, TA = 25 °C,  
IDD24  
IDD12  
IDD6  
Supply current, IMO = 24 MHz CPU = 24 MHz. CapSense running at 12 MHz,  
no I/O sourcing current  
2.88  
1.71  
1.16  
4.00  
mA  
Conditions are VDD 3.0 V, TA = 25 °C,  
Supply current, IMO = 12 MHz CPU = 12 MHz. CapSense running at  
12 MHz, no I/O sourcing current  
2.60  
1.80  
mA  
mA  
Conditions are VDD 3.0 V, TA = 25 °C,  
CPU = 6 MHz. CapSense running at 6 MHz,  
no I/O sourcing current  
Supply current, IMO = 6 MHz  
[40, 41, 42, 43]  
ISB0  
Deep sleep current  
VDD 3.0 V, TA = 25 °C, I/O regulator turned off  
VDD 3.0 V, TA = 25 °C, I/O regulator turned off  
0.10  
1.07  
1.1  
A  
A  
Standby current with POR, LVD  
and sleep timer  
[40, 41, 42, 43]  
ISB1  
1.50  
Standby current with I2C  
enabled  
Conditions are VDD = 3.3 V, TA = 25 °C and  
CPU = 24 MHz  
[40, 41, 42, 43]  
ISBI2C  
1.64  
A  
Notes  
37. When VDD remains in the range from 1.71 V to 1.9 V for more than 50 µs, the slew rate when moving from the 1.71 V to 1.9 V range to greater than 2 V must be  
slower than 1 V/500 µs to avoid triggering POR. The only other restriction on slew rates for any other voltage range or transition is the SRPOWER_UP parameter.  
38. If powering down in standby sleep mode, to properly detect and recover from a VDD brown out condition any of the following actions must be taken:  
a. Bring the device out of sleep before powering down.  
b. Assure that VDD falls below 100 mV before powering back up.  
c. Set the No Buzz bit in the OSC_CR0 register to keep the voltage monitoring circuit powered during sleep.  
d. Increase the buzz rate to assure that the falling edge of VDD is captured. The rate is configured through the PSSDC bits in the SLP_CFG register. For the referenced  
registers, refer to the Technical Reference Manual. In deep sleep/standby sleep mode, additional low power voltage monitoring circuitry allows VDD brown out  
conditions to be detected and resets the device when VDD goes lower than 1.1 V at edge rates slower than 1 V/ms.  
39. For proper CapSense block functionality, if the drop in VDD exceeds 5% of the base VDD, the rate at which VDD drops should not exceed 200 mV/s. Base VDD can  
be between 1.8 V and 5.5 V.  
40. Errata: When programmable timer 0 is used in “one-shot” mode by setting bit 1 of register 0,B0h (PT0_CFG), and the timer interrupt is used to wake the device from  
sleep, the interrupt service routine (ISR) may be executed twice. For more information, see the “Errata” on page 37.  
41. Errata: When in sleep mode, if a GPIO interrupt happens simultaneously with a Timer0 or Sleep Timer interrupt, the GPIO interrupt may be missed, and the  
corresponding GPIO ISR not run. For more information, see the “Errata” on page 37.  
42. Errata: If an interrupt is posted a short time (within 2.5 CPU cycles) before firmware commands the device to sleep, the interrupt will be missed. For more information,  
see the “Errata” on page 37.  
43. Errata: Device wakes up from sleep when an analog interrupt is trigger. For more information, see the “Errata” on page 37.  
Document Number: 001-69257 Rev. *P  
Page 14 of 45  
 
 
 
 
 
 
 
 
 
CY8C20xx7/S  
DC GPIO Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and  
–40 °C TA 85 °C, 2.4 V to 3.0 V and –40 °C TA 85 °C, or 1.71 V to 2.4 V and –40 °C TA 85 °C, respectively. Typical  
parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.  
Table 10. 3.0 V to 5.5 V DC GPIO Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
RPU  
Pull-up resistor  
4
5.60  
8
k  
High output voltage  
Port 2 or 3 pins  
IOH < 10 A, maximum of 10 mA source  
VOH1  
VOH2  
VDD – 0.20  
VDD – 0.90  
V
V
current in all I/Os  
High output voltage  
Port 2 or 3 Pins  
IOH = 1 mA, maximum of 20 mA source  
current in all I/Os  
High output voltage  
Port 0 or 1 pins with LDO regulator Disabled  
for port 1  
I
OH < 10 A, maximum of 10 mA source  
VOH3  
VOH4  
VOH5  
VOH6  
V
DD – 0.20  
V
V
V
V
current in all I/Os  
High output voltage  
Port 0 or 1 pins with LDO regulator Disabled  
for port 1  
I
OH = 5 mA, maximum of 20 mA source  
VDD – 0.90  
2.85  
current in all I/Os  
High output voltage  
Port 1 Pins with LDO Regulator Enabled for  
3 V out  
I
OH < 10 A, VDD > 3.1 V, maximum of  
3.00  
3.30  
4 I/Os all sourcing 5 mA  
High output voltage  
Port 1 pins with LDO regulator enabled for 3  
V out  
I
OH = 5 mA, VDD > 3.1 V, maximum of  
2.20  
20 mA source current in all I/Os  
High output voltage  
Port 1 pins with LDO enabled for 2.5 V out 20 mA source current in all I/Os  
IOH < 10 A, VDD > 2.7 V, maximum of  
VOH7  
VOH8  
VOH9  
VOH10  
2.35  
1.90  
1.60  
1.20  
2.50  
2.75  
V
V
V
V
High output voltage  
Port 1 pins with LDO enabled for 2.5 V out 20 mA source current in all I/Os  
IOH = 2 mA, VDD > 2.7 V, maximum of  
High output voltage IOH < 10 A, VDD > 2.7 V, maximum of  
Port 1 pins with LDO enabled for 1.8 V out 20 mA source current in all I/Os  
High output voltage IOH = 1 mA, VDD > 2.7 V, maximum of  
Port 1 pins with LDO enabled for 1.8 V out 20 mA source current in all I/Os  
OL = 25 mA, VDD > 3.3 V, maximum of  
1.80  
2.10  
I
60 mA sink current on even port pins (for  
example, P0[2] and P1[4]) and 60 mAsink  
current on odd port pins (for example,  
P0[3] and P1[5])  
VOL  
Low output voltage  
0.75  
V
VIL  
VIH  
VH  
Input low voltage  
0.80  
V
V
Input high voltage  
VDD × 0.65  
VDD + 0.7  
Input hysteresis voltage  
Input leakage (Absolute Value)  
Pin capacitance  
80  
1
7
mV  
A  
pF  
IIL  
0.001  
1.70  
CPIN  
Package and pin dependent Temp = 25 °C  
0.50  
Input Low Voltage with low threshold enable Bit3 of IO_CFG1 set to enable low  
VILLVT3.3  
VIHLVT3.3  
VILLVT5.5  
VIHLVT5.5  
0.8  
1.4  
0.8  
1.7  
V
V
V
set, Enable for Port1 [44]  
threshold voltage of Port1 input  
Input High Voltage with low threshold enable Bit3 of IO_CFG1 set to enable low  
set, Enable for Port1 threshold voltage of Port1 input  
Input Low Voltage with low threshold enable Bit3 of IO_CFG1 set to enable low  
set, Enable for Port1 threshold voltage of Port1 input  
Input High Voltage with low threshold enable Bit3 of IO_CFG1 set to enable low  
set, Enable for Port1 threshold voltage of Port1 input  
V
Note  
44. Errata: Pull-up resistor on port1 pins cannot be connected to a voltage that is greater than 0.7 V higher than CY8C20xx7/S VDD. For more information see item #7  
in “Errata” on page 37.  
Document Number: 001-69257 Rev. *P  
Page 15 of 45  
 
 
 
CY8C20xx7/S  
Table 11. 2.4 V to 3.0 V DC GPIO Specifications  
Symbol  
Description  
Pull-up resistor  
Conditions  
Min  
Typ  
Max  
Units  
RPU  
4
5.60  
8
k  
High output voltage  
Port 2 or 3 pins  
IOH < 10 A, maximum of 10 mAsource  
VOH1  
VOH2  
VDD - 0.20  
VDD - 0.40  
V
V
current in all I/Os  
High output voltage  
Port 2 or 3 Pins  
IOH = 0.2 mA, maximum of 10 mA  
source current in all I/Os  
High output voltage  
Port 0 or 1 pins with LDO regulator  
Disabled for port 1  
I
OH < 10 A, maximum of 10 mAsource  
VOH3  
V
DD - 0.20  
V
V
V
V
current in all I/Os  
High output voltage  
Port 0 or 1 pins with LDO regulator  
Disabled for Port 1  
I
OH = 2 mA, maximum of 10 mAsource  
VOH4  
VDD - 0.50  
1.50  
current in all I/Os  
High output voltage  
Port 1 pins with LDO enabled for 1.8 V  
out  
I
OH < 10 A, VDD > 2.4 V, maximum of  
VOH5A  
1.80  
2.10  
20 mA source current in all I/Os  
High output voltage  
Port 1 pins with LDO enabled for 1.8 V  
out  
I
OH = 1 mA, VDD > 2.4 V, maximum of  
VOH6A  
1.20  
20 mA source current in all I/Os  
IOL = 10 mA, maximum of 30 mA sink  
current on even port pins (for example,  
P0[2] and P1[4]) and 30 mA sink  
current on odd port pins (for example,  
P0[3] and P1[5])  
VOL  
Low output voltage  
0.75  
V
VIL  
VIH  
VH  
IIL  
Input low voltage  
0.72  
VDD + 0.7  
V
V
Input high voltage  
VDD × 0.65  
Input hysteresis voltage  
Input leakage (absolute value)  
80  
1
mV  
nA  
1000  
Package and pin dependent  
Temp = 25 C  
CPIN  
Capacitive load on pins  
0.50  
0.7  
1.70  
V
7
pF  
V
Input Low Voltage with low threshold  
enable set, Enable for Port1  
Bit3 of IO_CFG1 set to enable low  
threshold voltage of Port1 input  
VILLVT2.5  
VIHLVT2.5  
Input High Voltage with low threshold Bit3 of IO_CFG1 set to enable low  
1.2  
enable set, Enable for Port1  
threshold voltage of Port1 input  
Table 12. 1.71 V to 2.4 V DC GPIO Specifications  
Symbol  
Description  
Pull-up resistor  
Conditions  
Min  
Typ  
Max  
Units  
RPU  
4
5.60  
8
k  
High output voltage  
Port 2 or 3 pins  
IOH = 10 A, maximum of 10 mA  
VOH1  
VOH2  
VDD – 0.20  
VDD – 0.50  
V
V
source current in all I/Os  
High output voltage  
Port 2 or 3 pins  
IOH = 0.5 mA, maximum of 10 mA  
source current in all I/Os  
High output voltage  
Port 0 or 1 pins with LDO regulator  
Disabled for Port 1  
IOH = 100 A, maximum of 10 mA  
VOH3  
V
DD – 0.20  
DD – 0.50  
V
V
source current in all I/Os  
High output voltage  
Port 0 or 1 Pins with LDO Regulator  
Disabled for Port 1  
I
OH = 2 mA, maximum of 10 mAsource  
current in all I/Os  
VOH4  
V
Document Number: 001-69257 Rev. *P  
Page 16 of 45  
 
CY8C20xx7/S  
Table 12. 1.71 V to 2.4 V DC GPIO Specifications (continued)  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
IOL = 5 mA, maximum of 20 mA sink  
current on even port pins (for example,  
P0[2] and P1[4]) and 30 mA sink  
current on odd port pins (for example,  
P0[3] and P1[5])  
VOL  
Low output voltage  
0.40  
V
VIL  
VIH  
VH  
IIL  
Input low voltage  
0.30 × VDD  
V
V
Input high voltage  
0.65 × VDD  
Input hysteresis voltage  
Input leakage (absolute value)  
80  
1
mV  
nA  
1000  
Package and pin dependent  
temp = 25 C  
CPIN  
Capacitive load on pins  
0.50  
1.70  
7
pF  
Table 13. GPIO Current Sink and Source Specifications  
Supply  
Voltage  
Port 0/1 per I/O  
(max)  
Port 2/3/4 per Total Current Even Total Current Odd  
Mode  
Units  
I/O (max)  
Pins (max)  
Pins (max)  
Sink  
Source  
Sink  
5
2
5
20  
30  
mA  
mA  
mA  
mA  
mA  
mA  
1.71–2.4  
2.4–3.0  
3.0–5.0  
0.5  
10  
0.2  
25  
1
10[45]  
10[45]  
20[45]  
10  
2
30  
60  
30  
60  
Source  
Sink  
25  
5
Source  
DC Analog Mux Bus Specifications  
Table 14 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 14. DC Analog Mux Bus Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Switch resistance to common analog  
bus  
RSW  
800  
Resistance of initialization switch to  
VSS  
RGND  
800  
The maximum pin voltage for measuring RSW and RGND is 1.8 V  
DC Low Power Comparator Specifications  
Table 15 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 15. DC Comparator Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Low power comparator (LPC) common  
mode  
VLPC  
Maximum voltage limited to VDD  
0.2  
1.8  
V
ILPC  
LPC supply current  
LPC voltage offset  
10  
80  
30  
A  
VOSLPC  
2.5  
mV  
Note  
45. Total current (odd + even ports)  
Document Number: 001-69257 Rev. *P  
Page 17 of 45  
 
 
 
 
CY8C20xx7/S  
Comparator User Module Electrical Specifications  
Table 16 lists the guaranteed maximum and minimum specifications. Unless stated otherwise, the specifications are for the entire  
device voltage and temperature operating range: –40 °C TA 85 °C, 1.71 V VDD 5.5 V.  
Table 16. Comparator User Module Electrical Specifications  
Symbol  
TCOMP  
Description  
Conditions  
Min  
Typ  
70  
Max  
100  
30  
Units  
ns  
Comparator response time 50 mV overdrive  
Offset  
Valid from 0.2 V to 1.5 V  
2.5  
mV  
Average DC current, 50 mV  
overdrive  
Current  
20  
80  
µA  
Supply voltage > 2 V  
Supply voltage < 2 V  
Power supply rejection ratio  
80  
40  
dB  
dB  
V
PSRR  
Power supply rejection ratio  
Input range  
0.2  
1.5  
ADC Electrical Specifications  
Table 17. ADC User Module Electrical Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Input  
VIN  
Input voltage range  
Input capacitance  
0
VREFADC  
5
V
CIIN  
pF  
Equivalent switched cap input  
resistance for 8-, 9-, or 10-bit  
resolution  
1/(500fF × 1/(400fF × 1/(300fF ×  
data clock) data clock) data clock)  
RIN  
Input resistance  
Reference  
VREFADC  
ADC reference voltage  
1.14  
2.25  
1.26  
6
V
Conversion Rate  
Source is chip’s internal main  
oscillator. See AC Chip-Level  
Specifications on page 21 for  
accuracy  
FCLK  
Data clock  
MHz  
Data clock set to 6 MHz.  
sample rate = 0.001/  
(2^Resolution/Data Clock)  
S8  
8-bit sample rate  
10-bit sample rate  
23.43  
5.85  
ksps  
ksps  
Data clock set to 6 MHz.  
sample rate = 0.001/  
S10  
(2^resolution/data clock)  
DC Accuracy  
RES  
Resolution  
Can be set to 8, 9, or 10 bit  
8
–1  
–2  
0
10  
+2  
bits  
LSB  
DNL  
Differential nonlinearity  
Integral nonlinearity  
INL  
+2  
LSB  
8-bit resolution  
10-bit resolution  
For any resolution  
3.20  
12.80  
19.20  
76.80  
+5  
LSB  
EOFFSET  
Offset error  
Gain error  
0
LSB  
EGAIN  
Power  
IADC  
–5  
%FSR  
Operating current  
2.10  
24  
2.60  
mA  
dB  
dB  
PSRR (VDD > 3.0 V)  
PSRR (VDD < 3.0 V)  
PSRR  
Power supply rejection ratio  
30  
Document Number: 001-69257 Rev. *P  
Page 18 of 45  
 
CY8C20xx7/S  
DC POR and LVD Specifications  
Table 18 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 18. DC POR and LVD Specifications  
Symbol  
VPOR0  
Description  
Conditions  
Min  
1.61  
Typ  
1.66  
2.36  
2.60  
2.82  
2.45  
2.71  
2.92  
3.02  
3.13  
1.90  
1.80  
4.73  
Max  
1.71  
2.41  
2.66  
2.95  
2.51  
2.78  
2.99  
3.09  
3.20  
2.32  
1.84  
4.83  
Units  
V
1.66 V selected in PSoC Designer  
2.36 V selected in PSoC Designer  
2.60 V selected in PSoC Designer  
2.82 V selected in PSoC Designer  
2.45 V selected in PSoC Designer  
2.71 V selected in PSoC Designer  
2.92 V selected in PSoC Designer  
3.02 V selected in PSoC Designer  
3.13 V selected in PSoC Designer  
1.90 V selected in PSoC Designer  
1.80 V selected in PSoC Designer  
4.73 V selected in PSoC Designer  
V
DD must be greater thanor equal to 1.71 V  
during startup, reset from the XRES pin, or  
reset from watchdog.  
VPOR1  
VPOR2  
VPOR3  
VLVD0  
VLVD1  
VLVD2  
VLVD3  
VLVD4  
VLVD5  
VLVD6  
VLVD7  
V
V
V
2.40  
2.64[46]  
2.85[47]  
2.95[48]  
3.06  
1.84  
1.75[49]  
4.62  
V
V
V
V
V
V
V
V
DC Programming Specifications  
Table 19 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 19. DC Programming Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Supply voltage for flash write  
operations  
VDDIWRITE  
1.71  
5.25  
V
Supply current during  
programming or verify  
IDDP  
VILP  
VIHP  
5
25  
VIL  
mA  
V
Input low voltage during  
programming or verify  
See appropriate “DC GPIO Specifica-  
tions” on page 15  
Input high voltage during  
programming or verify  
See appropriate “DC GPIO Specifica-  
tions” on page 15  
VIH  
V
Input current when Applying VILP  
to P1[0] or P1[1] during  
IILP  
Driving internal pull-down resistor  
0.2  
mA  
programming or verify  
Input current when applying VIHP  
to P1[0] or P1[1] during  
programming or verify  
IIHP  
Driving internal pull-down resistor  
1.5  
VSS + 0.75  
VDD  
mA  
V
Output low voltage during  
programming or verify  
VOLP  
VOHP  
See appropriate “DC GPIO Specifica-  
tions” on page 15. For VDD > 3V use VOH4  
in Table 10 on page 15.  
Output high voltage during  
programming or verify  
VOH  
V
FlashENPB Flash write endurance  
Erase/write cycles per block  
50,000  
20  
Following maximum Flash write cycles;  
ambient temperature of 55 °C  
FlashDR  
Flash data retention  
Years  
Notes  
46. Always greater than 50 mV above VPPOR1 voltage for falling supply.  
47. Always greater than 50 mV above VPPOR2 voltage for falling supply.  
48. Always greater than 50 mV above VPPOR3 voltage for falling supply.  
49. Always greater than 50 mV above VPPOR0 voltage for falling supply.  
Document Number: 001-69257 Rev. *P  
Page 19 of 45  
 
 
 
 
 
 
CY8C20xx7/S  
2
DC I C Specifications  
Table 20 list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and –40 °C   
TA 85 °C, 2.4 V to 3.0 V and –40 °C TA 85 °C, or 1.71 V to 2.4 V and –40 °C TA 85 °C, respectively. Typical parameters apply  
to 5 V and 3.3 V at 25 °C and are for design guidance only.  
Table 20. DC I2C Specifications[50]  
Symbol  
Description  
Conditions  
3.1 V VDD 5.5 V  
Min  
Typ  
Max  
Units  
0.25 × VDD  
0.3 × VDD  
0.3 × VDD  
V
V
V
VILI2C  
Input low level  
2.5 V VDD 3.0 V  
1.71 V VDD 2.4 V  
VDD  
+
VIHI2C  
Input high level  
1.71 V VDD 5.5 V  
0.65 × VDD  
V
0.7 V[51]  
Shield Driver DC Specifications  
Table 21 list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and –40 °C   
TA 85 °C, 2.4 V to 3.0 V and –40 °C TA 85 °C, or 1.71 V to 2.4 V and –40 °C TA 85 °C, respectively. Typical parameters apply  
to 5 V and 3.3 V at 25 °C and are for design guidance only.  
Table 21. Shield Driver DC Specifications  
Symbol  
VRef  
VRefHi  
Description  
Reference buffer output  
Reference buffer output  
Conditions  
1.7 V VDD 5.5 V  
1.7 V VDD 5.5 V  
Min  
Typ  
Max  
1.106  
1.296  
Units  
0.942  
1.104  
V
V
DC IDAC Specifications  
Table 22 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 22. DC IDAC Specifications (8-bit IDAC)  
Symbol  
IDAC_DNL  
IDAC_DNL  
Description  
Differential nonlinearity  
Integral nonlinearity  
Range = 4x  
Min  
–1  
Typ  
Max  
1
Units  
LSB  
LSB  
µA  
Notes  
–2  
2
138  
138  
169  
169  
DAC setting = 127 dec  
DAC setting = 64 dec  
IDAC_Current  
Range = 8x  
µA  
Table 23. DC IDAC Specifications (7-bit IDAC)  
Symbol  
IDAC_DNL  
IDAC_DNL  
Description  
Differential nonlinearity  
Integral nonlinearity  
Range = 4x  
Min  
–1  
Typ  
Max  
1
Units  
LSB  
LSB  
µA  
Notes  
–2  
2
137  
138  
168  
169  
DAC setting = 127 dec  
DAC setting = 64 dec  
IDAC_Current  
Range = 8x  
µA  
Notes  
50. Errata: Pull-up resistors on I2C interface cannot be connected to a supply voltage that is more than 0.7 V higher than the CY8C20xx7/S power supply. For more  
information see item #6 in the “Errata” on page 37.  
51. Errata: For more information see item #6 in the “Errata” on page 37.  
Document Number: 001-69257 Rev. *P  
Page 20 of 45  
 
 
 
 
 
 
 
 
 
CY8C20xx7/S  
AC Chip-Level Specifications  
Table 24 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 24. AC Chip-Level Specifications  
Symbol  
FIMO24  
Description  
IMO frequency at 24 MHz Setting  
IMO frequency at 12 MHz setting  
IMO frequency at 6 MHz setting  
CPU frequency  
Conditions  
Min  
22.8  
11.4  
5.7  
0.75  
15  
Typ  
24  
12  
6.0  
Max  
25.2  
12.6  
6.3  
25.20  
50  
Units  
MHz  
MHz  
MHz  
MHz  
kHz  
kHz  
%
FIMO12  
FIMO6  
FCPU  
F32K1  
ILO frequency  
32  
32  
50  
50  
F32K_U  
DCIMO  
DCILO  
ILO untrimmed frequency  
Duty cycle of IMO  
40  
40  
60  
ILO duty cycle  
VDD slew rate during power-up  
60  
%
SRPOWER_UP Power supply slew rate  
250  
V/ms  
ms  
tXRST  
External reset pulse width at power-up  
After supply voltage is valid  
1
tXRST2  
External reset pulse width after power-up[52] Applies after part has booted  
10  
s  
6 MHz IMO cycle-to-cycle jitter (RMS)  
0.7  
6.7  
ns  
6 MHz IMO long term N cycle-to-cycle jitter  
(RMS); N = 32  
4.3  
29.3  
ns  
6 MHz IMO period jitter (RMS)  
0.7  
0.5  
3.3  
5.2  
ns  
ns  
12 MHz IMO cycle-to-cycle jitter (RMS)  
12 MHz IMO long term N cycle-to-cycle jitter  
(RMS); N = 32  
[53]  
tJIT_IMO  
––  
2.3  
5.6  
ns  
12 MHz IMO period jitter (RMS)  
0.4  
1.0  
2.6  
8.7  
ns  
ns  
24 MHz IMO cycle-to-cycle jitter (RMS)  
24 MHz IMO long term N cycle-to-cycle jitter  
(RMS); N = 32  
1.4  
0.6  
6.0  
4.0  
ns  
ns  
24 MHz IMO period jitter (RMS)  
Note  
52. The minimum required XRES pulse length is longer when programming the device (see Table 28 on page 23).  
53. See the Cypress Jitter Specifications application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 for more information.  
Document Number: 001-69257 Rev. *P  
Page 21 of 45  
 
 
 
 
CY8C20xx7/S  
AC General Purpose I/O Specifications  
Table 25 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 25. AC GPIO Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
6 MHz for  
1.71 V <VDD < 2.40 V  
12 MHz for  
2.40 V < VDD< 5.50 V  
Units  
0
MHz  
FGPIO  
GPIO operating frequency  
Normal strong mode Port 0, 1  
0
MHz  
ns  
Rise time, strong mode, Cload = 50 pF  
Ports 2 or 3  
tRISE23  
tRISE23L  
tRISE01  
tRISE01L  
tFALL  
VDD = 3.0 to 3.6 V, 10% to 90%  
15  
15  
10  
10  
10  
10  
80  
80  
50  
80  
50  
70  
Rise time, strong mode low supply,  
Cload = 50 pF, Ports 2 or 3  
V
DD = 1.71 to 3.0 V, 10% to 90%  
ns  
Rise time, strong mode, Cload = 50 pF VDD = 3.0 to 3.6 V, 10% to 90%  
ns  
Ports 0 or 1  
LDO enabled or disabled  
Rise time, strong mode low supply,  
Cload = 50 pF, Ports 0 or 1  
VDD = 1.71 to 3.0 V, 10% to 90%  
LDO enabled or disabled  
ns  
Fall time, strong mode, Cload = 50 pF  
all ports  
V
DD = 3.0 to 3.6 V, 10% to 90%  
VDD = 1.71 to 3.0 V, 10% to 90%  
Figure 9. GPIO Timing Diagram  
ns  
Fall time, strong mode low supply,  
Cload = 50 pF, all ports  
tFALLL  
ns  
90%  
GPIO Pin  
Output  
Voltage  
10%  
TRise23  
TRise01  
TRise23L  
TRise01L  
TFall  
TFallL  
AC Comparator Specifications  
Table 26 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 26. AC Low Power Comparator Specifications  
Symbol  
tLPC  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Comparator response time,  
50 mV overdrive  
50 mV overdrive does not include  
offset voltage.  
100  
ns  
AC External Clock Specifications  
Table 27 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 27. AC External Clock Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
Frequency (external oscillator  
frequency)  
0.75  
25.20  
MHz  
High period  
20.60  
20.60  
150  
5300  
ns  
ns  
s  
FOSCEXT  
Low period  
Power-up IMO to switch  
Document Number: 001-69257 Rev. *P  
Page 22 of 45  
 
 
 
CY8C20xx7/S  
AC Programming Specifications  
Figure 10. AC Waveform  
SCLK (P1[1])  
TRSCLK  
TFSCLK  
SDATA (P1[0])  
TSSCLK  
THSCLK  
TDSCLK  
Table 28 lists the guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 28. AC Programming Specifications  
Symbol  
tRSCLK  
Description  
Rise time of SCLK  
Conditions  
Min  
1
Typ  
Max  
20  
20  
Units  
ns  
tFSCLK  
tSSCLK  
tHSCLK  
FSCLK  
Fall time of SCLK  
1
ns  
Data setup time to falling edge of SCLK  
Data hold time from falling edge of SCLK  
Frequency of SCLK  
40  
40  
0
ns  
ns  
8
MHz  
ms  
ms  
ns  
tERASEB  
tWRITE  
tDSCLK  
tDSCLK3  
tDSCLK2  
Flash erase time (block)  
18  
25  
60  
85  
130  
Flash block write time  
Data out delay from falling edge of SCLK 3.6 VDD  
Data out delay from falling edge of SCLK 3.0 VDD 3.6  
Data out delay from falling edge of SCLK 1.71 VDD 3.0  
ns  
ns  
Required to enter programming  
mode when coming out of sleep  
tXRST3  
External reset pulse width after power-up  
300  
s  
tXRES  
XRES pulse length  
300  
0.1  
1
s  
ms  
ms  
ms  
[54]  
[54]  
tVDDWAIT  
VDD stable to wait-and-poll hold off  
VDD stable to XRES assertion delay  
SDAT high pulse time  
tVDDXRES  
tPOLL  
14.27  
0.01  
200  
“Key window” time after a VDD ramp  
acquire event, based on 256 ILO clocks.  
[54]  
tACQ  
3.20  
98  
19.60  
615  
ms  
“Key window” time after an XRES event,  
based on 8 ILO clocks  
[54]  
tXRESINI  
s  
Note  
54. Valid from 5 to 50 °C. See the spec, CY8C20X66, CY8C20X46, CY8C20X36, CY7C643XX, CY7C604XX, CY8CTST2XX, CY8CTMG2XX, CY8C20X67,  
CY8C20X47, CY8C20X37, Programming Spec for more details.  
Document Number: 001-69257 Rev. *P  
Page 23 of 45  
 
 
CY8C20xx7/S  
2
AC I C Specifications  
Table 29 lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 29. AC Characteristics of the I2C SDA and SCL Pins  
Standard  
Mode  
Fast Mode  
Symbol  
fSCL  
Description  
Units  
Min  
Max  
Min  
Max  
SCL clock frequency  
0
100  
0
400 kHz  
Hold time (repeated) START condition. After this period, the first clock pulse is  
generated  
tHD;STA  
4.0  
0.6  
µs  
tLOW  
LOW period of the SCL clock  
4.7  
4.0  
4.7  
20  
1.3  
0.6  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
ns  
tHIGH  
HIGH Period of the SCL clock  
tSU;STA  
tHD;DAT  
tSU;DAT  
tSU;STO  
tBUF  
Setup time for a repeated START condition  
Data hold time  
0.6  
[55]  
3.45  
20  
100[56]  
0.90  
Data setup time  
250  
4.0  
4.7  
Setup time for STOP condition  
0.6  
Bus free time between a STOP and START condition  
Pulse width of spikes are suppressed by the input filter  
1.3  
tSP  
0
50  
Figure 11. Definition for Timing for Fast/Standard Mode on the I2C Bus  
Notes  
55. Errata: To wake up from sleep using I2C hardware address match event, I2C interface needs 20 ns hold time on SDA line with respect to falling edge of SCL. For  
more information see item #5 in the “Errata” on page 37.  
56. A Fast-Mode I2C-bus device can be used in a standard mode I2C-bus system, but the requirement tSU;DAT 250 ns must then be met. This automatically be the  
case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit  
to the SDA line trmax + tSU;DAT = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.  
Document Number: 001-69257 Rev. *P  
Page 24 of 45  
 
 
 
 
CY8C20xx7/S  
Table 30. SPI Master AC Specifications  
Symbol Description  
FSCLK  
Conditions  
VDD 2.4 V  
DD < 2.4 V  
Min  
Typ  
Max  
Units  
6
3
MHz  
MHz  
SCLK clock frequency  
SCLK duty cycle  
V
DC  
50  
%
VDD 2.4 V  
VDD < 2.4 V  
60  
100  
ns  
ns  
tSETUP  
MISO to SCLK setup time  
tHOLD  
SCLK to MISO hold time  
SCLK to MOSI valid time  
MOSI high time  
40  
40  
ns  
ns  
ns  
tOUT_VAL  
tOUT_H  
40  
Figure 12. SPI Master Mode 0 and 2  
SPI Master, modes 0 and 2  
1/FSCLK  
THIGH  
TLOW  
SCLK  
(mode 0)  
SCLK  
(mode 2)  
TSETUP  
THOLD  
MISO  
(input)  
LSB  
MSB  
TOUT_SU  
TOUT_H  
MOSI  
(output)  
Figure 13. SPI Master Mode 1 and 3  
SPI Master, modes 1 and 3  
1/FSCLK  
THIGH  
TLOW  
SCLK  
(mode 1)  
SCLK  
(mode 3)  
TSETUP  
THOLD  
MISO  
(input)  
MSB  
LSB  
TOUT_SU  
TOUT_H  
MOSI  
(output)  
LSB  
MSB  
Document Number: 001-69257 Rev. *P  
Page 25 of 45  
 
CY8C20xx7/S  
Table 31. SPI Slave AC Specifications  
Symbol Description  
FSCLK  
Conditions  
Min  
Typ  
Max  
4
Units  
MHz  
ns  
SCLK clock frequency  
SCLK low time  
tLOW  
42  
tHIGH  
SCLK high time  
42  
ns  
tSETUP  
tHOLD  
MOSI to SCLK setup time  
SCLK to MOSI hold time  
SS high to MISO valid  
SCLK to MISO valid  
SS high time  
30  
ns  
50  
ns  
tSS_MISO  
tSCLK_MISO  
tSS_HIGH  
tSS_CLK  
tCLK_SS  
153  
125  
ns  
ns  
50  
ns  
Time from SS low to first SCLK  
Time from last SCLK to SS high  
2/SCLK  
2/SCLK  
ns  
ns  
Figure 14. SPI Slave Mode 0 and 2  
SPI Slave, modes 0 and 2  
TSS_HIGH  
TCLK_SS  
TSS_CLK  
/SS  
1/FSCLK  
THIGH  
TLOW  
SCLK  
(mode 0)  
SCLK  
(mode 2)  
TOUT_H  
TSS_MISO  
MISO  
(output)  
TSETUP  
THOLD  
MOSI  
(input)  
LSB  
MSB  
Figure 15. SPI Slave Mode 1 and 3  
SPI Slave, modes 1 and 3  
TSS_CLK  
TCLK_SS  
/SS  
1/FSCLK  
THIGH  
TLOW  
SCLK  
(mode 1)  
SCLK  
(mode 3)  
TOUT_H  
TSCLK_MISO  
TSS_MISO  
MISO  
(output)  
MSB  
LSB  
TSETUP  
THOLD  
MOSI  
(input)  
MSB  
LSB  
Document Number: 001-69257 Rev. *P  
Page 26 of 45  
 
CY8C20xx7/S  
Packaging Information  
This section illustrates the packaging specifications for the CY8C20x37/47/67 PSoC device, along with the thermal impedances for  
each package.  
Important Note Emulation tools may require a larger area on the target PCB than the chip’s footprint. For a detailed description of  
the emulation tools’ dimensions, refer to the document titled PSoC Emulator Pod Dimensions at  
http://www.cypress.com/design/MR10161.  
Figure 16. 16-pin (150 Mil) SOIC  
51-85068 *E  
Figure 17. 16-pin Chip-On-Lead (3 × 3 × 0.6 mm) (Sawn) Package Outline, 001-09116  
001-09116 *J  
Document Number: 001-69257 Rev. *P  
Page 27 of 45  
 
 
CY8C20xx7/S  
Figure 18. 24-Pin (4 × 4 × 0.6 mm) QFN  
001-13937 *F  
Figure 19. 32-Pin (5 × 5 × 0.6 mm) QFN  
001-42168 *E  
Document Number: 001-69257 Rev. *P  
Page 28 of 45  
CY8C20xx7/S  
Figure 20. 48-Pin (6 × 6 × 0.6 mm) QFN  
001-57280 *E  
Important Notes  
For information on the preferred dimensions for mounting QFN packages, see the following Application Note at  
http://www.amkor.com/products/notes_papers/MLFAppNote.pdf.  
Pinned vias for thermal conduction are not required for the low power PSoC device.  
Document Number: 001-69257 Rev. *P  
Page 29 of 45  
 
CY8C20xx7/S  
Thermal Impedances  
Table 32. Thermal Impedances per Package  
[57]  
Package  
Typical JA  
95 C/W  
16-pin SOIC  
33 C/W  
21 C/W  
20 C/W  
18 C/W  
54 C/W  
16-pin QFN  
24-pin QFN[58]  
32-pin QFN[58]  
48-pin QFN[58]  
30-ball WLCSP  
Capacitance on Crystal Pins  
Table 33. Typical Package Capacitance on Crystal Pins  
Package  
32-Pin QFN  
48-Pin QFN  
Package Capacitance  
3.2 pF  
3.3 pF  
Solder Reflow Peak Temperature  
Table 34 shows the solder reflow temperature limits that must not be exceeded.  
Table 34. Solder Reflow Peak Temperature  
Package  
16-pin SOIC  
16-pin QFN  
24-pin QFN  
32-pin QFN  
48-pin QFN  
30-ball WLCSP  
Maximum Time above TC – 5 C  
Maximum Peak Temperature (TC)  
260 C  
260 C  
260 C  
260 C  
260 C  
260 C  
30 seconds  
30 seconds  
30 seconds  
30 seconds  
30 seconds  
30 seconds  
Notes  
57. TJ = TA + Power ×   
.
JA  
58. To achieve the thermal impedance specified for the QFN package, the center thermal pad must be soldered to the PCB ground plane.  
Document Number: 001-69257 Rev. *P  
Page 30 of 45  
 
 
 
CY8C20xx7/S  
PSoC Programmer  
Development Tool Selection  
Software  
PSoC Programmer is flexible enough and is used on the bench  
in development and is also suitable for factory programming.  
PSoC Programmer works either as a standalone programming  
application or operates directly from PSoC Designer. PSoC  
Programmer software is compatible with both PSoC ICE Cube  
in-circuit Emulator and PSoC MiniProg. PSoC programmer is  
available free of cost at  
PSoC Designer™  
At the core of the PSoC development software suite is  
PSoC Designer, used to generate PSoC firmware applications.  
PSoC Designer is a Microsoft® Windows-based, integrated  
development environment for the Programmable System-on-  
Chip (PSoC) devices. The PSoC Designer IDE and application  
runs on Windows XP and Windows Vista.  
http://www.cypress.com/psocprogrammer.  
Development Kits  
All development kits are sold at the Cypress Online Store.  
This system provides design database management by project,  
in-system programming support, and built-in support for third-  
party assemblers and C compilers. PSoC Designer also  
supports C language compilers developed specifically for the  
devices in the PSoC family. PSoC Designer is available free of  
charge at  
Evaluation Tools  
All evaluation tools are sold at the Cypress Online Store.  
CY3210-MiniProg1  
http://www.cypress.com/psocdesigner and includes a free C  
compiler.  
The CY3210-MiniProg1 kit allows you to program PSoC devices  
through the MiniProg1 programming unit. The MiniProg is a  
small, compact prototyping programmer that connects to the PC  
through a provided USB 2.0 cable. The kit includes:  
PSoC Designer Software Subsystems  
You choose a base device to work with and then select different  
onboard analog and digital components called user modules that  
use the PSoC blocks. Examples of user modules are ADCs,  
DACs, Amplifiers, and Filters. You configure the user modules  
for your chosen application and connect them to each other and  
to the proper pins. Then you generate your project. This  
prepopulates your project with APIs and libraries that you can  
use to program your application.  
MiniProg programming unit  
MiniEval socket programming and evaluation board  
28-pin CY8C29466-24PXI PDIP PSoC device sample  
28-pin CY8C27443-24PXI PDIP PSoC device sample  
PSoC Designer software CD  
The tool also supports easy development of multiple  
configurations and dynamic reconfiguration. Dynamic  
reconfiguration allows for changing configurations at run time.  
Code Generation Tools PSoC Designer supports multiple third-  
party C compilers and assemblers. The code generation tools  
work seamlessly within the PSoC Designer interface and have  
been tested with a full range of debugging tools. The choice is  
yours.  
Getting Started guide  
USB 2.0 cable  
CY3210-PSoCEval1  
The CY3210-PSoCEval1 kit features an evaluation board and  
the MiniProg1 programming unit. The evaluation board includes  
an LCD module, potentiometer, LEDs, and plenty of bread-  
boarding space to meet all of your evaluation needs. The kit  
includes:  
Assemblers. The assemblers allow assembly code to be  
merged seamlessly with C code. Link libraries automatically use  
absolute addressing or are compiled in relative mode, and linked  
with other software modules to get absolute addressing.  
Evaluation board with LCD module  
MiniProg programming unit  
Two 28-pin CY8C29466-24PXI PDIP PSoC device samples  
PSoC Designer software CD  
Getting Started guide  
C Language Compilers. C language compilers are available  
that support the PSoC family of devices. The products allow you  
to create complete C programs for the PSoC family devices. The  
optimizing C compilers provide all the features of C tailored to  
the PSoC architecture. They come complete with embedded  
libraries providing port and bus operations, standard keypad and  
display support, and extended math functionality.  
USB 2.0 cable  
Document Number: 001-69257 Rev. *P  
Page 31 of 45  
 
CY8C20xx7/S  
CY3207ISSP In-System Serial Programmer (ISSP)  
Device Programmers  
The CY3207ISSP is a production programmer. It includes  
protection circuitry and an industrial case that is more robust than  
the MiniProg in a production-programming environment.  
All device programmers are purchased from the Cypress Online  
Store.  
CY3216 Modular Programmer  
Note CY3207ISSP needs special software and is not compatible  
The CY3216 Modular Programmer kit features a modular  
programmer and the MiniProg1 programming unit. The modular  
programmer includes three programming module cards and  
supports multiple Cypress products. The kit includes:  
with PSoC Programmer. The kit includes:  
CY3207 programmer unit  
PSoC ISSP software CD  
Modular programmer base  
Three programming module cards  
MiniProg programming unit  
PSoC Designer software CD  
Getting Started guide  
110 ~ 240 V power supply, Euro-Plug adapter  
USB 2.0 cable  
USB 2.0 cable  
Third Party Tools  
Several tools have been specially designed by the following third-party vendors to accompany PSoC devices during development and  
production. Specific details for each of these tools can be found at http://www.cypress.com under Documentation > Evaluation Boards.  
Document Number: 001-69257 Rev. *P  
Page 32 of 45  
CY8C20xx7/S  
Ordering Information  
Table 35 lists the CY8C20x37/47/67/S PSoC devices’ key package features and ordering codes.  
Table 35. PSoC Device Key Features and Ordering Information  
Flash SRAM CapSense Digital I/O  
XRES  
Pin  
Analog  
Ordering Code  
Package  
ADC  
Inputs [59]  
(Bytes) (Bytes) Sensors  
Pins  
13  
13  
13  
13  
13  
13  
19  
19  
19  
19  
19  
19  
28  
28  
28  
28  
28  
28  
28  
28  
28  
28  
34  
34  
34  
34  
34  
34  
34  
34  
34  
34  
CY8C20237-24SXI  
16-pin SOIC  
8 K  
16 K  
8 K  
1 K  
2 K  
1 K  
1 K  
2 K  
2 K  
1 K  
1 K  
2 K  
2 K  
2 K  
2 K  
1 K  
1 K  
2 K  
2 K  
2 K  
2 K  
2 K  
2 K  
2 K  
2 K  
1 K  
1 K  
2 K  
2 K  
2 K  
2 K  
2 K  
2 K  
2 K  
2 K  
10  
10  
10  
10  
10  
10  
16  
16  
16  
16  
16  
16  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
31  
31  
31  
31  
31  
31  
31  
31  
31  
31  
13  
13  
13  
13  
13  
13  
19  
19  
19  
19  
19  
19  
28  
28  
28  
28  
28  
28  
28  
28  
28  
28  
34  
34  
34  
34  
34  
34  
34  
34  
34  
34  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
Yes Yes  
CY8C20247S-24SXI  
CY8C20237-24LKXI  
CY8C20237-24LKXIT  
CY8C20247S-24LKXI  
CY8C20247S-24LKXIT  
CY8C20337-24LQXI  
CY8C20337-24LQXIT  
CY8C20347-24LQXI  
CY8C20347-24LQXIT  
CY8C20347S-24LQXI  
CY8C20347S-24LQXIT  
CY8C20437-24LQXI  
CY8C20437-24LQXIT  
CY8C20447-24LQXI  
CY8C20447-24LQXIT  
CY8C20447S-24LQXI  
CY8C20447S-24LQXIT  
CY8C20467-24LQXI  
CY8C20467-24LQXIT  
CY8C20467S-24LQXI  
CY8C20467S-24LQXIT  
CY8C20637-24LQXI  
CY8C20637-24LQXIT  
CY8C20647-24LQXI  
CY8C20647-24LQXIT  
CY8C20647S-24LQXI  
CY8C20647S-24LQXIT  
CY8C20667-24LQXI  
CY8C20667-24LQXIT  
CY8C20667S-24LQXI  
CY8C20667S-24LQXIT  
16-pin SOIC  
16-pin QFN  
16-pin QFN (Tape and Reel)  
16-pin QFN  
8 K  
16 K  
16 K  
8 K  
16-pin QFN (Tape and Reel)  
24-pin QFN  
24-pin QFN (Tape and Reel)  
24-pin QFN  
8 K  
16 K  
16 K  
16 K  
16 K  
8 K  
24-pin QFN (Tape and Reel)  
24-pin QFN  
24-pin QFN (Tape and Reel)  
32-pin QFN  
32-pin QFN (Tape and Reel)  
32-pin QFN  
8 K  
16 K  
16 K  
16 K  
16 K  
32 K  
32 K  
32 K  
32 K  
8 K  
32-pin QFN (Tape and Reel)  
32-pin QFN  
32-pin QFN (Tape and Reel)  
32-pin QFN  
32-pin QFN (Tape and Reel)  
32-pin QFN  
32-pin QFN (Tape and Reel)  
48-pin QFN  
48-pin QFN (Tape and Reel)  
48-pin QFN  
8 K  
16 K  
16 K  
16 K  
16 K  
32 K  
32 K  
32 K  
32 K  
48-pin QFN (Tape and Reel)  
48-pin QFN  
48-pin QFN (Tape and Reel)  
48-pin QFN  
48-pin QFN (Tape and Reel)  
48-pin QFN  
48-pin QFN (Tape and Reel)  
Note  
59. Dual-function Digital I/O Pins also connect to the common analog mux.  
Document Number: 001-69257 Rev. *P  
Page 33 of 45  
 
 
 
CY8C20xx7/S  
Table 35. PSoC Device Key Features and Ordering Information (continued)  
Flash SRAM CapSense Digital I/O  
XRES  
Pin  
Analog  
Ordering Code  
Package  
ADC  
Inputs [59]  
(Bytes) (Bytes) Sensors  
Pins  
CY8C20767-24FDXC  
CY8C20767-24FDXCT  
30-pin WLCSP  
30-pin WLCSP (Tape and Reel)  
32 K  
32 K  
2 K  
2 K  
24  
24  
27  
27  
27  
Yes Yes  
Yes Yes  
27  
Ordering Code Definitions  
-
CY 8 C 20 XX7 X 24 XX  
(T)  
X
X
Tape and reel  
Temperature range: X = C or I  
C = Commercial; I = Industrial  
Pb-free  
Package Types: XX = S, LK, LQ, or FD  
S = 16-pin SOIC  
LK = 16-pin QFN (no center pad)  
LQ = 24-pin QFN, 32-pin QFN, 48-pin QFN  
FD = 30-ball WLCSP  
Speed grade = 24 MHz  
S = SmartSense™ Auto-tuning Enabled  
Part Number  
Family Code  
Technology Code: C = CMOS  
Marketing Code: 8 = PSoC  
Company ID: CY = Cypress  
Document Number: 001-69257 Rev. *P  
Page 34 of 45  
CY8C20xx7/S  
Acronyms  
The following table lists the acronyms that are used in this  
document.  
Reference Documents  
Technical reference manual for CY20xx7 devices  
In-system Serial Programming (ISSP) protocol for 20xx7  
Host Sourced Serial Programming for 20xx7 devices  
Table 36. Acronyms Used in this Document  
Acronym  
AC  
Description  
alternating current  
ADC  
API  
analog-to-digital converter  
application programming interface  
complementary metal oxide semiconductor  
central processing unit  
digital-to-analog converter  
direct current  
Document Conventions  
CMOS  
CPU  
DAC  
DC  
Units of Measure  
Table 37 lists all the abbreviations used to measure the PSoC  
devices.  
Table 37. Units of Measure  
ESD  
FSR  
GPIO  
I2C  
electrostatic discharge  
full scale range  
Symbol  
°C  
Unit of Measure  
degree Celsius  
decibel  
general purpose input/output  
inter-integrated circuit  
in-circuit emulator  
dB  
kHz  
ksps  
k  
MHz  
A  
s  
kilohertz  
ICE  
kilo samples per second  
kilohm  
ILO  
internal low speed oscillator  
internal main oscillator  
input/output  
IMO  
I/O  
megahertz  
microampere  
microsecond  
milliampere  
millimeter  
millisecond  
millivolt  
ISSP  
LCD  
LDO  
LED  
LPC  
LSB  
LVD  
in-system serial programming  
liquid crystal display  
low dropout (regulator)  
light-emitting diode  
mA  
mm  
ms  
mV  
nA  
ns  
low power comparator  
least-significant bit  
low voltage detect  
nanoampere  
nanosecond  
ohm  
MCU  
MIPS  
MISO  
MOSI  
MSB  
OCD  
PCB  
POR  
PSRR  
micro-controller unit  
million instructions per second  
master in slave out  
%
percent  
master out slave in  
pF  
picofarad  
volt  
most-significant bit  
V
on-chip debug  
W
watt  
printed circuit board  
power on reset  
power supply rejection ratio  
PWRSYS power system  
PSoC  
QFN  
programmable system-on-chip  
quad flat no-lead  
SCLK  
SDA  
serial I2C clock  
serial I2C data  
SDATA  
SOIC  
SPI  
serial ISSP data  
small outline integrated circuit  
serial peripheral interface  
static random access memory  
slave select  
SRAM  
SS  
USB  
universal serial bus  
wafer level chip scale package  
WLCSP  
Document Number: 001-69257 Rev. *P  
Page 35 of 45  
 
CY8C20xx7/S  
Numeric Naming  
Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or ‘3Ah’).  
Hexadecimal numbers may also be represented by a ‘0x’ prefix, the C coding convention. Binary numbers have an appended  
lowercase ‘b’ (for example, 01010100b’ or ‘01000011b’). Numbers not indicated by an ‘h’, ‘b’, or 0x are decimal.  
Glossary  
Crosspoint connection  
Differential non linearity  
Connection between any GPIO combination via analog multiplexer bus.  
Ideally, any two adjacent digital codes correspond to output analog voltages that are exactly  
one LSB apart. Differential non-linearity is a measure of the worst case deviation from the  
ideal 1 LSB step.  
Hold time  
Hold time is the time following a clock event during which the data input to a latch or flip-  
flop must remain stable in order to guarantee that the latched data is correct.  
I2C  
It is a serial multi-master bus used to connect low speed peripherals to MCU.  
Integral nonlinearity  
It is a term describing the maximum deviation between the ideal output of a DAC/ADC and  
the actual output level.  
Latch-up current  
Current at which the latch-up test is conducted according to JESD78 standard (at 125  
degree Celsius)  
Power supply rejection ratio (PSRR)  
The PSRR is defined as the ratio of the change in supply voltage to the corresponding  
change in output voltage of the device.  
Scan  
The conversion of all sensor capacitances to digital values.  
Setup time  
Period required to prepare a device, machine, process, or system for it to be ready to  
function.  
Signal-to-noise ratio  
SPI  
The ratio between a capacitive finger signal and system noise.  
Serial peripheral interface is a synchronous serial data link standard.  
Document Number: 001-69257 Rev. *P  
Page 36 of 45  
CY8C20xx7/S  
Errata  
This section describes the errata for the CY8C20xx7/S family. Details include errata trigger conditions, scope of impact, available  
workaround, and silicon revision applicability.  
Contact your local Cypress Sales Representative if you have questions.  
CY8C20xx7/S Qualification Status  
Product Status: Production released.  
CY8C20xx7/S Errata Summary  
The following Errata items apply to the CY8C20xx7/S datasheet 001-69257.  
1. DoubleTimer0 ISR  
Problem Definition  
When programmable timer 0 is used in “one-shot” mode by setting bit 1 of register 0,B0h (PT0_CFG), and the timer interrupt  
is used to wake the device from sleep, the interrupt service routine (ISR) may be executed twice.  
Parameters Affected  
No datasheet parameters are affected.  
Trigger Condition(S)  
Triggered by enabling one-shot mode in the timer, and using the timer to wake from sleep mode.  
Scope of Impact  
The ISR may be executed twice.  
Workaround  
In the ISR, firmware should clear the one-shot bit with a statement such as “and reg[B0h], FDh”  
Fix Status  
Will not be fixed  
Changes  
None  
2. Missed GPIO Interrupt  
Problem Definition  
When in sleep mode, if a GPIO interrupt happens simultaneously with a Timer0 or Sleep Timer interrupt, the GPIO interrupt  
may be missed, and the corresponding GPIO ISR not run.  
Parameters Affected  
No datasheet parameters are affected.  
Trigger Condition(S)  
Triggered by enabling sleep mode, then having GPIO interrupt occur simultaneously with a Timer 0 or Sleep Timer interrupt.  
Scope of Impact  
The GPIO interrupt service routine will not be run.  
Workaround  
The system should be architected such that a missed GPIO interrupt may be detected. For example, if a GPIO is used to wake  
the system to perform some function, the system should detect if the function is not performed, and re-issue the GPIO interrupt.  
Alternatively, if a GPIO interrupt is required to wake the system, then firmware should disable the Sleep Timer and Timer0.  
Alternatively, the ISR’s for Sleep Timer and Timer0 should manually check the state of the GPIO to determine if the host system  
has attempted to generate a GPIO interrupt.  
Fix Status  
Will not be fixed  
Changes  
None  
Document Number: 001-69257 Rev. *P  
Page 37 of 45  
 
CY8C20xx7/S  
3. Missed Interrupt During Transition to Sleep  
Problem Definition  
If an interrupt is posted a short time (within 2.5 CPU cycles) before firmware commands the device to sleep, the interrupt will  
be missed.  
Parameters Affected  
No datasheet parameters are affected.  
TriggerCondition(S)  
Triggered by enabling sleep mode just prior to an interrupt.  
Scope of Impact  
The relevant interrupt service routine will not be run.  
Workaround  
None.  
Fix Status  
Will not be fixed  
Changes  
None  
4. Wakeup from sleep with analog interrupt  
Problem Definition  
Device wakes up from sleep when an analog interrupt is trigger  
Parameters Affected  
No datasheet parameters are affected.  
TriggerCondition(S)  
Triggered by enabling analog interrupt during sleep mode when device operating temperature is 50 °C or above  
Scope of Impact  
Device unexpectedly wakes up from sleep  
Workaround  
Disable the analog interrupt before entering sleep and turn it back on upon wake-up.  
Fix Status  
Will not be fixed  
Changes  
None  
Document Number: 001-69257 Rev. *P  
Page 38 of 45  
CY8C20xx7/S  
5. Wake-up from Sleep with Hardware I2C Address match on Pins P1[0], P1[1]  
Problem Definition  
I2C interface needs 20 ns hold time on SDA line with respect to falling edge of SCL, to wake-up from sleep using I2C hardware  
address match event.  
Parameters Affected  
tHD;DAT increased to 20 ns from 0 ns  
TriggerCondition(S)  
This is an issue only when all these three conditions are met:  
1) P1.0 and P1.1 are used as I2C pins,  
2) Wakeup from sleep with hardware address match feature is enabled, and  
3) I2C master does not provide 20 ns hold time on SDA with respect to falling edge of SCL.  
Scope of Impact  
These trigger conditions cause the device to never wake-up from sleep based on I2C address match event.  
Workaround  
For a design that meets all of the trigger conditions, the following suggested circuit has to be implemented as a work-around.  
The R and C values proposed are 100 ohm and 200 pF respectively.  
Fix Status  
Will not be fixed  
Changes  
None  
Document Number: 001-69257 Rev. *P  
Page 39 of 45  
CY8C20xx7/S  
6. I2C Port Pin Pull-up Supply Voltage  
Problem Definition  
Pull-up resistor on I2C interface cannot be connected to a supply voltage that is greater than 0.7 V of CY8C20xx7/S VDD  
.
Parameters Affected  
None.  
TriggerCondition(S)  
This problem occurs only when the I2C master is powered at a higher voltage than CY8C20xx7/S.  
Scope of Impact  
This trigger condition will corrupt the I2C communication between the I2C host and the CY8C20xx7/S CapSense controller.  
Workaround  
I2C master cannot be powered at a supply voltage that is greater than 0.7 V compared to CY8C20xx7/S supply voltage.  
Fix Status  
Will not be fixed  
Changes  
None  
7. Port1 Pin Voltage  
Problem Definition  
Pull-up resistor on port1 pins cannot be connected to a voltage that is greater than 0.7 V higher than CY8C20xx7/S VDD  
.
Parameters Affected  
None.  
TriggerCondition(S)  
This problem occurs only when port1 pins are at voltage 0.7 V higher than VDD of CY8C20xx7/S.  
Scope of Impact  
This trigger condition will not allow CY8C20xx7/S to drive the output signal on port1 pins, input path is unaffected by this  
condition.  
Workaround  
Port1 should not be connected to a higher voltage than VDD of CY8C20xx7/S.  
Fix Status  
Will not be fixed  
Changes  
None  
Document Number: 001-69257 Rev. *P  
Page 40 of 45  
CY8C20xx7/S  
Document History Page  
Document Title: CY8C20xx7/S, 1.8 V CapSense® Controller with SmartSenseAuto-tuning 31 Buttons, 6 Sliders, Proximity  
Sensors  
Document Number: 001-69257  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
**  
3276782  
3327230  
DST  
DST  
06/27/2011 New silicon and document  
*A  
07/28/2011 Changed 48-pin dimensions to 6 × 6 × 0.6 mm QFN  
Updated pins name in Table 3 on page 9 and removed USB column and  
updated dimensions for 48-pin parts in Table 35 on page 33  
Updated Figure 20 on page 29  
Removed ICE and Debugger sections.  
Removed CY3215 Development Kit and CY3280-20x66 UCC sections.  
Updated Ordering Information.  
*B  
*C  
3403111  
3473317  
YVA  
DST  
10/12/2011 Moved status from Advance to Preliminary.  
Updated Ordering Information  
Removed the row named “48-Pin (6 × 6 mm) QFN (OCD)”.  
Changed all 48-pin ordering code column from CY8C20XXX-24LTxx to  
CY8C20XXX-24LQxx.  
Updated 16-pin SOIC and 16-pin QFN package drawings.  
12/23/2011 Updated Features.  
Updated Pinouts (Removed PSoC in captions of Figure 2, Figure 3, Figure 4,  
Figure 6, and Figure 7).  
Updated DC Chip-Level Specifications under Electrical Specifications  
(Updated typical value of IDD24 parameter from 3.32 mA to 2.88 mA, updated  
typical value of IDD12parameter from 1.86 mAto 1.71 mA, updated typical value  
of IDD6 parameter from 1.13 mA to 1.16 mA, updated maximum value of ISB0  
parameter from 0.50 µA to 1.1 µA, added ISBI2C parameter and its details).  
Updated DC GPIO Specifications under Electrical Specifications (Added the  
parameters namely VILLVT3.3, VIHLVT3.3, VILLVT5.5, VIHLVT5.5 and their details in  
Table 10, added the parameters namely VILLVT2.5, VIHLVT2.5 and their details in  
Table 11).  
Added the following sections namely DC I2C Specifications, Shield Driver DC  
Specifications, and DC IDAC Specifications under Electrical Specifications.  
Updated AC Chip-Level Specifications (Added the parameter namely tJIT_IMO  
and its details).  
Updated Ordering Information (updated Table 35).  
*D  
3510277  
YVA/DST  
02/16/2012 Added CY8C20x37/37S/47/47S/67/67S part numbers and changed title to “1.8  
V CapSense® Controller with SmartSense™ Auto-tuning  
31 Buttons, 6 Sliders”  
Updated Features.  
Modified comparator blocks in Logic Block Diagram.  
Replaced SmartSense with SmartSense auto-tuning.  
Added CY8C20xx7S part numbers in Pin Definitions.  
Added footnote for Table 20.  
Updated Table 21 and Table 22 and added Table 23.  
Updated F32K1 min value.  
Updated data hold time min values.  
Updated CY8C206x7 part information in Table “Emulation and Programming  
Accessories”.  
Updated Ordering Information.  
*E  
3539259  
DST  
03/01/2012 Changed Datasheet status from Preliminary to Final.  
Updated all Pinouts to include Driven Shield Output (optional) information.  
Updated Min value for VLPC Table 15.  
Updated Offset and Input range in Table 16.  
Document Number: 001-69257 Rev. *P  
Page 41 of 45  
CY8C20xx7/S  
Document History Page (continued)  
Document Title: CY8C20xx7/S, 1.8 V CapSense® Controller with SmartSenseAuto-tuning 31 Buttons, 6 Sliders, Proximity  
Sensors  
Document Number: 001-69257  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
*F  
3645807  
DST/BVI  
07/03/2012 Updated FSCLK parameter in the Table 31, “SPI Slave AC Specifications,” on  
page 26  
Changed tOUT_HIGH to tOUT_H in Table 30, “SPI Master AC Specifications,” on  
page 25  
Updated Features section, “Programmable pin configurations” bullet:  
Included the following sub-bullet point -  
5 mA source current on port 0 and 1 and 1 mA on port 2,3 and 4  
Changed the bullet point “High sink current of 25 mAfor each GPIO” to “High  
sink current of 25 mA for each GPIO. Total 120 mA maximum sink current  
per chip”  
Added “QuietZone™ Controller” bullet and updated “Low power CapSense®  
block with SmartSense™ auto-tuning” bullet.  
Updated package diagrams 001-13937 to *D and 001-57280 to *C revisions.  
*G  
3800055  
DST  
11/23/2012 Changed document title.  
Part named changed from CY8C20xx7 to CY8C20xx7/S  
Table 20: Update to VIHI2C to match Item #6 in K2 Si Errata document (001-  
75370)  
Updated package diagrams:  
51-85068 to *E  
001-09116 to *G  
001-13937 to *E  
001-42168 to *E  
001-57280 to *E  
*H  
*I  
3881332  
3993458  
SRLI  
DST  
02/04/2013 Updated Features:  
Added Note “Please contact your nearest sales office for additional details.”  
and referred the same note in “24 Sensing Inputs – 30-pin WLCSP”.  
05/07/2013 Updated Electrical Specifications (Updated DC GPIO Specifications (Updated  
heading of third column as “Port 0/1 per I/O (max)” for Table 13)).  
Updated Packaging Information:  
spec 001-09116 – Changed revision from *G to *H (Figure 17).  
Added Errata.  
*J  
4081796  
DST  
07/31/2013 Added Errata footnotes (Note 40, 41, 42, 43, 44).  
Updated already existing footnotes (Note 50, 51, 55) as Errata footnotes.  
Updated Electrical Specifications:  
Updated DC Chip-Level Specifications:  
Added Note 40, 41, 42, 43 and referred the same notes in ISB0, ISB1, ISBI2C  
parameters.  
Updated DC GPIO Specifications:  
Added Note 44 andreferredthe samenoteindescriptionofVILLVT3.3 parameter  
in Table 10.  
Updated DC I2C Specifications:  
Updated Note 50, 51 referred in Table 20.  
Updated AC I2C Specifications:  
Updated Note 55 referred in Table 29.  
Updated to new template.  
Document Number: 001-69257 Rev. *P  
Page 42 of 45  
CY8C20xx7/S  
Document History Page (continued)  
Document Title: CY8C20xx7/S, 1.8 V CapSense® Controller with SmartSenseAuto-tuning 31 Buttons, 6 Sliders, Proximity  
Sensors  
Document Number: 001-69257  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
*K  
4248645  
DST  
01/16/2014 Updated Pinouts:  
Updated 32-pin QFN (25 Sensing Inputs)[25]:  
Updated Figure 6.  
Updated Packaging Information:  
spec 001-09116 – Changed revision from *H to *I.  
*L  
4404150  
SLAN  
06/10/2014 Updated Pinouts:  
Updated 16-pin SOIC (10 Sensing Inputs):  
Updated Table 1:  
Added Note 6 and referred the same note in description of XRES pin.  
Updated 16-pin QFN (10 Sensing Inputs)[8]:  
Updated Table 2:  
Added Note 12 and referred the same note in description of XRES pin.  
Updated 24-pin QFN (16 Sensing Inputs)[14]:  
Updated Table 3:  
Added Note 18 and referred the same note in description of XRES pin.  
Updated 30-ball WLCSP (24 Sensing Inputs):  
Updated Table 4:  
Added Note 21 and referred the same note in description of XRES pin.  
Updated 32-pin QFN (25 Sensing Inputs)[25]:  
Updated Table 5:  
Added Note 29 and referred the same note in description of XRES pin.  
Updated 48-pin QFN (31 Sensing Inputs)[31]:  
Updated Table 6:  
Added Note 35 and referred the same note in description of XRES pin.  
Updated Electrical Specifications:  
Updated DC GPIO Specifications:  
Updated Table 10:  
Updated minimum and maximum values of VIH parameter.  
Updated Table 11:  
Updated minimum and maximum values of VIH parameter.  
Updated AC Chip-Level Specifications:  
Updated Table 24:  
Removed minimum and maximum values of “ILO untrimmed frequency”.  
Updated Packaging Information:  
spec 001-09116 – Changed revision from *I to *J.  
Completing Sunset Review.  
*M  
*N  
4825924  
5068999  
SLAN  
ARVI  
07/07/2015 Added the footnote “All VSS pins should be brought out to one common GND  
plane” in pinout tables (Table 1 through Table 6).  
Updated Packaging Information:  
spec 001-13937 – Changed revision from *E to *F.  
Updated to new template.  
12/31/2015 Updated hyperlink of “Technical Reference Manual” in all instances across the  
document.  
Updated PSoC® Functional Overview:  
Updated Additional System Resources:  
Updated description.  
Updated Development Tool Selection:  
Removed “Accessories (Emulation and Programming)”.  
Removed “Build a PSoC Emulator into Your Board”.  
Document Number: 001-69257 Rev. *P  
Page 43 of 45  
CY8C20xx7/S  
Document History Page (continued)  
Document Title: CY8C20xx7/S, 1.8 V CapSense® Controller with SmartSenseAuto-tuning 31 Buttons, 6 Sliders, Proximity  
Sensors  
Document Number: 001-69257  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
*O  
5122184  
JFMD  
02/02/2016 Updated Features:  
Removed Note “Please contact your nearest sales office for additional details.”  
and its reference.  
Updated Ordering Information:  
Updated Table 35:  
Updated part numbers.  
*P  
5742810 AESATMP9 05/19/2017 Updated logo and copyright.  
Document Number: 001-69257 Rev. *P  
Page 44 of 45  
CY8C20xx7/S  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
ARM® Cortex® Microcontrollers  
cypress.com/arm  
cypress.com/automotive  
cypress.com/clocks  
cypress.com/interface  
cypress.com/iot  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6  
Automotive  
Cypress Developer Community  
Clocks & Buffers  
Interface  
Forums | WICED IOT Forums | Projects | Video | Blogs |  
Training | Components  
Internet of Things  
Memory  
Technical Support  
cypress.com/memory  
cypress.com/mcu  
cypress.com/support  
Microcontrollers  
PSoC  
cypress.com/psoc  
cypress.com/pmic  
cypress.com/touch  
cypress.com/usb  
Power Management ICs  
Touch Sensing  
USB Controllers  
Wireless Connectivity  
cypress.com/wireless  
© Cypress Semiconductor Corporation, 2011-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC (“Cypress”). This document,  
including any software or firmware included or referenced in this document (“Software”), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries  
worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other  
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress  
hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to  
modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users  
(either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as  
provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation  
of the Software is prohibited.  
TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE  
OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent  
permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any  
product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is  
the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products  
are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or  
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the  
device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any component of a device or system whose failure to perform can be reasonably  
expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,  
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other  
liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.  
Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in  
the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.  
Document Number: 001-69257 Rev. *P  
Revised May 19, 2017  
Page 45 of 45  

相关型号:

CY8C20247/S-24LKXI

1.8 V CapSense® Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors
CYPRESS

CY8C20247/S-24LKXIT

1.8 V CapSense® Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors
CYPRESS

CY8C20247/S-24SXI

1.8 V CapSense® Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors
CYPRESS

CY8C20247S-24LKXI

1.8 V CapSense® Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors
CYPRESS

CY8C20247S-24LKXIT

1.8 V CapSense® Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors
CYPRESS

CY8C20247S-24SXI

1.8 V CapSense® Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors
CYPRESS

CY8C20266-24LKXI

CapSense™ Applications
CYPRESS

CY8C20266-24LKXIT

CapSense™ Applications
CYPRESS

CY8C20324

CapSense PSoC Programmable System-on-Chip
CYPRESS

CY8C20324-12LQXI

CapSense PSoC Programmable System-on-Chip
CYPRESS
INFINEON

CY8C20324-12LQXIT

CapSense PSoC Programmable System-on-Chip
CYPRESS