CY8C20246AS-24LKXI [CYPRESS]

1.8 V Programmable CapSense® Controller with SmartSense™ Auto-tuning 1–33 Buttons, 0–6 Sliders; 1.8 V可编程CapSense®控制器SmartSenseâ ?? ¢自动调谐1A ???? 33按钮, 0A ???? 6滑块
CY8C20246AS-24LKXI
型号: CY8C20246AS-24LKXI
厂家: CYPRESS    CYPRESS
描述:

1.8 V Programmable CapSense® Controller with SmartSense™ Auto-tuning 1–33 Buttons, 0–6 Sliders
1.8 V可编程CapSense®控制器SmartSenseâ ?? ¢自动调谐1A ???? 33按钮, 0A ???? 6滑块

控制器
文件: 总51页 (文件大小:782K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY8C20XX6A/S  
1.8 V Programmable CapSense® Controller  
with SmartSense™ Auto-tuning  
1–33 Buttons, 0–6 Sliders  
1.8  
V Programmable CapSense® Controller with SmartSense™ Auto-tuning 1–33 Buttons, 0–6 Sliders  
High sink current of 25 mA per GPIO  
• Max sink current 120 mA for all GPIOs  
Source Current  
Features  
Low power CapSense® block with SmartSense Auto-tuning  
Patented CSA_EMC, CSD sensing algorithms  
SmartSense_EMC Auto-Tuning  
• Sets and maintains optimal sensor performance during run  
time  
• Eliminates system tuning during development and  
production  
• Compensates for variations in manufacturing process Low  
average power consumption – xx µA/sensor in run time  
(wake-up and scan once every yyy ms)  
• 5 mA on ports 0 and 1  
• 1 mA on ports 2,3 and 4  
Configurable internal pull-up, high-Z and open drain modes  
Selectable, regulated digital I/O on port 1  
Configurable input threshold on port 1  
Versatile Analog functions  
Internal analog bus supports connection of multiple sensors  
to form ganged proximity sensor  
InternalLow-Dropoutvoltageregulatorfor highpowersupply  
rejection ratio (PSRR)  
Powerful Harvard-architecture processor  
M8C CPU with a max speed of 24 MHz  
Full-Speed USB  
Operating Range: 1.71 V to 5.5 V  
Standby Mode 1.1 μA (Typ)  
Deep Sleep 0.1 μA (Typ)  
12 Mbps USB 2.0 compliant  
Additional system resources  
I2C Slave:  
Operating Temperature range: –40 °C to +85 °C  
• Selectable to 50 kHz, 100 kHz, or 400 kHz  
Configurable up to 12 MHz SPI master and slave  
Three 16-bit timers  
Watchdog and sleep timers  
Integrated supervisory circuit  
10-bit incremental analog-to-digital converter (ADC) with  
internal voltage reference  
Two general-purpose high speed, low power analog  
comparators  
Flexible on-chip memory  
8 KB flash, 1 KB SRAM  
16 KB flash, 2 KB SRAM  
32 KB flash, 2 KB SRAM  
Read while Write with EEPROM emulation  
50,000 flash erase/write cycles  
In-system programming simplifies manufacturing process  
Four Clock Sources  
Internal main oscillator (IMO): 6/12/24 MHz  
Internal low-speed oscillator (ILO) at 32 kHz for watchdog  
and sleep timers  
External 32 KHz Crystal Oscillator  
External Clock Input  
Complete development tools  
Free development tool (PSoC Designer™)  
Sensor and Package options  
10 Sensors – QFN 16, 24  
16 Sensors – QFN 24  
22 / 25 Sensors – QFN 32  
24 Sensors - WLCSP 30  
31 Sensors – SSOP 48  
33 Sensors – QFN 48  
Programmable pin configurations  
Up to 36 general-purpose I/Os (GPIOs) configurable as  
buttons or sliders  
Dual mode GPIO (Analog inputs and Digital I/O supported)  
Errata: For information on silicon errata, see “Errata” on page 45. Details include trigger conditions, devices affected, and proposed workaround  
Cypress Semiconductor Corporation  
Document Number: 001-54459 Rev. *T  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised June 28, 2013  
CY8C20XX6A/S  
Logic Block Diagram  
[1]  
1.8/2.5/3V  
LDO  
PWRSYS  
Port 4 Port 3  
Port 2  
Port 1  
Port 0  
(Regulator)  
PSoC CORE  
SYSTEM BUS  
Global Analog Interconnect  
8K/16K/32K Flash  
1K/2K  
SRAM  
Supervisory ROM (SROM)  
Nonvolatile Memory  
Interrupt  
Controller  
Sleep and  
Watchdog  
CPU Core (M8C)  
6/12/24 MHz Internal Main Oscillator  
(IMO)  
Internal Low Speed Oscillator (ILO)  
Multiple Clock Sources  
CAPSENSE  
SYSTEM  
Analog  
Reference  
CapSense  
Module  
Two  
Analog  
Mux  
Comparators  
SYSTEM BUS  
Internal  
Voltage  
References  
POR  
and  
LVD  
SPI  
Master/  
Slave  
Three 16-Bit  
Programmable  
Timers  
I2C  
Slave  
System  
Resets  
Digital  
Clocks  
USB  
SYSTEM RESOURCES  
Note  
1. Internal voltage regulator for internal circuitry  
Document Number: 001-54459 Rev. *T  
Page 2 of 51  
CY8C20XX6A/S  
Contents  
PSoC® Functional Overview ............................................4  
PSoC Core ..................................................................4  
CapSense System .......................................................4  
Additional System Resources .....................................5  
Getting Started ..................................................................6  
CapSense Design Guides ...........................................6  
Silicon Errata ...............................................................6  
Development Kits ........................................................6  
Training .......................................................................6  
CYPros Consultants ....................................................6  
Solutions Library ..........................................................6  
Technical Support .......................................................6  
Development Tools ..........................................................7  
PSoC Designer Software Subsystems ........................7  
Designing with PSoC Designer .......................................8  
Select User Modules ...................................................8  
Configure User Modules ..............................................8  
Organize and Connect ................................................8  
Generate, Verify, and Debug .......................................8  
Pinouts ..............................................................................9  
16-pin QFN (10 Sensing Inputs) ..................................9  
24-pin QFN (17 Sensing Inputs) ................................10  
24-pin QFN (15 Sensing Inputs (With USB)) .............11  
30-ball WLCSP (24 Sensing Inputs) ..........................12  
32-pin QFN (25 Sensing Inputs) ................................13  
32-pin QFN (22 Sensing Inputs (With USB)) .............14  
48-pin SSOP (31 Sensing Inputs) .............................15  
48-pin QFN (33 Sensing Inputs) ................................16  
48-pin QFN (33 Sensing Inputs (With USB)) .............17  
48-pin QFN (OCD) (33 Sensing Inputs) ....................18  
Electrical Specifications ................................................19  
Absolute Maximum Ratings .......................................19  
Operating Temperature .............................................19  
DC Chip-Level Specifications ....................................20  
DC GPIO Specifications ............................................21  
DC Analog Mux Bus Specifications ...........................23  
DC Low Power Comparator Specifications ...............23  
Comparator User Module Electrical Specifications ...24  
ADC Electrical Specifications ....................................24  
DC POR and LVD Specifications ..............................25  
DC Programming Specifications ...............................25  
DC I2C Specifications ...............................................26  
DC Reference Buffer Specifications ..........................26  
DC IDAC Specifications ............................................26  
AC Chip-Level Specifications ....................................27  
AC GPIO Specifications ............................................28  
AC Comparator Specifications ..................................29  
AC External Clock Specifications ..............................29  
AC Programming Specifications ................................30  
AC I2C Specifications ................................................31  
Packaging Information ...................................................34  
Thermal Impedances .................................................37  
Capacitance on Crystal Pins .....................................37  
Solder Reflow Specifications .....................................37  
Development Tool Selection .........................................38  
Software ....................................................................38  
Development Kits ......................................................38  
Evaluation Tools ........................................................38  
Device Programmers .................................................38  
Accessories (Emulation and Programming) ..............39  
Third Party Tools .......................................................39  
Build a PSoC Emulator into Your Board ....................39  
Ordering Information ......................................................40  
Ordering Code Definitions .........................................42  
Acronyms ........................................................................43  
Reference Documents ....................................................43  
Document Conventions .................................................43  
Units of Measure .......................................................43  
Numeric Naming ........................................................44  
Glossary ..........................................................................44  
Errata ...............................................................................45  
Qualification Status ...................................................45  
Errata Summary ........................................................45  
Document History Page .................................................48  
Sales, Solutions, and Legal Information ......................51  
Worldwide Sales and Design Support .......................51  
Products ....................................................................51  
PSoC® Solutions ......................................................51  
Cypress Developer Community .................................51  
Technical Support .....................................................51  
Document Number: 001-54459 Rev. *T  
Page 3 of 51  
CY8C20XX6A/S  
®
required tuning parameters. SmartSense allows engineers to go  
from prototyping to mass production without re-tuning for  
manufacturing variations in PCB and/or overlay material  
properties.  
PSoC Functional Overview  
The PSoC family consists of on-chip controller devices, which  
are designed to replace multiple traditional microcontroller unit  
(MCU)-based components with one, low cost single-chip  
SmartSense_EMC  
programmable component.  
A
PSoC device includes  
configurable analog and digital blocks, and programmable  
interconnect. This architecture allows the user to create  
customized peripheral configurations, to match the requirements  
of each individual application. Additionally, a fast CPU, Flash  
program memory, SRAM data memory, and configurable I/O are  
included in a range of convenient pinouts.  
In addition to the SmartSense auto tuning algorithm to remove  
manual tuning of CapSense applications, SmartSense_EMC  
user module incorporates a unique algorithm to improve  
robustness of capacitive sensing algorithm/circuit against high  
frequency conducted and radiated noise. Every electronic device  
must comply with specific limits for radiated and conducted  
external noise and these limits are specified by regulatory bodies  
(for example, FCC, CE, U/L and so on). A very good PCB layout  
design, power supply design and system design is a mandatory  
for a product to pass the conducted and radiated noise tests. An  
ideal PCB layout, power supply design or system design is not  
often possible because of cost and form factor limitations of the  
product. SmartSense_EMC with superior noise immunity is well  
suited and handy for such applications to pass radiated and  
conducted noise test.  
The architecture for this device family, as shown in the Logic  
Block Diagram on page 2, consists of three main areas:  
The Core  
CapSense Analog System  
System Resources (including a full-speed USB port).  
A common, versatile bus allows connection between I/O and the  
analog system.  
Figure 1. CapSense System Block Diagram  
Each CY8C20XX6A/S PSoC device includes a dedicated  
CapSense block that provides sensing and scanning control  
circuitry for capacitive sensing applications. Depending on the  
PSoC package, up to 36 GPIO are also included. The GPIO  
provides access to the MCU and analog mux.  
CS1  
IDAC  
CS2  
PSoC Core  
The PSoC Core is a powerful engine that supports a rich  
instruction set. It encompasses SRAM for data storage, an  
interrupt controller, sleep and watchdog timers, and IMO and  
ILO. The CPU core, called the M8C, is a powerful processor with  
speeds up to 24 MHz. The M8C is a 4-MIPS, 8-bit  
Harvard-architecture microprocessor.  
CSN  
Vr  
Reference  
Buffer  
Cinternal  
CapSense System  
The analog system contains the capacitive sensing hardware.  
Several hardware algorithms are supported. This hardware  
performs capacitive sensing and scanning without requiring  
external components. The analog system is composed of the  
CapSense PSoC block and an internal 1 V or 1.2 V analog  
reference, which together support capacitive sensing of up to  
33 inputs . Capacitive sensing is configurable on each GPIO  
pin. Scanning of enabled CapSense pins are completed quickly  
and easily across multiple ports.  
Cexternal (P0[1]  
or P0[3])  
Comparator  
Mux  
Mux  
Refs  
[2]  
Cap Sense Counters  
CSCLK  
SmartSense  
SmartSense is an innovative solution from Cypress that removes  
manual tuning of CapSense applications. This solution is easy to  
use and provides a robust noise immunity. It is the only  
auto-tuning solution that establishes, monitors, and maintains all  
CapSense  
Clock Select  
IMO  
Oscillator  
Note  
2
2. 36 GPIOs = 33 pins for capacitive sensing + 2 pins for I C + 1 pin for modulator capacitor.  
Document Number: 001-54459 Rev. *T  
Page 4 of 51  
CY8C20XX6A/S  
Analog Multiplexer System  
communication interface, three 16-bit programmable timers, and  
various system resets supported by the M8C.  
The Analog Mux Bus can connect to every GPIO pin. Pins are  
connected to the bus individually or in any combination. The bus  
also connects to the analog system for analysis with the  
CapSense block comparator.  
These system resources provide additional capability useful to  
complete systems. Additional resources include low voltage  
detection and power on reset. The merits of each system  
resource are listed here:  
Switch control logic enables selected pins to precharge  
continuously under hardware control. This enables capacitive  
measurement for applications such as touch sensing. Other  
multiplexer applications include:  
2
The I C slave/SPI master-slave module provides  
50/100/400 kHz communication over two wires. SPI  
communication over three or four wires runs at speeds of  
46.9 kHz to 3 MHz (lower for a slower system clock).  
Complex capacitive sensing interfaces, such as sliders and  
touchpads.  
Low-voltage detection (LVD) interrupts can signal the  
application of falling voltage levels, while the advanced  
power-on-reset (POR) circuit eliminates the need for a system  
supervisor.  
Chip-wide mux that allows analog input from any I/O pin.  
Crosspoint connection between any I/O pin combinations.  
An internal reference provides an absolute reference for  
capacitive sensing.  
Additional System Resources  
System resources provide additional capability, such as  
2
A register-controlled bypass mode allows the user to disable  
the LDO regulator.  
configurable USB and I C slave, SPI master/slave  
Document Number: 001-54459 Rev. *T  
Page 5 of 51  
CY8C20XX6A/S  
errata document with datasheet for a complete functional  
description of device.  
Getting Started  
The quickest way to understand PSoC silicon is to read this  
datasheet and then use the PSoC Designer Integrated  
Development Environment (IDE). This datasheet is an overview  
of the PSoC integrated circuit and presents specific pin, register,  
and electrical specifications.  
Development Kits  
PSoC Development Kits are available online from and through a  
growing number of regional and global distributors, which  
include Arrow, Avnet, Digi-Key, Farnell, Future Electronics, and  
Newark.  
For in depth information, along with detailed programming  
details, see the Technical Reference Manual for the  
CY8C20XX6A/S PSoC devices.  
Training  
Free PSoC technical training (on demand, webinars, and  
workshops), which is available online via www.cypress.com,  
covers a wide variety of topics and skill levels to assist you in  
your designs.  
For up-to-date ordering, packaging, and electrical specification  
information, see the latest PSoC device datasheets on the web  
at www.cypress.com/psoc.  
CapSense Design Guides  
CYPros Consultants  
Design Guides are an excellent introduction to the wide variety  
of possible CapSense designs. They are located at  
www.cypress.com/go/CapSenseDesignGuides.  
Certified PSoC consultants offer everything from technical  
assistance to completed PSoC designs. To contact or become a  
PSoC consultant go to the CYPros Consultants web site.  
Refer Getting Started with CapSense design guide for  
information on CapSense design and CY8C20XX6A/H/AS  
Solutions Library  
®
CapSense  
Design Guide for specific information on  
Visit our growing library of solution focused designs. Here you  
can find various application designs that include firmware and  
hardware design files that enable you to complete your designs  
quickly.  
CY8C20XX6A/AS CapSense controllers.  
Silicon Errata  
Errata documents known issues with silicon including errata  
trigger conditions, scope of impact, available workarounds and  
silicon revision applicability. Refer to Silicon Errata for the PSoC  
CY8C20x36A/46A/66A/96A/46AS/66AS/36H/46H  
available at http://www.cypress.com/?rID=56239 for errata  
information on CY8C20xx6A/AS/H family of device. Compare  
Technical Support  
®
Technical support – including a searchable Knowledge Base  
articles and technical forums – is also available online. If you  
cannot find an answer to your question, call our Technical  
Support hotline at 1-800-541-4736.  
families  
Document Number: 001-54459 Rev. *T  
Page 6 of 51  
CY8C20XX6A/S  
Code Generation Tools  
Development Tools  
The code generation tools work seamlessly within the  
PSoC Designer interface and have been tested with a full range  
of debugging tools. You can develop your design in C, assembly,  
or a combination of the two.  
PSoC Designer™ is the revolutionary integrated design  
environment (IDE) that you can use to customize PSoC to meet  
your specific application requirements. PSoC Designer software  
accelerates system design and time to market. Develop your  
applications using a library of precharacterized analog and digital  
peripherals (called user modules) in a drag-and-drop design  
environment. Then, customize your design by leveraging the  
dynamically generated application programming interface (API)  
libraries of code. Finally, debug and test your designs with the  
integrated debug environment, including in-circuit emulation and  
standard software debug features. PSoC Designer includes:  
Assemblers. The assemblers allow you to merge assembly  
code seamlessly with C code. Link libraries automatically use  
absolute addressing or are compiled in relative mode, and linked  
with other software modules to get absolute addressing.  
C Language Compilers. C language compilers are available  
that support the PSoC family of devices. The products allow you  
to create complete C programs for the PSoC family devices. The  
optimizing C compilers provide all of the features of C, tailored  
to the PSoC architecture. They come complete with embedded  
libraries providing port and bus operations, standard keypad and  
display support, and extended math functionality.  
Application editor graphical user interface (GUI) for device and  
user module configuration and dynamic reconfiguration  
Extensive user module catalog  
Integrated source-code editor (C and assembly)  
Free C compiler with no size restrictions or time limits  
Built-in debugger  
Debugger  
PSoC Designer has a debug environment that provides  
hardware in-circuit emulation, allowing you to test the program in  
a physical system while providing an internal view of the PSoC  
device. Debugger commands allow you to read and program and  
read and write data memory, and read and write I/O registers.  
You can read and write CPU registers, set and clear breakpoints,  
and provide program run, halt, and step control. The debugger  
also lets you to create a trace buffer of registers and memory  
locations of interest.  
In-circuit emulation  
Built-in support for communication interfaces:  
2
Hardware and software I C slaves and masters  
Full-speed USB 2.0  
Up  
to  
four  
full-duplex  
universal  
asynchronous  
receiver/transmitters (UARTs), SPI master and slave, and  
wireless  
Online Help System  
The online help system displays online, context-sensitive help.  
Designed for procedural and quick reference, each functional  
subsystem has its own context-sensitive help. This system also  
provides tutorials and links to FAQs and an Online Support  
Forum to aid the designer.  
PSoC Designer supports the entire library of PSoC 1 devices and  
runs on Windows XP, Windows Vista, and Windows 7.  
PSoC Designer Software Subsystems  
Design Entry  
In-Circuit Emulator  
In the chip-level view, choose a base device to work with. Then  
select different onboard analog and digital components that use  
the PSoC blocks, which are called user modules. Examples of  
user modules are analog-to-digital converters (ADCs),  
digital-to-analog converters (DACs), amplifiers, and filters.  
Configure the user modules for your chosen application and  
connect them to each other and to the proper pins. Then  
generate your project. This prepopulates your project with APIs  
and libraries that you can use to program your application.  
A
low-cost, high-functionality in-circuit emulator (ICE) is  
available for development support. This hardware can program  
single devices.  
The emulator consists of a base unit that connects to the PC  
using a USB port. The base unit is universal and operates with  
all PSoC devices. Emulation pods for each device family are  
available separately. The emulation pod takes the place of the  
PSoC device in the target board and performs full-speed  
(24 MHz) operation.  
The tool also supports easy development of multiple  
configurations and dynamic reconfiguration. Dynamic  
reconfiguration makes it possible to change configurations at run  
time. In essence, this lets you to use more than 100 percent of  
PSoC’s resources for an application.  
Document Number: 001-54459 Rev. *T  
Page 7 of 51  
CY8C20XX6A/S  
internal operation of the user module and provide performance  
specifications. Each datasheet describes the use of each user  
module parameter, and other information that you may need to  
successfully implement your design.  
Designing with PSoC Designer  
The development process for the PSoC device differs from that  
of a traditional fixed-function microprocessor. The configurable  
analog and digital hardware blocks give the PSoC architecture a  
unique flexibility that pays dividends in managing specification  
change during development and lowering inventory costs. These  
configurable resources, called PSoC blocks, have the ability to  
implement a wide variety of user-selectable functions. The PSoC  
development process is:  
Organize and Connect  
Build signal chains at the chip level by interconnecting user  
modules to each other and the I/O pins. Perform the selection,  
configuration, and routing so that you have complete control over  
all on-chip resources.  
1. Select user modules.  
Generate, Verify, and Debug  
2. Configure user modules.  
3. Organize and connect.  
4. Generate, verify, and debug.  
When you are ready to test the hardware configuration or move  
on to developing code for the project, perform the “Generate  
Configuration Files” step. This causes PSoC Designer to  
generate source code that automatically configures the device to  
your specification and provides the software for the system. The  
generated code provides APIs with high-level functions to control  
and respond to hardware events at run time, and interrupt  
service routines that you can adapt as needed.  
Select User Modules  
PSoC Designer provides a library of prebuilt, pretested hardware  
peripheral components called “user modules”. User modules  
make selecting and implementing peripheral devices, both  
analog and digital, simple.  
A complete code development environment lets you to develop  
and customize your applications in C, assembly language, or  
both.  
Configure User Modules  
Each user module that you select establishes the basic register  
settings that implement the selected function. They also provide  
parameters and properties that allow you to tailor their precise  
configuration to your particular application. For example, a PWM  
User Module configures one or more digital PSoC blocks, one  
for each eight bits of resolution. Using these parameters, you can  
establish the pulse width and duty cycle. Configure the  
parameters and properties to correspond to your chosen  
application. Enter values directly or by selecting values from  
drop-down menus. All of the user modules are documented in  
datasheets that may be viewed directly in PSoC Designer or on  
the Cypress website. These user module datasheets explain the  
The last step in the development process takes place inside  
PSoC Designer’s Debugger (accessed by clicking the Connect  
icon). PSoC Designer downloads the HEX image to the ICE  
where it runs at full-speed. PSoC Designer debugging  
capabilities rival those of systems costing many times more. In  
addition to traditional single-step, run-to-breakpoint, and  
watch-variable features, the debug interface provides a large  
trace buffer. It lets you to define complex breakpoint events that  
include monitoring address and data bus values, memory  
locations, and external signals.  
Document Number: 001-54459 Rev. *T  
Page 8 of 51  
CY8C20XX6A/S  
Pinouts  
The CY8C20XX6A/S PSoC device is available in a variety of packages, which are listed and illustrated in the following tables. Every  
port pin (labeled with a “P”) is capable of Digital I/O and connection to the common analog bus. However, V , V , and XRES are  
SS  
DD  
not capable of Digital I/O.  
[3, 4]  
16-pin QFN (10 Sensing Inputs)  
Table 1. Pin Definitions – CY8C20236A, CY8C20246A, CY8C20246AS PSoC Device  
Type  
Figure 2. CY8C20236A, CY8C20246A, CY8C20246AS  
Pin  
No.  
Name  
Description  
Digital Analog  
1
2
3
4
5
6
I/O  
I
I
I
I
I
I
P2[5] Crystal output (XOut)  
P2[3] Crystal input (XIn)  
I/O  
AI, XOut, P2[5]  
AI, XIn,P2[3]  
1
2
2
P0[4] , AI  
IOHR  
IOHR  
IOHR  
IOHR  
P1[7] I C SCL, SPI SS  
12  
11  
10  
QFN  
( Top View)  
XRES  
P1[4], EXTCLK,AI  
P1[2] , AI  
2
P1[5] I C SDA, SPI MISO  
AI,I2 C SCL, SPI SS,P1[7]  
AI,I2 C SDA, SPI MISO,P1[5]  
3
4
9
P1[3] SPI CLK  
[5]  
2
P1[1] ISSP CLK , I C SCL, SPI  
MOSI  
7
8
Power  
V
Ground connection  
SS  
[5]  
2
IOHR  
I
P1[0] ISSP DATA , I C SDA, SPI  
[6]  
CLK  
9
IOHR  
IOHR  
I
I
P1[2]  
10  
P1[4] Optional external clock  
(EXTCLK)  
11  
Input  
XRES Active high external reset with  
internal pull-down  
12  
13  
14  
15  
16  
IOH  
I
P0[4]  
Power  
V
Supply voltage  
DD  
IOH  
IOH  
IOH  
I
I
I
P0[7]  
P0[3] Integrating input  
P0[1] Integrating input  
LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.  
Notes  
3. 13 GPIOs = 10 pins for capacitive sensing + 2 pins for I2C + 1 pin for modulation capacitor.  
4. No Center Pad.  
5. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives  
resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive  
resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use  
alternate pins if you encounter issues.  
6. Alternate SPI clock.  
Document Number: 001-54459 Rev. *T  
Page 9 of 51  
CY8C20XX6A/S  
24-pin QFN (17 Sensing Inputs) [7]  
[8]  
Table 2. Pin Definitions – CY8C20336A, CY8C20346A, CY8C20346AS  
Type  
Pin  
Figure 3. CY8C20336A, CY8C20346A, CY8C20346AS  
Name  
Description  
No.  
Digital Analog  
1
2
3
4
5
6
7
I/O  
I/O  
I
I
I
I
I
I
I
P2[5] Crystal output (XOut)  
P2[3] Crystal input (XIn)  
P2[1]  
I/O  
2
18  
17  
AI, XOut, P2[5]  
AI, XIn, P2[3]  
1
2
3
4
5
6
P0[4], AI  
P0[2], AI  
P0[0], AI  
P2[0], AI  
XRES  
IOHR  
IOHR  
IOHR  
IOHR  
P1[7] I C SCL, SPI SS  
2
P1[5] I C SDA, SPI MISO  
16  
15  
AI, P2[1]  
QFN  
(Top View )  
AI, I2C SCL, SPI SS, P1[7]  
AI, I2C SDA, SPI M ISO, P1[5]  
AI, SPI CLK, P1[3]  
P1[3] SPI CLK  
14  
13  
P1[6], AI  
[9]  
2
P1[1] ISSP CLK , I C SCL, SPI  
MOSI  
8
9
NC  
No connection  
Power  
V
Ground connection  
SS  
[9]  
2
10  
IOHR  
I
P1[0] ISSP DATA , I C SDA, SPI  
[10]  
CLK  
11  
12  
IOHR  
IOHR  
I
I
P1[2]  
P1[4] Optional external clock input  
(EXTCLK)  
13  
14  
IOHR  
I
P1[6]  
Input  
XRES Active high external reset with  
internal pull-down  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
CP  
I/O  
I
I
I
I
I
P2[0]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
IOH  
IOH  
IOH  
IOH  
Power  
V
Supply voltage  
DD  
IOH  
IOH  
IOH  
IOH  
I
I
I
I
P0[7]  
P0[5]  
P0[3] Integrating input  
P0[1] Integrating input  
Power  
V
Center pad must be  
connected to ground  
SS  
LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.  
Notes  
7. 20 GPIOs = 17 pins for capacitive sensing + 2 pins for I2C + 1 pin for modulation capacitor.  
8. The center pad (CP) on the QFN package must be connected to ground (V ) for best mechanical, thermal, and electrical performance. If not connected to ground,  
SS  
it must be electrically floated and not connected to any other signal.  
9. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives  
resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive  
resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use  
alternate pins if you encounter issues.  
10. Alternate SPI clock.  
Document Number: 001-54459 Rev. *T  
Page 10 of 51  
CY8C20XX6A/S  
24-pin QFN (15 Sensing Inputs (With USB)) [11]  
[12]  
Table 3. Pin Definitions – CY8C20396A  
Type  
Pin  
Figure 4. CY8C20396A  
Name  
Description  
No.  
Digital Analog  
1
2
3
4
5
6
7
I/O  
I/O  
I
I
I
I
I
I
I
P2[5]  
P2[3]  
P2[1]  
I/O  
2
[ ], AI  
P2 5  
18  
17  
16  
15  
14  
13  
1
2
3
4
5
6
P0[2], AI  
IOHR  
IOHR  
IOHR  
IOHR  
P1[7] I C SCL, SPI SS  
[
P2 3], AI  
P0[0], AI  
2
P1[5] I C SDA, SPI MISO  
[
XRES  
P2 1], AI  
QFN  
(Top View)  
P1[3] SPI CLK  
AI, I2 C SCL, SPI SS,P1[7]  
AI, I2C SDA, SPI MISO,P1[5]  
AI, SPI CLK,P1[3]  
P1[6], AI  
P1[4] , AI, EXTCLK  
P1[2 ], AI  
[13]  
2
P1[1] ISSP CLK , I C SCL, SPI  
MOSI  
8
Power  
V
Ground  
USB D+  
USB D-  
Supply  
SS  
9
I/O  
I/O  
I
I
D+  
D-  
10  
11  
12  
Power  
V
DD  
[13]  
2
IOHR  
I
P1[0] ISSP DATA , I C SDA, SPI  
[14]  
CLK  
13  
14  
IOHR  
IOHR  
I
I
P1[2]  
P1[4] Optional external clock input  
(EXTCLK)  
15  
16  
IOHR  
I
P1[6]  
RESET INPUT  
XRES Active high external reset with  
internal pull-down  
17  
18  
19  
20  
21  
22  
23  
24  
CP  
IOH  
IOH  
IOH  
IOH  
IOH  
IOH  
IOH  
IOH  
I
I
I
I
I
I
I
I
P0[0]  
P0[2]  
P0[4]  
P0[6]  
P0[7]  
P0[5]  
P0[3] Integrating input  
P0[1] Integrating input  
Power  
V
Center pad must be connected  
to Ground  
SS  
LEGEND I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output  
Notes  
11. 20 GPIOs = 15 pins for capacitive sensing + 2 pins for I2C + 2 pins for USB + 1 pin for modulation capacitor.  
12. The center pad (CP) on the QFN package must be connected to ground (V ) for best mechanical, thermal, and electrical performance. If not connected to ground,  
SS  
it must be electrically floated and not connected to any other signal.  
13. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives  
resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive  
resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use  
alternate pins if you encounter issues.  
14. Alternate SPI clock.  
Document Number: 001-54459 Rev. *T  
Page 11 of 51  
CY8C20XX6A/S  
30-ball WLCSP (24 Sensing Inputs) [15]  
Table 4. Pin Definitions – CY8C20766A, CY8C20746A 30-ball WLCSP  
Type  
Pin  
Name  
Description  
No.  
Digital Analog  
A1  
A2  
A3  
A4  
A5  
B1  
B2  
B3  
B4  
B5  
C1  
C2  
C3  
C4  
C5  
D1  
D2  
D3  
D4  
D5  
E1  
IOH  
IOH  
I
I
P0[2]  
P0[6]  
Figure 5. CY8C20766A 30-ball WLCSP  
Bottom View  
Power  
V
Supply voltage  
5
4
3
2
1
DD  
IOH  
I/O  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
P0[1] Integrating Input  
A
B
C
D
E
F
P2[7]  
I/O  
P2[6]  
IOH  
IOH  
IOH  
I/O  
P0[0]  
P0[4]  
P0[3] Integrating Input  
P2[5] Crystal Output (Xout)  
I/O  
P2[2]  
I/O  
P2[4]  
IOH  
IOH  
I/O  
P0[7]  
P0[5]  
Top View  
P2[3] Crystal Input (Xin)  
1
2
3
4
5
I/O  
P2[0]  
P3[0]  
P3[1]  
P3[3]  
P2[1]  
I/O  
A
B
I/O  
I/O  
I/O  
C
Input  
XRES Active high external reset with  
internal pull-down  
D
E
E2  
E3  
IOHR  
IOHR  
I
I
P1[6]  
P1[4] Optional external clock input  
(EXT CLK)  
2
E4  
E5  
F1  
F2  
IOHR  
IOHR  
IOHR  
IOHR  
I
I
I
I
P1[7] I C SCL, SPI SS  
F
2
P1[5] I C SDA, SPI MISO  
P1[2]  
[16]  
2
P1[0] ISSP DATA , I C SDA, SPI  
[17]  
CLK  
VSS  
F3  
F4  
Power  
Supply ground  
[16]  
2
IOHR  
I
I
P1[1] ISSP CLK , I C SCL, SPI  
MOSI  
F5  
IOHR  
P1[3] SPI CLK  
Notes  
15. 27 GPIOs = 24 pins for capacitive sensing + 2 pins for I2C + 1 pin for modulation capacitor.  
16. On power-up , the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives  
resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive  
resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use  
alternate pins if you encounter issues.  
17. Alternate SPI clock.  
Document Number: 001-54459 Rev. *T  
Page 12 of 51  
CY8C20XX6A/S  
32-pin QFN (25 Sensing Inputs) [18]  
[19]  
Table 5. Pin Definitions – CY8C20436A, CY8C20446A, CY8C20446AS, CY8C20466A, CY8C20466AS  
Type  
Figure 6. CY8C20436A, CY8C20446A, CY8C20446AS,  
CY8C20466A, CY8C20466AS  
Pin  
No.  
Name  
Description  
Digital  
Analog  
1
2
IOH  
I/O  
I
I
I
I
I
I
I
I
I
I
I
P0[1] Integrating input  
P2[7]  
3
I/O  
P2[5] Crystal output (XOut)  
P2[3] Crystal input (XIn)  
P2[1]  
4
I/O  
AI, P0[1]  
AI, P2[7]  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
P0[0] , AI  
P2[6] , AI  
P2[4] , AI  
P2[2] , AI  
P2[0] , AI  
P3[2] , AI  
P3[0] , AI  
XRES  
5
I/O  
6
I/O  
P3[3]  
AI, XOut,P2[5]  
AI, XIn,P2[3]  
AI, P2[1]  
QFN  
(Top View)  
7
I/O  
P3[1]  
8
IOHR  
IOHR  
IOHR  
IOHR  
P1[7] I2C SCL, SPI SS  
P1[5] I2C SDA, SPI MISO  
P1[3] SPI CLK.  
AI, P3[3]  
AI, P3[1]  
AI,I2 C SCL, SPI SS,P1[7]  
9
10  
11  
12  
13  
P1[1] ISSP CLK[20], I2C SCL, SPI MOSI.  
Power  
VSS  
Ground connection.  
IOHR  
I
P1[0] ISSP DATA[20], I2C SDA,  
SPI CLK[21]  
14  
15  
IOHR  
IOHR  
I
I
P1[2]  
P1[4] Optional external clock input  
(EXTCLK)  
16  
17  
IOHR  
I
P1[6]  
Input  
XRES Active high external reset with  
internal pull-down  
18  
I/O  
I
P3[0]  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
CP  
I/O  
I/O  
I
I
I
I
I
I
I
I
I
P3[2]  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
I/O  
I/O  
I/O  
IOH  
IOH  
IOH  
IOH  
Power  
VDD  
P0[7]  
P0[5]  
Supply voltage  
IOH  
IOH  
IOH  
I
I
I
P0[3] Integrating input  
Power  
Power  
VSS  
VSS  
Ground connection  
Center pad must be connected to  
ground  
LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.  
Notes  
18. 28 GPIOs = 25 pins for capacitive sensing + 2 pins for I2C + 1 pin for modulation capacitor.  
19. The center pad (CP) on the QFN package must be connected to ground (V ) for best mechanical, thermal, and electrical performance. If not connected to ground,  
SS  
it must be electrically floated and not connected to any other signal.  
20. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives  
resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive  
resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use  
alternate pins if you encounter issues.  
21. Alternate SPI clock.  
Document Number: 001-54459 Rev. *T  
Page 13 of 51  
CY8C20XX6A/S  
32-pin QFN (22 Sensing Inputs (With USB)) [22]  
[23]  
Table 6. Pin Definitions – CY8C20496A  
Type  
Pin  
Figure 7. CY8C20496A  
Name  
Description  
No.  
Digital Analog  
1
2
IOH  
I/O  
I
I
I
I
I
I
I
I
P0[1] Integrating Input  
P2[5] XTAL Out  
3
I/O  
P2[3] XTAL In  
AI  
P
1
,
,
0[ ]  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
P0[0] , AI  
P2[6] , AI  
P2[4] , AI  
P2[2] , AI  
P2[0] , AI  
P3[2] , AI  
P3[0] , AI  
XRES  
4
I/O  
P2[1]  
XTAL OUT P2 5  
[ ]  
P1[7] I2C SCL, SPI SS  
P1[5] I2C SDA, SPI MISO  
P1[3] SPI CLK  
XTAL IN P2 3  
,
,
,
,
[ ]  
[ ]  
7]  
1[  
5
1[ ]  
5
IOHR  
IOHR  
IOHR  
IOHR  
AI P2 1  
QFN  
(Top View)  
6
P
P
I2C SCL, SPI SS  
I2C SDA, SPI MISO  
7
SPI CLK P1  
]
[3  
,
[24]  
ISSP CLK, I2C SCL, SPI MOSI,P1 1  
8
P1[1] ISSP CLK[24], I2C SCL, SPI MOSI  
[ ]  
9
Power  
VSS  
D+  
Ground Pin  
USB D+  
10  
11  
12  
13  
I
I
D-  
USB D-  
Power  
VDD  
Power pin  
IOHR  
I
P1[0] ISSP DATA[24], I2C SDA, SPI  
CLKI[25]  
14  
15  
IOHR  
IOHR  
I
I
P1[2]  
P1[4] Optional external clock input  
(EXTCLK)  
16  
17  
IOHR  
I
P1[6]  
Input  
XRES Active high external reset with  
internal pull-down  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
I/O  
I/O  
I
I
I
I
I
I
I
I
I
I
P3[0]  
P3[2]  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
P0[6]  
I/O  
I/O  
I/O  
I/O  
IOH  
IOH  
IOH  
IOH  
Power  
Power  
VDD  
P0[7]  
P0[5]  
Power Pin  
IOH  
IOH  
IOH  
I
I
I
P0[3] Integrating Input  
VSS Ground Pin  
LEGEND A = Analog, I = Input, O = Output, OH = 5 mA High Output Drive, R = Regulated Output.  
Notes  
22. 27 GPIOs = 22 pins for capacitive sensing + 2 pins for I2C + 2 pins for USB + 1 pin for modulation capacitor.  
23. The center pad (CP) on the QFN package must be connected to ground (V ) for best mechanical, thermal, and electrical performance. If not connected to ground,  
SS  
it must be electrically floated and not connected to any other signal.  
24. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives  
resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive  
resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use  
alternate pins if you encounter issues.  
25. Alternate SPI clock.  
Document Number: 001-54459 Rev. *T  
Page 14 of 51  
CY8C20XX6A/S  
48-pin SSOP (31 Sensing Inputs) [26]  
Table 7. Pin Definitions – CY8C20536A, CY8C20546A, and CY8C20566A  
[27]  
Pin  
No.  
Figure 8. CY8C20536A, CY8C20546A, and CY8C20566A  
Digital Analog Name  
Description  
1
IOH  
IOH  
IOH  
IOH  
I/O  
I
I
I
I
I
I
I
I
P0[7]  
P0[5]  
P0[3]  
P0[1]  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
NC  
AI,P0[7]  
AI,P0[5]  
AI, P0[3]  
AI P0[1]  
AI, P2[7]  
1
2
3
4
5
6
VDD  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
2
P0[6] , AI  
P0[4] , AI  
P0[2] , AI  
P0[0] , AI  
P2[6] , AI  
P2[4] , AI  
P2[2], AI  
P2[0], AI  
P3[6], AI  
P3[4], AI  
P3[2], AI  
P3[0] , AI  
XRES  
3
Integrating Input  
4
Integrating Input  
XTALOUT,P2[5]  
XTALIN,P2[3]  
5
7
8
9
AI,P2[1]  
NC  
6
I/O  
XTAL Out  
XTAL In  
NC  
10  
7
I/O  
AI,P4[3]  
AI,P4[1]  
NC  
AI,P3[7]  
AI, P3[5]  
AI, P3[3]  
AI, P3[1]  
NC  
11  
12  
13  
14  
15  
16  
8
I/O  
SSOP  
9
No connection  
No connection  
NC  
10  
NC  
NC  
NC  
11 I/O  
12 I/O  
13  
I
I
P4[3]  
P4[1]  
NC  
17  
18  
19  
20  
21  
NC  
NC  
NC  
P1[6] , AI  
NC  
I2 C SCL, SPI SS,P1[7]  
No connection  
I2 C SDA, SPI MISO,P1[5]  
SPI CLK,P1[3]  
ISSP CLK,I2C SCL, SPI MOSI,P1[1 ] 23  
14 I/O  
15 I/O  
16 I/O  
17 I/O  
18  
I
I
I
I
P3[7]  
P3[5]  
P3[3]  
P3[1]  
NC  
[27]  
22  
P1[4] , EXT CLK  
P1[2], AI  
[27, 28]  
VSS  
24  
P1[0],ISSP DATA,I2C SDA,SPI CLK  
No connection  
19  
NC  
No connection  
20 IOHR  
21 IOHR  
22 IOHR  
23 IOHR  
24  
I
I
I
I
P1[7]  
P1[5]  
P1[3]  
P1[1]  
VSS  
I2C SCL, SPI SS  
I2C SDA, SPI MISO  
SPI CLK  
ISSP CLK[27], I2C SCL, SPI MOSI  
Ground Pin  
25 IOHR  
I
P1[0]  
ISSP DATA[27], I2C SDA, SPI  
CLK[28]  
26 IOHR  
27 IOHR  
I
I
P1[2]  
P1[4]  
Optional external clock input  
(EXT CLK)  
28 IOHR  
I
P1[6]  
NC  
29  
30  
31  
32  
No connection  
No connection  
No connection  
No connection  
NC  
NC  
Pin  
No.  
NC  
Digital Analog  
Name  
Description  
33  
34  
35  
NC  
NC  
No connection  
No connection  
41  
42  
43  
I/O  
I/O  
I/O  
I
I
I
P2[2]  
P2[4]  
P2[6]  
XRES Active high external reset with  
internal pull-down  
36 I/O  
37 I/O  
38 I/O  
39 I/O  
40 I/O  
I
I
I
I
I
P3[0]  
P3[2]  
P3[4]  
P3[6]  
P2[0]  
44  
45  
46  
47  
48  
IOH  
I
I
I
I
P0[0]  
P0[2]  
P0[4]  
P0[6]  
VDD  
IOH  
IOH  
VREF  
IOH  
Power  
Power Pin  
LEGEND A = Analog, I = Input, O = Output, NC = No Connection, H = 5 mA High Output Drive, R = Regulated Output Option.  
Notes  
26. 34 GPIOs = 31 pins for capacitive sensing + 2 pins for I2C + 1 pin for modulation capacitor.  
27. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives  
resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive  
resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use  
alternate pins if you encounter issues.  
28. Alternate SPI clock.  
Document Number: 001-54459 Rev. *T  
Page 15 of 51  
CY8C20XX6A/S  
48-pin QFN (33 Sensing Inputs) [29]  
[30, 31]  
Table 8. Pin Definitions – CY8C20636A  
Pin  
Figure 9. CY8C20636A  
Digital Analog Name  
Description  
No connection  
No.  
1
NC  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
I
I
I
I
I
I
I
I
I
I
I
P2[7]  
P2[5]  
P2[3]  
P2[1]  
P4[3]  
P4[1]  
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P1[7]  
P1[5]  
NC  
Crystal output (XOut)  
Crystal input (XIn)  
NC  
P2[6] ,AI  
P2[4] A, I  
36  
35  
34  
33  
32  
31  
1
2
3
4
5
AI ,P2[7]  
AI , XOut,P2[5]  
AI ,XIn ,P2[3]  
AI ,P2[1]  
P2[2] ,AI  
P2[0] A, I  
P4[2] ,AI  
P4[0] ,AI  
AI ,P4[3]  
6
QFN  
(Top View)  
AI ,P4[1]  
AI ,P3[7]  
AI ,P3[5]  
AI ,P3[3]  
30  
29  
28  
27  
P3[6] ,AI  
P3[4] ,AI  
P3[2] ,AI  
7
8
9
10  
I/O  
IOHR  
IOHR  
I2C SCL, SPI SS  
I2C SDA, SPI MISO  
No connection  
No connection  
SPI CLK  
ISSP CLK[30], I2C SCL, SPI  
MOSI  
] ,AI  
P3[0  
AI P  
3[1]  
XRES  
26  
25  
11  
12  
AI ,I2 C SCL, SPI SS,P1[7]  
P1[6] ,AI  
NC  
P1[3]  
P1[1]  
IOHR  
IOHR  
I
I
18  
19  
20  
21  
22  
Power  
VSS  
Ground connection  
DNU  
DNU  
VDD  
Power  
IOHR  
Supply voltage  
ISSP DATA[30], I2C SDA, SPI  
CLK[32]  
I
P1[0]  
23  
24  
IOHR  
IOHR  
I
I
P1[2]  
P1[4]  
Optional external clock input  
(EXTCLK)  
25  
26  
IOHR  
I
P1[6]  
Input  
XRES Active high external reset with  
internal pull-down  
27  
28  
29  
I/O  
I/O  
I/O  
I
I
I
P3[0]  
P3[2]  
P3[4]  
Pin  
No.  
Digital Analog  
Name  
Description  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IOH  
IOH  
IOH  
I
I
I
I
I
I
I
I
I
I
P3[6]  
P4[0]  
P4[2]  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
40  
41  
42  
43  
44  
45  
46  
47  
48  
CP  
IOH  
I
P0[6]  
VDD  
NC  
Power  
Supply voltage  
No connection  
No connection  
NC  
IOH  
IOH  
IOH  
I
I
P0[7]  
P0[5]  
P0[3]  
VSS  
P0[1]  
VSS  
I
Power  
I
Integrating input  
Ground connection  
IOH  
Power  
Center pad must be connected to ground  
LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.  
Notes  
29. 36 GPIOs = 33 pins for capacitive sensing + 2 pins for I2C + 1 pin for modulation capacitor.  
30. On power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives  
resistive low for 512 sleep clock cycles and both the pins transition to high impedance state. On reset, after XRES de-asserts, the SDA and the SCL lines drive  
resistive low for 8 sleep clock cycles and transition to high impedance state. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use  
alternate pins if you encounter issues.  
31. The center pad (CP) on the QFN package must be connected to ground (V ) for best mechanical, thermal, and electrical performance. If not connected to ground,  
SS  
it must be electrically floated and not connected to any other signal  
32. Alternate SPI clock.  
Document Number: 001-54459 Rev. *T  
Page 16 of 51  
CY8C20XX6A/S  
48-pin QFN (33 Sensing Inputs (With USB)) [33]  
[34, 35]  
Table 9. Pin Definitions – CY8C20646A, CY8C20646AS, CY8C20666A, CY8C20666AS  
Pin  
Figure 10. CY8C20646A, CY8C20646AS, CY8C20666A,  
CY8C20666AS  
Digital Analog  
Name  
Description  
No.  
1
NC  
No connection  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
I
I
I
I
I
I
I
I
I
I
I
P2[7]  
P2[5]  
P2[3]  
P2[1]  
P4[3]  
P4[1]  
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P1[7]  
P1[5]  
NC  
Crystal output (XOut)  
Crystal input (XIn)  
NC  
P2[6],AI  
P2[4],AI  
36  
35  
34  
33  
32  
31  
1
2
AI , P2[7]  
AI, XOut, P2[5]  
AI, XIn , P2[3]  
AI ,P2[1]  
3
4
5
6
P2[2],AI  
P2[0],AI  
P4[2],AI  
P4[0],AI  
AI , P4[3]  
QFN  
(Top View)  
AI , P4[1]  
AI , P3[7]  
AI, P3[5]  
AI, P3[3]  
30  
29  
28  
27  
P3[6],AI  
P3[4], AI  
P3[2],AI  
7
8
9
10  
I/O  
IOHR  
IOHR  
I2C SCL, SPI SS  
I2C SDA, SPI MISO  
No connection  
No connection  
SPI CLK  
ISSP CLK[34], I2C SCL, SPI MOSI  
Ground connection  
USB D+  
] , AI  
P3[0  
XRES  
P1[6], AI  
AI, P3[1]  
26  
25  
11  
12  
AI,I2 C SCL, SPI SS,P1[7]  
NC  
IOHR  
IOHR  
Power  
I/O  
I/O  
I
I
P1[3]  
P1[1]  
VSS  
D+  
D-  
USB D-  
Power  
IOHR  
VDD  
P1[0]  
Supply voltage  
ISSP DATA[34], I2C SDA, SPI  
CLK[36]  
I
23  
24  
IOHR  
IOHR  
I
I
P1[2]  
P1[4]  
Optional external clock input  
(EXTCLK)  
25  
26  
IOHR  
I
P1[6]  
Input  
XRES Active high external reset with  
internal pull-down  
27  
28  
29  
I/O  
I/O  
I/O  
I
I
I
P3[0]  
P3[2]  
P3[4]  
Pin  
No.  
Digital Analog  
Name  
Description  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
IOH  
IOH  
IOH  
I
I
I
I
I
I
I
I
I
I
P3[6]  
P4[0]  
P4[2]  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
P0[0]  
P0[2]  
P0[4]  
40  
41  
42  
43  
44  
45  
46  
47  
48  
CP  
IOH  
I
P0[6]  
VDD  
NC  
Power  
Supply voltage  
No connection  
No connection  
NC  
IOH  
IOH  
IOH  
I
I
I
P0[7]  
P0[5]  
P0[3]  
VSS  
P0[1]  
VSS  
Integrating input  
Ground connection  
Power  
I
Power  
IOH  
Center pad must be connected to ground  
LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.  
Notes  
33. 38 GPIOs = 33 pins for capacitive sensing + 2 pins for I2C + 2 pins for USB + 1 pin for modulation capacitor.  
34. On Power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives  
resistive low for 512 sleep clock cycles and both the pins transition to High impedance state. On reset, after XRES de- asserts, the SDA and the SCL lines drive  
resistive low for 8 sleep clock cycles and transition to high impedance state. In both cases, a pull-up resistance on these lines combines with the pull-down resistance  
(5.6K ohm) and form a potential divider. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter issues.  
35. The center pad (CP) on the QFN package must be connected to ground (V ) for best mechanical, thermal, and electrical performance. If not connected to ground,  
SS  
it must be electrically floated and not connected to any other signal.  
36. Alternate SPI clock.  
Document Number: 001-54459 Rev. *T  
Page 17 of 51  
CY8C20XX6A/S  
48-pin QFN (OCD) (33 Sensing Inputs) [37]  
The 48-pin QFN part is for the CY8C20066A On-Chip Debug (OCD). Note that this part is only used for in-circuit debugging.  
[38, 39]  
Table 10. Pin Definitions – CY8C20066A  
Pin  
No.  
Figure 11. CY8C20066A  
Digital Analog  
Name  
Description  
1[40]  
2
3
4
5
6
7
8
OCDOE  
P2[7]  
P2[5]  
P2[3]  
P2[1]  
P4[3]  
P4[1]  
P3[7]  
P3[5]  
P3[3]  
P3[1]  
P1[7]  
P1[5]  
CCLK  
HCLK  
P1[3]  
P1[1]  
OCD mode direction pin  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
I
I
I
I
I
I
I
I
I
I
I
Crystal output (XOut)  
Crystal input (XIn)  
OCDO  
P2[6],AI  
P2[4],AI  
36  
35  
34  
33  
32  
31  
1
2
E
A
I
, P2[7]  
AI, XOut, P2[5]  
AI, XIn , P2[3]  
AI ,P2[1]  
3
4
5
6
P2[2],AI  
P2[0],AI  
P4[2],AI  
P4[0],AI  
AI ,P4[3]  
QFN  
(Top View)  
AI , P4[1]  
AI , P3[7]  
30  
29  
28  
27  
9
P3[6],AI  
P3[4] , AI  
P3[2],AI  
P3[0] , AI  
7
8
10  
11  
12  
13  
14[40]  
15[40]  
16  
17  
AI, P3[5]  
9
I/O  
IOHR  
IOHR  
AI, P3[3]  
10  
I2C SCL, SPI SS  
I2C SDA, SPI MISO  
OCD CPU clock output  
OCD high speed clock output  
SPI CLK.  
ISSP CLK[41], I2C SCL, SPI  
MOSI  
AI, P3[1]  
XRES  
P1[6], AI  
26  
25  
11  
12  
AI,I2 C SCL, SPI SS,P1[7]  
IOHR  
IOHR  
I
I
18  
19  
20  
21  
22  
Power  
VSS  
D+  
D-  
VDD  
P1[0]  
Ground connection  
USB D+  
USB D-  
I/O  
I/O  
Power  
IOHR  
Supply voltage  
]
I
ISSP DATA[41 , I2C SDA, SPI  
]
CLK[42  
23  
24  
IOHR  
IOHR  
IOHR  
I
I
I
P1[2]  
P1[4]  
Pin  
No.  
37  
Digital  
Analog  
Name  
Description  
Optional external clock input  
(EXTCLK)  
IOH  
I
P0[0]  
25  
26  
P1[6]  
XRES  
38  
IOH  
IOH  
I
I
P0[2]  
P0[4]  
Input  
Active high external reset with 39  
internal pull-down  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
I
I
I
I
I
I
I
I
I
P3[0]  
P3[2]  
P3[4]  
P3[6]  
P4[0]  
P4[2]  
P2[0]  
P2[2]  
P2[4]  
P2[6]  
40  
41  
IOH  
I
P0[6]  
VDD  
Power  
Supply voltage  
42[40]  
OCDO OCD even data I/O  
OCDE OCD odd data output  
P0[7]  
P0[5]  
P0[3]  
VSS  
43[40]  
44  
45  
46  
47  
48  
CP  
IOH  
IOH  
IOH  
I
I
I
Integrating input  
Ground connection  
Power  
Power  
IOH  
I
P0[1]  
VSS  
Center pad must be connected to  
ground  
LEGEND A = Analog, I = Input, O = Output, NC = No Connection H = 5 mA High Output Drive, R = Regulated Output.  
Notes  
37. 38 GPIOs = 33 pins for capacitive sensing + 2 pins for I2C + 2 pins for USB + 1 pin for modulation capacitor.  
38. This part is available in limited quantities for In-Circuit Debugging during prototype development. It is not available in production volumes.  
39. The center pad (CP) on the QFN package must be connected to ground (V ) for best mechanical, thermal, and electrical performance. If not connected to ground,  
SS  
it must be electrically floated and not connected to any other signal.  
40. This pin (associated with OCD part only) is required for connecting the device to ICE-Cube In-Circuit Emulator for firmware debugging purpose. To know more about  
®
the usage of ICE-Cube, refer to CY3215-DK PSoC IN-CIRCUIT EMULATOR KIT GUIDE.  
41. On Power-up, the SDA(P1[0]) drives a strong high for 256 sleep clock cycles and drives resistive low for the next 256 sleep clock cycles. The SCL(P1[1]) line drives  
resistive low for 512 sleep clock cycles and both the pins transition to High impedance state. On reset, after XRES de- asserts, the SDA and the SCL lines drive  
resistive low for 8 sleep clock cycles and transition to high impedance state. In both cases, a pull-up resistance on these lines combines with the pull-down resistance  
(5.6K ohm) and form a potential divider. Hence, during power-up or reset event, P1[1] and P1[0] may disturb the I2C bus. Use alternate pins if you encounter issues.  
42. Alternate SPI clock.  
Document Number: 001-54459 Rev. *T  
Page 18 of 51  
CY8C20XX6A/S  
Electrical Specifications  
This section presents the DC and AC electrical specifications of the CY8C20XX6A/S PSoC devices. For the latest electrical specifi-  
cations, confirm that you have the most recent datasheet by visiting the web at http://www.cypress.com/psoc.  
Figure 12. Voltage versus CPU Frequency  
5.5V  
1.71V  
750kHz  
3 MHz  
24MHz  
CPU Frequency  
Absolute Maximum Ratings  
Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.  
Table 11. Absolute Maximum Ratings  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
T
Storage temperature  
Higher storage temperatures reduce data  
retention time. Recommended Storage  
Temperature is +25 °C ± 25 °C. Extended  
duration storage temperatures above 85 °C  
degrades reliability.  
–55  
+25  
+125  
°C  
STG  
V
V
V
Supply voltage relative to V  
DC input voltage  
–0.5  
+6.0  
V
V
DD  
SS  
V
V
– 0.5  
V
V
+ 0.5  
IO  
SS  
SS  
DD  
DD  
[43]  
DC voltage applied to tristate  
Maximum current into any port pin –  
Electrostatic discharge voltage  
Latch-up current  
– 0.5  
+ 0.5  
V
IOZ  
I
–25  
+50  
mA  
V
MIO  
ESD  
LU  
Human body model ESD  
2000  
In accordance with JESD78 standard  
200  
mA  
Operating Temperature  
Table 12. Operating Temperature  
Symbol  
Description  
Conditions  
Min  
–40  
0
Typ  
Max  
+85  
70  
Units  
°C  
T
Ambient temperature  
A
T
T
Commercial temperature range  
Operational die temperature  
°C  
C
J
The temperature rise from ambient to  
junction is package specific. Refer the  
Thermal Impedances on page 37. The user  
must limit the power consumption to comply  
with this requirement.  
–40  
+100  
°C  
Note  
43. Port1 pins are hot-swap capable with I/O configured in High-Z mode, and pin input voltage above VDD  
.
Document Number: 001-54459 Rev. *T  
Page 19 of 51  
CY8C20XX6A/S  
DC Chip-Level Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 13. DC Chip-Level Specifications  
Symbol  
[44, 45, 46, 47]  
Description  
Supply voltage  
Conditions  
Min  
Typ  
Max Units  
V
No USB activity. Refer the table “DC  
POR and LVD Specifications” on  
page 25  
1.71  
5.50  
V
DD  
[44, 45, 46, 47]  
DDUSB  
V
Operating voltage  
USB activity, USB regulator enabled  
USB activity, USB regulator bypassed  
4.35  
3.15  
5.25  
3.60  
4.00  
V
V
3.3  
2.88  
I
Supply current, IMO = 24 MHz Conditions are V 3.0 V, T = 25 °C,  
mA  
DD24  
DD12  
DD6  
DD  
A
CPU = 24 MHz. CapSense running at  
12 MHz, no I/O sourcing current  
I
I
Supply current, IMO = 12 MHz Conditions are V 3.0 V, T = 25 °C,  
1.71  
1.16  
2.60  
1.80  
mA  
mA  
DD  
A
CPU = 12 MHz. CapSense running at  
12 MHz, no I/O sourcing current  
Supply current, IMO = 6 MHz Conditions are V 3.0 V, T = 25 °C,  
DD  
A
CPU = 6 MHz. CapSense running at  
6 MHz, no I/O sourcing current  
I
I
I
I
I
I
Average supply current per  
sensor  
One sensor scanned at 10 mS rate  
One sensor scanned at 100 mS rate  
One sensor scanned at 500 mS rate  
250  
25  
A  
A  
A  
A  
A  
A  
DDAVG10  
DDAVG100  
DDAVG500  
Average supply current per  
sensor  
Average supply current per  
sensor  
7
[48, 49, 50, 51, 52, 53]  
Deep sleep current  
V
3.0 V, T = 25 °C, I/O regulator  
0.10  
1.07  
1.64  
1.05  
1.50  
SB0  
SB1  
DD  
A
turned off  
[48, 49, 50, 51, 52, 53]  
[48, 49, 50, 51, 52, 53]  
Standby current with POR,  
LVD and sleep timer  
V
DD  
turned off  
3.0 V, T = 25 °C, I/O regulator  
A
2
Standby current with I C  
Conditions are V = 3.3 V, T = 25 °C  
DD A  
and CPU = 24 MHz  
SBI2C  
enabled  
Notes  
44. When VDD remains in the range from 1.71 V to 1.9 V for more than 50 µs, the slew rate when moving from the 1.71 V to 1.9 V range to greater than 2 V must be  
slower than 1 V/500 µs to avoid triggering POR. The only other restriction on slew rates for any other voltage range or transition is the SRPOWER_UP parameter.  
45. If powering down in standby sleep mode, to properly detect and recover from a VDD brown out condition any of the following actions must be taken:  
a.Bring the device out of sleep before powering down.  
b.Assure that VDD falls below 100 mV before powering back up.  
c.Set the No Buzz bit in the OSC_CR0 register to keep the voltage monitoring circuit powered during sleep.  
d.Increase the buzz rate to assure that the falling edge of VDD is captured. The rate is configured through the PSSDC bits in the SLP_CFG register.  
For the referenced registers, refer to the CY8C20X36 Technical Reference Manual. In deep sleep mode, additional low power voltage monitoring circuitry allows  
V
DD brown out conditions to be detected for edge rates slower than 1V/ms.  
46. For USB mode, the VDD supply for bus-powered application should be limited to 4.35 V–5.35 V. For self-powered application, VDD should be 3.15 V–3.45 V.  
47. For proper CapSense block functionality, if the drop in VDD exceeds 5% of the base VDD, the rate at which VDD drops should not exceed 200 mV/s. Base VDD can  
be between 1.8 V and 5.5 V.  
48. Errata: When the device is put to sleep in Standby or I2C_USB Mode and the bandgap circuit is refreshed less frequently than every 8 ms (default), the device may  
not come out of sleep when a sleep-ending input is received. For more information, see the “Errata” on page 45.  
49. Errata: The I2C block exhibits occasional data and bus corruption errors when the I2C master initiates transactions while the device is in or out of transition of sleep  
mode. For more information, see the “Errata” on page 45.  
50. Errata: When programmable timer 0 is used in “one-shot” mode by setting bit 1 of register 0,B0h (PT0_CFG), and the timer interrupt is used to wake the device from  
sleep, the interrupt service routine (ISR) may be executed twice. For more information, see the “Errata” on page 46.  
51. Errata: When in sleep mode, if a GPIO interrupt happens simultaneously with a Timer0 or Sleep Timer interrupt, the GPIO interrupt may be missed, and the  
corresponding GPIO ISR not run. For more information, see the “Errata” on page 46.  
52. Errata: If an interrupt is posted a short time (within 2.5 CPU cycles) before firmware commands the device to sleep, the interrupt will be missed. For more information,  
see the “Errata” on page 47.  
53. Errata: Device wakes up from sleep when an analog interrupt is trigger. For more information, see the “Errata” on page 47.  
Document Number: 001-54459 Rev. *T  
Page 20 of 51  
CY8C20XX6A/S  
DC GPIO Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and  
–40 °C T 85 °C, 2.4 V to 3.0 V and –40 °C T 85 °C, or 1.71 V to 2.4 V and –40 °C T 85 °C, respectively. Typical  
A
A
A
parameters apply to 5 V and 3.3 V at 25 C and are for design guidance only.  
Table 14. 3.0 V to 5.5 V DC GPIO Specifications  
Symbol  
RPU  
Description  
Pull-up resistor  
Conditions  
Min  
Typ  
5.60  
Max Units  
4
8
k  
VOH1  
VOH2  
VOH3  
High output voltage  
Port 2 or 3 or 4 pins  
IOH < 10 A, maximum of 10 mA source  
current in all I/Os  
VDD – 0.20  
VDD – 0.90  
VDD – 0.20  
V
High output voltage  
Port 2 or 3 or 4 pins  
IOH = 1 mA, maximum of 20 mA source  
current in all I/Os  
V
V
High output voltage  
Port 0 or 1 pins with LDO regulator  
Disabled for port 1  
IOH < 10 A, maximum of 10 mA source  
current in all I/Os  
VOH4  
VOH5  
VOH6  
High output voltage  
IOH = 5 mA, maximum of 20 mA source  
current in all I/Os  
VDD – 0.90  
2.85  
V
V
V
Port 0 or 1 pins with LDO regulator  
Disabled for port 1  
High output voltage  
Port 1 Pins with LDO Regulator Enabled all sourcing 5 mA  
for 3 V out  
IOH < 10 A, VDD > 3.1 V, maximum of 4 I/Os  
3.00 3.30  
High output voltage  
Port 1 pins with LDO regulator enabled for source current in all I/Os  
3 V out  
IOH = 5 mA, VDD > 3.1 V, maximum of 20 mA  
2.20  
VOH7  
VOH8  
VOH9  
VOH10  
VOL  
High output voltage  
IOH <10A, VDD > 2.7 V, maximum of 20 mA  
2.35  
1.90  
1.60  
1.20  
2.50 2.75  
V
V
V
V
V
Port 1 pins with LDO enabled for 2.5 V out source current in all I/Os  
High output voltage  
Port 1 pins with LDO enabled for 2.5 V out source current in all I/Os  
IOH = 2 mA, VDD > 2.7 V, maximum of 20 mA  
High output voltage  
Port 1 pins with LDO enabled for 1.8 V out source current in all I/Os  
IOH <10A, VDD > 2.7 V, maximum of 20 mA  
1.80 2.10  
High output voltage  
Port 1 pins with LDO enabled for 1.8 V out source current in all I/Os  
IOH = 1 mA, VDD > 2.7 V, maximum of 20 mA  
Low output voltage  
IOL = 25 mA, VDD > 3.3 V, maximum of  
0.75  
60 mA sink current on even port pins (for  
example, P0[2] and P1[4]) and 60 mA sink  
current on odd port pins (for example, P0[3]  
and P1[5])  
VIL  
VIH  
VH  
Input low voltage  
2.00  
0.80  
V
V
Input high voltage  
1
7
Input hysteresis voltage  
Input leakage (Absolute Value)  
Pin capacitance  
80  
mV  
A  
pF  
IIL  
0.001  
1.70  
CPIN  
Package and pin dependent  
Temp = 25 °C  
0.50  
VILLVT3.3 Input Low Voltage with low threshold  
enable set, Enable for Port1  
Bit3 of IO_CFG1 set to enable low threshold  
voltage of Port1 input  
0.8  
1.4  
0.8  
1.7  
V
V
V
VIHLVT3.3 Input High Voltage with low threshold  
enable set, Enable for Port1  
Bit3 of IO_CFG1 set to enable low threshold  
voltage of Port1 input  
VILLVT5.5 Input Low Voltage with low threshold  
enable set, Enable for Port1  
Bit3 of IO_CFG1 set to enable low threshold  
voltage of Port1 input  
VIHLVT5.5 Input High Voltage with low threshold  
enable set, Enable for Port1  
Bit3 of IO_CFG1 set to enable low threshold  
voltage of Port1 input  
V
Document Number: 001-54459 Rev. *T  
Page 21 of 51  
CY8C20XX6A/S  
Table 15. 2.4 V to 3.0 V DC GPIO Specifications  
Symbol Description  
Pull-up resistor  
Conditions  
Min  
Typ  
5.60  
Max Units  
R
I
4
8
k  
PU  
V
V
V
High output voltage  
Port 2 or 3 or 4 pins  
< 10 A, maximum of 10 mA source  
current in all I/Os  
V
V
V
– 0.20  
V
OH1  
OH  
DD  
DD  
DD  
High output voltage  
Port 2 or 3 or 4 pins  
I
= 0.2 mA, maximum of 10 mA source  
– 0.40  
– 0.20  
V
V
OH2  
OH3  
OH  
current in all I/Os  
I < 10 A, maximum of 10 mA source  
OH  
current in all I/Os  
High output voltage  
Port 0 or 1 pins with LDO regulator  
Disabled for port 1  
V
High output voltage  
Port 0 or 1 pins with LDO regulator  
Disabled for Port 1  
I
= 2 mA, maximum of 10 mA source  
V
– 0.50  
V
OH4  
OH  
DD  
current in all I/Os  
V
V
V
High output voltage  
I
< 10 A, V > 2.4 V, maximum of  
1.50  
1.80 2.10  
V
V
V
OH5A  
OH6A  
OL  
OH  
DD  
Port 1 pins with LDO enabled for 1.8 V out 20 mA source current in all I/Os  
High output voltage = 1 mA, V > 2.4 V, maximum of 20 mA  
Port 1 pins with LDO enabled for 1.8 V out source current in all I/Os  
I
1.20  
OH  
DD  
Low output voltage  
IOL = 10 mA, maximum of 30 mA sink  
0.75  
current on even port pins (for example,  
P0[2] and P1[4]) and 30 mA sink current on  
odd port pins (for example, P0[3] and P1[5])  
V
V
V
Input low voltage  
1.40  
0.72  
V
V
IL  
IH  
H
Input high voltage  
Input hysteresis voltage  
Input leakage (absolute value)  
Capacitive load on pins  
80  
1
mV  
I
1000 nA  
IL  
C
Package and pin dependent  
Temp = 25 C  
0.50  
1.70  
7
pF  
PIN  
V
V
Input Low Voltage with low threshold  
enable set, Enable for Port1  
Bit3 of IO_CFG1 set to enable low threshold  
voltage of Port1 input  
0.7  
1.2  
V
ILLVT2.5  
IHLVT2.5  
Input High Voltage with low threshold  
enable set, Enable for Port1  
Bit3 of IO_CFG1 set to enable low threshold  
voltage of Port1 input  
V
Table 16. 1.71 V to 2.4 V DC GPIO Specifications  
Symbol Description  
Pull-up resistor  
Conditions  
Min  
Typ  
5.60  
Max  
Units  
k  
R
4
8
PU  
V
V
V
High output voltage  
Port 2 or 3 or 4 pins  
I
= 10 A, maximum of 10 mA V – 0.20  
source current in all I/Os  
V
OH1  
OH  
DD  
High output voltage  
Port 2 or 3 or 4 pins  
I
= 0.5 mA, maximum of 10 mA V – 0.50  
V
V
OH2  
OH3  
OH  
DD  
source current in all I/Os  
I = 100 A, maximum of 10 mA V – 0.20  
OH  
source current in all I/Os  
High output voltage  
Port 0 or 1 pins with LDO regulator  
DD  
Disabled for Port 1  
V
High output voltage  
Port 0 or 1 Pins with LDO Regulator  
Disabled for Port 1  
I
= 2 mA, maximum of 10 mA source V – 0.50  
V
V
OH4  
OL  
OH  
DD  
current in all I/Os  
V
Low output voltage  
I
= 5 mA, maximum of 20 mA sink  
0.40  
OL  
current on even port pins (for example,  
P0[2] and P1[4]) and 30 mA sink  
current on odd port pins (for example,  
P0[3] and P1[5])  
Document Number: 001-54459 Rev. *T  
Page 22 of 51  
CY8C20XX6A/S  
Table 16. 1.71 V to 2.4 V DC GPIO Specifications (continued)  
Symbol Description  
Input low voltage  
Conditions  
Min  
Typ  
Max  
Units  
V
V
0.30 × V  
IL  
IH  
H
DD  
V
V
Input high voltage  
0.65 × V  
V
DD  
Input hysteresis voltage  
Input leakage (absolute value)  
Capacitive load on pins  
80  
1
mV  
nA  
pF  
I
1000  
7
IL  
C
Package and pin dependent  
temp = 25 °C  
0.50  
1.70  
PIN  
Table 17. DC Characteristics – USB Interface  
Symbol  
Description  
USB D+ pull-up resistance  
USB D+ pull-up resistance  
Static output high  
Conditions  
Min  
900  
1425  
2.8  
Typ  
Max  
Units  
R
With idle bus  
1575  
3090  
3.6  
USBI  
USBA  
OHUSB  
OLUSB  
DI  
R
While receiving traffic  
V
V
V
V
V
V
Static output low  
0.3  
V
Differential input sensitivity  
Differential input common mode range  
Single ended receiver threshold  
Transceiver capacitance  
High Z state data line leakage  
PS/2 pull-up resistance  
0.2  
V
0.8  
2.5  
2.0  
V
CM  
0.8  
V
SE  
C
I
50  
pF  
A  
IN  
On D+ or D- line  
–10  
3000  
21.78  
+10  
7000  
22.22  
IO  
R
R
5000  
22.0  
PS2  
EXT  
External USB series resistor  
In series with each USB pin  
DC Analog Mux Bus Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 18. DC Analog Mux Bus Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
800  
800  
Units  
R
Switch resistance to common analog bus –  
SW  
R
Resistance of initialization switch to V  
GND  
SS  
The maximum pin voltage for measuring RSW and RGND is 1.8 V  
DC Low Power Comparator Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 19. DC Comparator Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
V
Low power comparator (LPC) common Maximum voltage limited to V  
mode  
0.0  
1.8  
V
LPC  
DD  
I
LPC supply current  
LPC voltage offset  
10  
3
40  
30  
A  
LPC  
V
mV  
OSLPC  
Document Number: 001-54459 Rev. *T  
Page 23 of 51  
CY8C20XX6A/S  
Comparator User Module Electrical Specifications  
The following table lists the guaranteed maximum and minimum specifications. Unless stated otherwise, the specifications are for the  
entire device voltage and temperature operating range: –40 °C T 85 °C, 1.71 V V 5.5 V.  
A
DD  
Table 20. Comparator User Module Electrical Specifications  
Symbol  
Description  
Conditions  
50 mV overdrive  
Min  
Typ  
70  
Max  
100  
30  
Units  
ns  
t
Comparator response time  
COMP  
Offset  
Valid from 0.2 V to V – 0.2 V  
2.5  
20  
mV  
µA  
DD  
Current  
Average DC current, 50 mV  
overdrive  
80  
Supply voltage > 2 V  
Supply voltage < 2 V  
Power supply rejection ratio  
0
80  
40  
dB  
dB  
V
PSRR  
Power supply rejection ratio  
Input range  
1.5  
ADC Electrical Specifications  
Table 21. ADC User Module Electrical Specifications  
Symbol Description  
Input  
Conditions  
Min  
Typ  
Max  
Units  
V
Input voltage range  
0
VREFADC  
5
V
pF  
IN  
C
R
Input capacitance  
Input resistance  
IIN  
IN  
Equivalent switched cap input  
resistance for 8-, 9-, or 10-bit  
resolution  
1/(500fF × 1/(400fF × 1/(300fF ×  
data clock) data clock) data clock)  
Reference  
V
ADC reference voltage  
1.14  
2.25  
1.26  
6
V
REFADC  
Conversion Rate  
F
Data clock  
Source is chip’s internal main  
oscillator. See AC Chip-Level  
Specifications for accuracy  
MHz  
CLK  
S8  
8-bit sample rate  
10-bit sample rate  
Data clock set to 6 MHz. sample  
rate = 0.001/ (2^Resolution/Data  
Clock)  
23.43  
5.85  
ksps  
ksps  
S10  
Data clock set to 6 MHz. sample  
rate = 0.001/ (2^resolution/data  
clock)  
DC Accuracy  
RES  
Resolution  
Can be set to 8-, 9-, or 10-bit  
8
–1  
–2  
0
10  
+2  
bits  
LSB  
DNL  
Differential nonlinearity  
Integral nonlinearity  
Offset error  
INL  
+2  
LSB  
E
8-bit resolution  
10-bit resolution  
For any resolution  
3.20  
12.80  
19.20  
76.80  
+5  
LSB  
OFFSET  
GAIN  
0
LSB  
E
Gain error  
–5  
%FSR  
Power  
I
Operating current  
2.10  
24  
2.60  
mA  
dB  
dB  
ADC  
PSRR  
Power supply rejection ratio  
PSRR (V > 3.0 V)  
DD  
PSRR (V < 3.0 V)  
30  
DD  
Document Number: 001-54459 Rev. *T  
Page 24 of 51  
CY8C20XX6A/S  
DC POR and LVD Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 22. DC POR and LVD Specifications  
Symbol  
Description  
Conditions  
Min  
1.61  
Typ  
1.66  
2.36  
2.60  
2.82  
2.45  
2.71  
2.92  
3.02  
3.13  
1.90  
1.80  
4.73  
Max  
1.71  
2.41  
2.66  
2.95  
2.51  
2.78  
2.99  
3.09  
3.20  
2.32  
1.84  
4.83  
Units  
V
V
V
V
V
V
V
V
V
V
V
V
1.66 V selected in PSoC Designer  
2.36 V selected in PSoC Designer  
2.60 V selected in PSoC Designer  
2.82 V selected in PSoC Designer  
2.45 V selected in PSoC Designer  
2.71 V selected in PSoC Designer  
2.92 V selected in PSoC Designer  
3.02 V selected in PSoC Designer  
3.13 V selected in PSoC Designer  
1.90 V selected in PSoC Designer  
1.80 V selected in PSoC Designer  
4.73 V selected in PSoC Designer  
V
must be greater than or equal  
DD  
V
POR0  
POR1  
POR2  
POR3  
LVD0  
LVD1  
LVD2  
LVD3  
LVD4  
LVD5  
LVD6  
LVD7  
to 1.71 V during startup, reset  
from the XRES pin, or reset from  
watchdog.  
2.40  
V
[54]  
2.64  
2.85  
2.95  
[55]  
[56]  
3.06  
1.84  
[57]  
1.75  
4.62  
DC Programming Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 23. DC Programming Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
V
Supply voltage for flash write  
operations  
1.71  
5.25  
V
DDIWRITE  
I
Supply current during  
programming or verify  
5
25  
mA  
V
DDP  
V
Input low voltage during  
programming or verify  
See the appropriate DC GPIO  
Specifications on page 21  
V
IL  
ILP  
V
Input high voltage during  
programming or verify  
See the appropriate “DC GPIO  
Specifications” on page 21  
V
V
IHP  
IH  
I
I
Input current when Applying V  
to P1[0] or P1[1] during  
programming or verify  
Driving internal pull-down resistor  
0.2  
mA  
ILP  
ILP  
Input current when applying V  
to P1[0] or P1[1] during  
programming or verify  
Driving internal pull-down resistor  
1.5  
mA  
IHP  
IHP  
V
V
Output low voltage during  
programming or verify  
V
+ 0.75  
V
V
OLP  
SS  
Output high voltage during  
programming or verify  
See  
Specifications on page 21. For  
> 3 V use V in Table 12 on  
appropriate  
DC  
GPIO  
V
V
DD  
OHP  
OH  
V
DD  
OH4  
page 19.  
Flash  
Flash  
Flash write endurance  
Flash data retention  
Erase/write cycles per block  
50,000  
20  
ENPB  
Following maximum Flash write  
cycles; ambient temperature of 55 °C  
Years  
DR  
Notes  
54. Always greater than 50 mV above VPPOR1 voltage for falling supply.  
55. Always greater than 50 mV above VPPOR2 voltage for falling supply.  
56. Always greater than 50 mV above VPPOR3 voltage for falling supply.  
57. Always greater than 50 mV above VPPOR0 voltage for falling supply.  
Document Number: 001-54459 Rev. *T  
Page 25 of 51  
CY8C20XX6A/S  
2
DC I C Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and  
–40 °C T 85 °C, 2.4 V to 3.0 V and –40 °C T 85 °C, or 1.71 V to 2.4 V and –40 °C T 85 °C, respectively. Typical  
A
A
A
parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.  
Table 24. DC I2C Specifications  
Symbol  
Description  
Input low level  
Conditions  
3.1 V V 5.5 V  
Min  
Typ  
Max  
Units  
V
0.25 × V  
V
ILI2C  
DD  
DD  
DD  
DD  
2.5 V V 3.0 V  
0.3 × V  
0.3 × V  
V
V
V
DD  
1.71 V V 2.4 V  
DD  
V
Input high level  
1.71 V V 5.5 V  
0.65 × V  
DD  
IHI2C  
DD  
DC Reference Buffer Specifications  
The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 3.0 V to 5.5 V and  
–40 °C T 85 °C, 2.4 V to 3.0 V and –40 °C T 85 °C, or 1.71 V to 2.4 V and –40 °C T 85 °C, respectively. Typical  
A
A
A
parameters apply to 5 V and 3.3 V at 25 °C and are for design guidance only.  
Table 25. DC Reference Buffer Specifications  
Symbol  
Description  
Conditions  
1.7 V V 5.5 V  
Min  
Typ  
Max  
Units  
V
V
Reference buffer output  
1
1.05  
V
Ref  
DD  
Reference buffer output  
1.7 V V 5.5 V  
1.2  
1.25  
V
RefHi  
DD  
DC IDAC Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 26. DC IDAC Specifications  
Symbol  
IDAC_DNL  
IDAC_INL  
Description  
Differential nonlinearity  
Integral nonlinearity  
Range = 0.5x  
Min  
–4.5  
–5  
Typ  
Max  
+4.5  
+5  
Units  
LSB  
Notes  
LSB  
IDAC_Gain  
(Source)  
6.64  
14.5  
42.7  
91.1  
184.5  
22.46  
47.8  
92.3  
170  
µA DAC setting = 128 dec.  
Not recommended for CapSense  
Range = 1x  
µA  
µA  
applications.  
Range = 2x  
Range = 4x  
µA DAC setting = 128 dec  
µA DAC setting = 128 dec  
Range = 8x  
426.9  
Document Number: 001-54459 Rev. *T  
Page 26 of 51  
CY8C20XX6A/S  
AC Chip-Level Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 27. AC Chip-Level Specifications  
Symbol  
Description  
IMO frequency at 24 MHz Setting  
IMO frequency at 12 MHz setting  
IMO frequency at 6 MHz setting  
CPU frequency  
Conditions  
Min  
22.8  
11.4  
5.7  
0.75  
15  
Typ  
24  
12  
6.0  
Max  
25.2  
12.6  
6.3  
25.20  
50  
Units  
MHz  
MHz  
MHz  
MHz  
kHz  
kHz  
%
F
F
F
F
F
F
V
IMO24  
IMO12  
IMO6  
CPU  
ILO frequency  
32  
32  
50  
50  
32K1  
ILO untrimmed frequency  
Duty cycle of IMO  
13  
82  
32K_U  
DC  
DC  
SR  
40  
60  
IMO  
ILO duty cycle  
40  
60  
%
ILO  
Power supply slew rate  
slew rate during power-up  
DD  
250  
V/ms  
ms  
POWER_UP  
t
t
External reset pulse width at power-up After supply voltage is valid  
1
XRST  
External reset pulse width after  
Applies after part has booted  
10  
s  
XRST2  
[58]  
power-up  
t
t
Startup time of ECO  
N=32  
1
s
OS  
[59]  
6 MHz IMO cycle-to-cycle jitter (RMS)  
0.7  
4.3  
6.7  
ns  
ns  
JIT_IMO  
6 MHz IMO long term N (N = 32)  
cycle-to-cycle jitter (RMS)  
29.3  
6 MHz IMO period jitter (RMS)  
0.7  
0.5  
2.3  
3.3  
5.2  
5.6  
ns  
ns  
ns  
12 MHz IMO cycle-to-cycle jitter (RMS)  
12 MHz IMO long term N (N = 32)  
cycle-to-cycle jitter (RMS)  
12 MHz IMO period jitter (RMS)  
0.4  
1.0  
1.4  
2.6  
8.7  
6.0  
ns  
ns  
ns  
24 MHz IMO cycle-to-cycle jitter (RMS)  
24 MHz IMO long term N (N = 32)  
cycle-to-cycle jitter (RMS)  
24 MHz IMO period jitter (RMS)  
0.6  
4.0  
ns  
Notes  
58. The minimum required XRES pulse length is longer when programming the device (see Table 33 on page 30).  
59. Refer to Cypress Jitter Specifications application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 for more information.  
Document Number: 001-54459 Rev. *T  
Page 27 of 51  
CY8C20XX6A/S  
AC GPIO Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 28. AC GPIO Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
6 MHz for  
Units  
F
GPIO operating frequency  
Normal strong mode Port 0, 1  
0
MHz  
GPIO  
1.71 V <V < 2.40 V  
DD  
0
12 MHz for  
MHz  
ns  
2.40 V < V < 5.50 V  
DD  
t
t
t
t
t
t
Rise time, strong mode, Cload = 50 pF  
Port 2 or 3 or 4 pins  
V
V
V
= 3.0 to 3.6 V, 10% to 90% 15  
80  
80  
50  
80  
50  
70  
RISE23  
RISE23L  
RISE01  
RISE01L  
FALL  
DD  
DD  
DD  
Rise time, strong mode low supply,  
Cload = 50 pF, Port 2 or 3 or 4 pins  
= 1.71 to 3.0 V, 10% to 90% 15  
= 3.0 to 3.6 V, 10% to 90% 10  
ns  
Rise time, strong mode, Cload = 50 pF  
Ports 0 or 1  
ns  
LDO enabled or disabled  
Rise time, strong mode low supply,  
Cload = 50 pF, Ports 0 or 1  
V
= 1.71 to 3.0 V, 10% to 90% 10  
ns  
DD  
LDO enabled or disabled  
Fall time, strong mode, Cload = 50 pF  
all ports  
V
= 3.0 to 3.6 V, 10% to 90% 10  
ns  
DD  
DD  
Fall time, strong mode low supply,  
Cload = 50 pF, all ports  
V
= 1.71 to 3.0 V, 10% to 90% 10  
ns  
FALLL  
Figure 13. GPIO Timing Diagram  
90%  
GPIO Pin  
Output  
Voltage  
10%  
tRISE23  
tRISE01  
tRISE23L  
tRISE01L  
tFALL  
tFALLL  
Document Number: 001-54459 Rev. *T  
Page 28 of 51  
CY8C20XX6A/S  
Table 29. AC Characteristics – USB Data Timings  
Symbol  
Description  
Full speed data rate  
Receiver jitter tolerance  
Receiver jitter tolerance  
FS Driver jitter  
Conditions  
Average bit rate  
Min  
12 – 0.25%  
–18.5  
–9.0  
Typ  
12  
Max  
Units  
t
t
t
t
t
t
12 + 0.25% MHz  
DRATE  
To next transition  
To pair transition  
To next transition  
To pair transition  
To SE0 transition  
18.5  
9
ns  
ns  
ns  
ns  
ns  
JR1  
JR2  
–3.5  
3.5  
4.0  
5
DJ1  
FS Driver jitter  
–4.0  
DJ2  
Source jitter for differential  
transition  
–2.0  
FDEOP  
t
t
t
Source SE0 interval of EOP  
Receiver SE0 interval of EOP  
160.0  
82.0  
175  
ns  
ns  
ns  
FEOPT  
FEOPR  
FST  
Width of SE0 interval during  
differential transition  
14  
Table 30. AC Characteristics – USB Driver  
Symbol  
Description  
Transition rise time  
Conditions  
Min  
4
Typ  
Max  
20  
Units  
ns  
t
t
t
50 pF  
50 pF  
FR  
Transition fall time  
4
20  
ns  
FF  
[60]  
Rise/fall time matching  
Output signal crossover voltage  
90  
1.30  
111  
2.00  
%
FRFM  
V
V
CRS  
AC Comparator Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 31. AC Low Power Comparator Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
t
Comparator response time,  
50 mV overdrive  
50 mV overdrive does not include  
offset voltage.  
100  
ns  
LPC  
AC External Clock Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 32. AC External Clock Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
F
Frequency (external oscillator  
frequency)  
0.75  
25.20  
MHz  
OSCEXT  
High period  
20.60  
20.60  
150  
5300  
ns  
ns  
s  
Low period  
Power-up IMO to switch  
Note  
60. TFRFM is not met under all conditions. There is a corner case at lower supply voltages, such as those under 3.3 V. This condition does not affect USB communications.  
Signal integrity tests show an excellent eye diagram at 3.15 V.  
Document Number: 001-54459 Rev. *T  
Page 29 of 51  
CY8C20XX6A/S  
AC Programming Specifications  
Figure 14. AC Waveform  
SCLK (P1[1])  
TRSCLK  
TFSCLK  
SDATA (P1[0])  
TSSCLK  
THSCLK  
TDSCLK  
The following table lists the guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 33. AC Programming Specifications  
Symbol  
Description  
Rise time of SCLK  
Conditions  
Min  
1
Typ  
Max  
20  
20  
Units  
ns  
t
t
t
t
RSCLK  
Fall time of SCLK  
1
ns  
FSCLK  
SSCLK  
HSCLK  
Data setup time to falling edge of SCLK  
40  
40  
0
ns  
Data hold time from falling edge of SCLK –  
ns  
F
Frequency of SCLK  
8
MHz  
ms  
ms  
ns  
SCLK  
t
t
t
t
t
t
Flash erase time (block)  
Flash block write time  
18  
25  
60  
85  
130  
ERASEB  
WRITE  
DSCLK  
DSCLK3  
DSCLK2  
XRST3  
Data out delay from falling edge of SCLK 3.6 V  
DD  
Data out delay from falling edge of SCLK 3.0 V 3.6  
ns  
DD  
Data out delay from falling edge of SCLK 1.71 V 3.0  
ns  
DD  
External reset pulse width after power-up Required to enter programming  
mode when coming out of sleep  
300  
s  
t
t
t
t
t
XRES pulse length  
300  
0.1  
1
s  
ms  
ms  
ms  
ms  
XRES  
[61]  
[61]  
V
V
stable to wait-and-poll hold off  
stable to XRES assertion delay  
VDDWAIT  
DD  
DD  
14.27  
0.01  
3.20  
VDDXRES  
SDATA high pulse time  
200  
19.60  
POLL  
[61]  
“Key window” time after a V ramp  
acquire event, based on 256 ILO clocks.  
ACQ  
DD  
[61]  
t
“Key window” time after an XRES event,  
based on 8 ILO clocks  
98  
615  
s  
XRESINI  
Note  
61. Valid from 5 to 50 °C. See the spec, CY8C20X66, CY8C20X46, CY8C20X36, CY7C643XX, CY7C604XX, CY8CTST2XX, CY8CTMG2XX, CY8C20X67, CY8C20X47,  
CY8C20X37, Programming Spec for more details.  
Document Number: 001-54459 Rev. *T  
Page 30 of 51  
CY8C20XX6A/S  
2
AC I C Specifications  
The following table lists guaranteed maximum and minimum specifications for the entire voltage and temperature ranges.  
Table 34. AC Characteristics of the I2C SDA and SCL Pins  
Standard Mode  
Fast Mode  
Symbol  
Description  
Units  
Min  
0
Max  
100  
Min  
Max  
400  
f
t
SCL clock frequency  
0
kHz  
µs  
SCL  
Holdtime(repeated)STARTcondition. Afterthisperiod, thefirst  
clock pulse is generated  
4.0  
0.6  
HD;STA  
t
t
t
t
t
t
t
t
LOW period of the SCL clock  
4.7  
4.0  
4.7  
0
1.3  
0.6  
0.6  
0
µs  
µs  
µs  
µs  
ns  
µs  
µs  
ns  
LOW  
HIGH Period of the SCL clock  
HIGH  
Setup time for a repeated START condition  
Data hold time  
SU;STA  
HD;DAT  
SU;DAT  
SU;STO  
BUF  
3.45  
0.90  
[62]  
Data setup time  
250  
4.0  
4.7  
100  
Setup time for STOP condition  
0.6  
1.3  
0
Bus free time between a STOP and START condition  
Pulse width of spikes are suppressed by the input filter  
50  
SP  
Figure 15. Definition for Timing for Fast/Standard Mode on the I2C Bus  
Note  
62. A Fast-Mode I2C-bus device can be used in a standard mode I2C-bus system, but the requirement tSU;DAT 250 ns must then be met. This automatically be the  
case if the device does not stretch the LOW period of the SCL signal. If such device does stretch the LOW period of the SCL signal, it must output the next data bit  
to the SDA line trmax + tSU;DAT = 1000 + 250 = 1250 ns (according to the Standard-Mode I2C-bus specification) before the SCL line is released.  
Document Number: 001-54459 Rev. *T  
Page 31 of 51  
CY8C20XX6A/S  
Table 35. SPI Master AC Specifications  
Symbol  
Description  
Conditions  
Min  
Typ  
Max  
Units  
F
SCLK clock frequency  
V
V
2.4 V  
6
3
MHz  
MHz  
SCLK  
DD  
DD  
< 2.4 V  
DC  
t
SCLK duty cycle  
50  
%
MISO to SCLK setup time  
V
V
2.4 V  
< 2.4 V  
60  
100  
ns  
ns  
SETUP  
DD  
DD  
t
t
t
SCLK to MISO hold time  
SCLK to MOSI valid time  
MOSI high time  
40  
40  
ns  
ns  
ns  
HOLD  
OUT_VAL  
OUT_H  
40  
Figure 16. SPI Master Mode 0 and 2  
SPI Master, modes 0 and 2  
1/FSCLK  
THIGH  
TLOW  
SCLK  
(mode 0)  
SCLK  
(mode 2)  
TSETUP  
THOLD  
MISO  
(input)  
LSB  
MSB  
TOUT_SU  
TOUT_H  
MOSI  
(output)  
Figure 17. SPI Master Mode 1 and 3  
SPI Master, modes 1 and 3  
1/FSCLK  
THIGH  
TLOW  
SCLK  
(mode 1)  
SCLK  
(mode 3)  
TSETUP  
THOLD  
MISO  
(input)  
MSB  
LSB  
TOUT_SU  
TOUT_H  
MOSI  
(output)  
LSB  
MSB  
Document Number: 001-54459 Rev. *T  
Page 32 of 51  
CY8C20XX6A/S  
Table 36. SPI Slave AC Specifications  
Symbol  
Description  
SCLK clock frequency  
SCLK low time  
Conditions  
Min  
Typ  
Max  
4
Units  
MHz  
ns  
F
SCLK  
t
t
t
t
t
t
t
t
t
42  
LOW  
SCLK high time  
42  
ns  
HIGH  
MOSI to SCLK setup time  
SCLK to MOSI hold time  
SS high to MISO valid  
SCLK to MISO valid  
SS high time  
30  
ns  
SETUP  
50  
ns  
HOLD  
153  
125  
ns  
SS_MISO  
SCLK_MISO  
SS_HIGH  
SS_CLK  
CLK_SS  
ns  
50  
ns  
Time from SS low to first SCLK  
Time from last SCLK to SS high  
2/SCLK  
2/SCLK  
ns  
ns  
Figure 18. SPI Slave Mode 0 and 2  
SPI Slave, modes 0 and 2  
TSS_HIGH  
TCLK_SS  
TSS_CLK  
/SS  
1/FSCLK  
THIGH  
TLOW  
SCLK  
(mode 0)  
SCLK  
(mode 2)  
TOUT_H  
TSS_MISO  
MISO  
(output)  
TSETUP  
THOLD  
MOSI  
(input)  
LSB  
MSB  
Figure 19. SPI Slave Mode 1 and 3  
SPI Slave, modes 1 and 3  
TSS_CLK  
TCLK_SS  
/SS  
1/FSCLK  
THIGH  
TLOW  
SCLK  
(mode 1)  
SCLK  
(mode 3)  
TOUT_H  
TSCLK_MISO  
TSS_MISO  
MISO  
(output)  
MSB  
LSB  
TSETUP  
THOLD  
MOSI  
(input)  
MSB  
LSB  
Document Number: 001-54459 Rev. *T  
Page 33 of 51  
CY8C20XX6A/S  
Packaging Information  
This section illustrates the packaging specifications for the CY8C20XX6A/S PSoC device, along with the thermal impedances for each  
package.  
Important Note Emulation tools may require a larger area on the target PCB than the chip’s footprint. For a detailed description of  
the emulation tools’ dimensions, refer to the document titled PSoC Emulator Pod Dimensions at  
http://www.cypress.com/design/MR10161.  
Figure 20. 16-pin QFN (No E-Pad) (3 × 3 × 0.6 mm) LG16A (Sawn) Package Outline, 001-09116  
001-09116 *H  
Figure 21. 24-pin QFN (4 × 4 × 0.55 mm) LQ24A 2.65 × 2.65 E-Pad (Sawn) Package Outline, 001-13937  
001-13937 *E  
Document Number: 001-54459 Rev. *T  
Page 34 of 51  
CY8C20XX6A/S  
Figure 22. 32-pin QFN (5 × 5 × 0.55 mm) LQ32 3.5 × 3.5 E-Pad (Sawn) Package Outline, 001-42168  
001-42168 *E  
Figure 23. 48-pin SSOP (300 Mils) O483 Package Outline, 51-85061  
51-85061 *F  
Document Number: 001-54459 Rev. *T  
Page 35 of 51  
CY8C20XX6A/S  
Figure 24. 48-pin QFN (7 × 7 × 1.0 mm) LT48A 5.1 × 5.1 E-Pad (Sawn) Package Outline, 001-13191  
001-13191 *G  
Figure 25. 48-pin QFN (6 × 6 × 0.6 mm) LQ48A 4.6 × 4.6 E-Pad (Sawn) Package Outline, 001-57280  
001-57280 *E  
Important Notes  
For information on the preferred dimensions for mounting QFN packages, see the following Application Note at  
http://www.amkor.com/products/notes_papers/MLFAppNote.pdf.  
Pinned vias for thermal conduction are not required for the low power PSoC device.  
Document Number: 001-54459 Rev. *T  
Page 36 of 51  
CY8C20XX6A/S  
Thermal Impedances  
Table 37. Thermal Impedances per Package  
[63]  
Package  
Typical JA  
33 C/W  
21 C/W  
20 C/W  
69 C/W  
Typical JC  
16-pin QFN (No Center Pad)  
[64]  
24-pin QFN  
[64]  
32-pin QFN  
48-pin SSOP  
[64]  
48-pin QFN (6 × 6 × 0.6 mm)  
25.20 C/W  
18 C/W  
3.04 C/W  
[64]  
48-pin QFN (7 × 7 × 1.0 mm)  
30-ball WLCSP  
54 C/W  
Capacitance on Crystal Pins  
Table 38. Typical Package Capacitance on Crystal Pins  
Package  
32-pin QFN  
48-pin QFN  
Package Capacitance  
3.2 pF  
3.3 pF  
Solder Reflow Specifications  
Table 39 shows the solder reflow temperature limits that must not be exceeded.  
Table 39. Solder Reflow Specifications  
Package  
Maximum Peak Temperature (TC) Maximum Time above TC – 5 °C  
16-pin QFN  
24-pin QFN  
32-pin QFN  
48-pin SSOP  
260 C  
260 C  
260 C  
260 C  
260 C  
260 C  
260 C  
30 seconds  
30 seconds  
30 seconds  
30 seconds  
30 seconds  
30 seconds  
30 seconds  
48-pin QFN (6 × 6 × 0.6 mm)  
48-pin QFN (7 × 7 × 1.0 mm)  
30-ball WLCSP  
Notes  
63. TJ = TA + Power ×   
.
JA  
64. To achieve the thermal impedance specified for the QFN package, the center thermal pad must be soldered to the PCB ground plane.  
Document Number: 001-54459 Rev. *T  
Page 37 of 51  
CY8C20XX6A/S  
28-pin CY8C29466A-24PXI PDIP PSoC Device Sample  
28-pin CY8C27443A-24PXI PDIP PSoC Device Sample  
PSoC Designer Software CD  
Development Tool Selection  
Software  
PSoC Designer™  
Getting Started Guide  
At the core of the PSoC development software suite is PSoC  
Designer. Utilized by thousands of PSoC developers, this robust  
software has been facilitating PSoC designs for over half a  
decade. PSoC Designer is available free of charge at  
http://www.cypress.com.  
USB 2.0 Cable  
CY3210-PSoCEval1  
The CY3210-PSoCEval1 kit features an evaluation board and  
the MiniProg1 programming unit. The evaluation board includes  
an LCD module, potentiometer, LEDs, and plenty of  
breadboarding space to meet all of your evaluation needs. The  
kit includes:  
PSoC Programmer  
Flexible enough to be used on the bench in development, yet  
suitable for factory programming, PSoC Programmer works  
either as a standalone programming application or it can operate  
directly from PSoC Designer. PSoC Programmer software is  
compatible with both PSoC ICE-Cube In-Circuit Emulator and  
PSoC MiniProg. PSoC Programmer is available free of charge  
at http://www.cypress.com.  
Evaluation Board with LCD Module  
MiniProg Programming Unit  
28-Pin CY8C29466A-24PXI PDIP PSoC Device Sample (2)  
PSoC Designer Software CD  
Getting Started Guide  
Development Kits  
All development kits are sold at the Cypress Online Store.  
USB 2.0 Cable  
CY3215-DK Basic Development Kit  
CY3280-20X66 Universal CapSense Controller  
The CY3215-DK is for prototyping and development with PSoC  
Designer. This kit supports in-circuit emulation and the software  
interface enables users to run, halt, and single step the  
processor and view the content of specific memory locations.  
PSoC Designer supports the advance emulation features also.  
The kit includes:  
The CY3280-20X66 CapSense Controller Kit is designed for  
easy prototyping and debug of CY8C20XX6A CapSense Family  
designs with pre-defined control circuitry and plug-in hardware.  
Programming hardware and an I2C-to-USB bridge are included  
for tuning and data acquisition.  
PSoC Designer Software CD  
The kit includes:  
ICE-Cube In-Circuit Emulator  
CY3280-20X66 CapSense Controller Board  
CY3240-I2USB Bridge  
ICE Flex-Pod for CY8C29X66A Family  
Cat-5 Adapter  
CY3210 MiniProg1 Programmer  
USB 2.0 Retractable Cable  
CY3280-20X66 Kit CD  
Mini-Eval Programming Board  
110 ~ 240 V Power Supply, Euro-Plug Adapter  
iMAGEcraft C Compiler (Registration Required)  
ISSP Cable  
Device Programmers  
All device programmers are purchased from the Cypress Online  
Store.  
USB 2.0 Cable and Blue Cat-5 Cable  
2 CY8C29466A-24PXI 28-PDIP Chip Samples  
CY3216 Modular Programmer  
The CY3216 Modular Programmer kit features a modular  
programmer and the MiniProg1 programming unit. The modular  
programmer includes three programming module cards and  
supports multiple Cypress products. The kit includes:  
Evaluation Tools  
All evaluation tools are sold at the Cypress Online Store.  
CY3210-MiniProg1  
Modular Programmer Base  
Three Programming Module Cards  
MiniProg Programming Unit  
PSoC Designer Software CD  
Getting Started Guide  
The CY3210-MiniProg1 kit enables the user to program PSoC  
devices via the MiniProg1 programming unit. The MiniProg is a  
small, compact prototyping programmer that connects to the PC  
via a provided USB 2.0 cable. The kit includes:  
MiniProg Programming Unit  
MiniEval Socket Programming and Evaluation Board  
USB 2.0 Cable  
Document Number: 001-54459 Rev. *T  
Page 38 of 51  
CY8C20XX6A/S  
CY3207ISSP In-System Serial Programmer (ISSP)  
CY3207 Programmer Unit  
PSoC ISSP Software CD  
The CY3207ISSP is a production programmer. It includes  
protection circuitry and an industrial case that is more robust than  
the MiniProg in a production programming environment.  
Note that CY3207ISSP needs special software and is not  
compatible with PSoC Programmer. The kit includes:  
110 ~ 240 V Power Supply, Euro-Plug Adapter  
USB 2.0 Cable  
Accessories (Emulation and Programming)  
Table 40. Emulation and Programming Accessories  
[65]  
[66]  
[67]  
Part Number  
Pin Package  
Flex-Pod Kit  
Foot Kit  
Adapter  
CY8C20236A-24LKXI  
CY8C20246A-24LKXI  
CY8C20246AS-24LKXI  
CY8C20336A-24LQXI  
CY8C20346A-24LQXI  
CY8C20346AS-24LQXI  
CY8C20396A-24LQXI  
CY8C20436A-24LQXI  
CY8C20446A-24LQXI  
CY8C20446AS-24LQXI  
CY8C20466A-24LQXI  
CY8C20466AS-24LQXI  
CY8C20496A-24LQXI  
CY8C20536A-24PVXI  
CY8C20546A-24PVXI  
CY8C20566A-24PVXI  
16-pin QFN (No E-Pad) CY3250-20246QFN  
16-pin QFN (No E-Pad) CY3250-20246QFN  
16-pin QFN (No E-Pad)  
CY3250-20246QFN-POD  
CY3250-20246QFN-POD  
Not Supported  
See note 64  
See note 67  
24-pin QFN  
24-pin QFN  
24-pin QFN  
24-pin QFN  
32-pin QFN  
32-pin QFN  
32-pin QFN  
32-pin QFN  
32-pin QFN  
32-pin QFN  
48-pin SSOP  
48-pin SSOP  
48-pin SSOP  
CY3250-20346QFN  
CY3250-20346QFN  
CY3250-20346QFN-POD  
CY3250-20346QFN-POD  
Not Supported  
See note 64  
See note 67  
Not Supported  
CY3250-20466QFN  
CY3250-20466QFN  
CY3250-20466QFN-POD  
CY3250-20466QFN-POD  
Not Supported  
See note 64  
See note 67  
CY3250-20466QFN  
CY3250-20466QFN-POD  
Not Supported  
See note 67  
Not Supported  
CY3250-20566  
CY3250-20566  
CY3250-20566  
CY3250-20566-POD  
CY3250-20566-POD  
CY3250-20566-POD  
See note 67  
See note 67  
See note 67  
Third Party Tools  
Several tools have been specially designed by third-party vendors to accompany PSoC devices during development and production.  
Specific details for each of these tools can be found at http://www.cypress.com under Documentation > Evaluation Boards.  
Build a PSoC Emulator into Your Board  
For details on how to emulate your circuit before going to volume production using an on-chip debug (OCD) non-production PSoC  
device, refer Application Note Debugging - Build a PSoC Emulator into Your Board – AN2323.  
Notes  
65. Flex-Pod kit includes a practice flex-pod and a practice PCB, in addition to two flex-pods.  
66. Foot kit includes surface mount feet that can be soldered to the target PCB.  
67. Programming adapter converts non-DIP package to DIP footprint. Specific details and ordering information for each of the adapters can be found at  
http://www.emulation.com.  
Document Number: 001-54459 Rev. *T  
Page 39 of 51  
CY8C20XX6A/S  
Ordering Information  
The following table lists the CY8C20XX6A/S PSoC devices' key package features and ordering codes.  
Table 41. PSoC Device Key Features and Ordering Information  
Flash SRAM CapSense Digital  
XRES  
Pin  
Analog  
Inputs  
Package  
Ordering Code  
USB ADC  
[68]  
(Bytes) (Bytes) Blocks I/O Pins  
16-pin (3 × 3 × 0.6 mm) QFN  
(no E-Pad)  
CY8C20236A-24LKXI  
8 K  
1 K  
1 K  
2 K  
2 K  
2 K  
2 K  
1
1
1
1
1
1
13  
13  
13  
13  
13  
13  
13  
Yes No Yes  
Yes No Yes  
Yes No Yes  
Yes No Yes  
Yes No Yes  
Yes No Yes  
16-pin (3 × 3 × 0.6 mm) QFN  
(no E-Pad) (Tape and Reel)  
CY8C20236A-24LKXIT  
CY8C20246A-24LKXI  
CY8C20246AS-24LKXI  
CY8C20246A-24LKXIT  
CY8C20246AS-24LKXIT  
8 K  
13  
16-pin (3 × 3 × 0.6 mm) QFN  
(no E-Pad)  
16 K  
16 K  
16 K  
16 K  
13  
13  
13  
13  
16-pin (3 × 3 × 0.6 mm) QFN  
(no E-Pad)  
16-pin (3 × 3 × 0.6 mm) QFN  
(no E-Pad) (Tape and Reel)  
16-pin (3 × 3 × 0.6 mm) QFN  
(no E-Pad) (Tape and Reel)  
24-pin (4 × 4 × 0.6 mm) QFN  
CY8C20336A-24LQXI  
CY8C20336A-24LQXIT  
8 K  
8 K  
1 K  
1 K  
1
1
20  
20  
20  
20  
Yes No Yes  
Yes No Yes  
24-pin (4 × 4 × 0.6 mm) QFN  
(Tape and Reel)  
24-pin (4 × 4 × 0.6 mm) QFN  
24-pin (4 × 4 × 0.6 mm) QFN  
CY8C20346A-24LQXI  
CY8C20346AS-24LQXI  
CY8C20346A-24LQXIT  
16 K  
16 K  
16 K  
2 K  
2 K  
2 K  
1
1
1
20  
20  
20  
Yes No Yes  
Yes No Yes  
Yes No Yes  
20  
20  
20  
24-pin (4 × 4 × 0.6 mm) QFN  
(Tape and Reel)  
24-pin (4 × 4 × 0.6 mm) QFN  
(Tape and Reel)  
CY8C20346AS-24LQXIT  
16 K  
2 K  
1
20  
Yes No Yes  
20  
24-pin (4 × 4 × 0.6 mm) QFN  
CY8C20396A-24LQXI  
CY8C20396A-24LQXIT  
16 K  
16 K  
2 K  
2 K  
1
1
19  
19  
19  
19  
Yes Yes Yes  
Yes Yes Yes  
24-pin (4 × 4 × 0.6 mm) QFN  
(Tape and Reel)  
32-pin (5 × 5 × 0.6 mm) QFN  
CY8C20436A-24LQXI  
CY8C20436A-24LQXIT  
8 K  
8 K  
1 K  
1 K  
1
1
28  
28  
28  
28  
Yes No Yes  
Yes No Yes  
32-pin (5 × 5 × 0.6 mm) QFN  
(Tape and Reel)  
32-pin (5 × 5 × 0.6 mm) QFN  
32-pin (5 × 5 × 0.6 mm) QFN  
CY8C20446A-24LQXI  
CY8C20446AS-24LQXI  
CY8C20446A-24LQXIT  
16 K  
16 K  
16 K  
2 K  
2 K  
2 K  
1
1
1
28  
28  
28  
Yes No Yes  
Yes No Yes  
Yes No Yes  
28  
28  
28  
32-pin (5 × 5 × 0.6 mm) QFN  
(Tape and Reel)  
32-pin (5 × 5 × 0.6 mm) QFN  
(Tape and Reel)  
CY8C20446AS-24LQXIT  
16 K  
2 K  
1
28  
Yes No Yes  
28  
32-pin (5 × 5 × 0.6 mm) QFN  
32-pin (5 × 5 × 0.6 mm) QFN  
CY8C20466A-24LQXI  
CY8C20466AS-24LQXI  
CY8C20466A-24LQXIT  
32 K  
32 K  
32 K  
2 K  
2 K  
2 K  
1
1
1
28  
28  
28  
Yes No Yes  
Yes No Yes  
Yes No Yes  
28  
28  
28  
32-pin (5 × 5 × 0.6 mm) QFN  
(Tape and Reel)  
32-pin (5 × 5 × 0.6 mm) QFN  
(Tape and Reel)  
CY8C20466AS-24LQXIT  
32 K  
2 K  
1
28  
Yes No Yes  
28  
32-pin (5 × 5 × 0.6 mm) QFN  
CY8C20496A-24LQXI  
CY8C20496A-24LQXIT  
16 K  
16 K  
2 K  
2 K  
1
1
25  
25  
Yes Yes Yes  
Yes Yes Yes  
25  
25  
32-pin (5 × 5 × 0.6 mm) QFN  
(Tape and Reel)  
Document Number: 001-54459 Rev. *T  
Page 40 of 51  
CY8C20XX6A/S  
Table 41. PSoC Device Key Features and Ordering Information (continued)  
Flash SRAM CapSense Digital  
(Bytes) (Bytes) Blocks I/O Pins  
XRES  
Pin  
Analog  
Inputs  
Package  
Ordering Code  
USB ADC  
[68]  
[69]  
[69]  
48-pin SSOP  
CY8C20536A-24PVXI  
8 K  
8 K  
1 K  
1 K  
2 K  
2 K  
2 K  
2 K  
1 K  
1 K  
1
1
1
1
1
1
1
1
34  
34  
34  
34  
34  
34  
36  
36  
Yes No Yes  
Yes No Yes  
Yes No Yes  
Yes No Yes  
Yes No Yes  
Yes No Yes  
Yes No Yes  
Yes No Yes  
34  
[69]  
[69]  
[69]  
[69]  
[69]  
[69]  
48-pin SSOP (Tape and Reel)  
CY8C20536A-24PVXIT  
34  
[69]  
[69]  
48-pin SSOP  
CY8C20546A-24PVXI  
16 K  
16 K  
32 K  
32 K  
8 K  
34  
48-pin SSOP (Tape and Reel)  
CY8C20546A-24PVXIT  
34  
[69]  
[69]  
48-pin SSOP  
CY8C20566A-24PVXI  
CY8C20566A-24PVXIT  
CY8C20636A-24LQXI  
CY8C20636A-24LQXIT  
34  
48-pin SSOP (Tape and Reel)  
48-pin (6 × 6 × 0.6 mm) QFN  
34  
36  
48-pin (6 × 6 × 0.6 mm) QFN  
(Tape and Reel)  
8 K  
36  
[69]  
[69]  
48-pin (7 × 7 × 1.0 mm) QFN  
CY8C20636A-24LTXI  
CY8C20636A-24LTXIT  
8 K  
8 K  
1 K  
1 K  
1
1
36  
36  
Yes No Yes  
Yes No Yes  
36  
36  
[69]  
48-pin (7 × 7 × 1.0 mm) QFN  
[69]  
(Tape and Reel)  
48-pin (6 × 6 × 0.6 mm) QFN  
CY8C20646A-24LQXI  
CY8C20646A-24LQXIT  
16 K  
16 K  
2 K  
2 K  
1
1
36  
36  
Yes Yes Yes  
Yes Yes Yes  
36  
36  
48-pin (6 × 6 × 0.6 mm) QFN  
(Tape and Reel)  
[69]  
[69]  
48-pin (7 × 7 × 1.0 mm) QFN  
CY8C20646A-24LTXI  
CY8C20646A-24LTXIT  
16 K  
16 K  
2 K  
2 K  
1
1
36  
36  
Yes Yes Yes  
Yes Yes Yes  
36  
36  
[69]  
48-pin (7 × 7 × 1.0 mm) QFN  
[69]  
(Tape and Reel)  
48-pin (6 × 6 × 0.6 mm) QFN  
CY8C20666A-24LQXI  
CY8C20666A-24LQXIT  
32 K  
32 K  
2 K  
2 K  
1
1
36  
36  
Yes Yes Yes  
Yes Yes Yes  
36  
36  
48-pin (6 × 6 × 0.6 mm) QFN  
(Tape and Reel)  
[69]  
[69]  
[69]  
48-pin (7 × 7 × 1.0 mm) QFN  
48-pin (7 × 7 × 1.0 mm) QFN  
48-pin (7 × 7 × 1.0 mm) QFN  
CY8C20666A-24LTXI  
CY8C20666AS-24LTXI  
CY8C20666A-24LTXIT  
32 K  
32 K  
32 K  
2 K  
2 K  
2 K  
1
1
1
36  
36  
36  
Yes Yes Yes  
Yes Yes Yes  
Yes Yes Yes  
36  
36  
36  
[69]  
[69]  
[69]  
(Tape and Reel)  
[69]  
48-pin (7 × 7 × 1.0 mm) QFN  
(Tape and Reel)  
CY8C20666AS-24LTXIT  
32 K  
32 K  
2 K  
2 K  
1
1
36  
36  
Yes Yes Yes  
Yes Yes Yes  
36  
36  
[69]  
[68]  
48-pin (7 × 7 × 1.0 mm) QFN  
CY8C20066A-24LTXI  
[68]  
(OCD)  
30-ball WLCSP  
CY8C20746A-24FDXC  
16 K  
16 K  
32 K  
32 K  
1 K  
1 K  
2 K  
2 K  
1
1
1
1
27  
27  
27  
27  
Yes No Yes  
Yes No Yes  
Yes No Yes  
Yes No Yes  
27  
27  
27  
30-ball WLCSP (Tape and Reel) CY8C20746A-24FDXCT  
30-ball WLCSP CY8C20766A-24FDXC  
30-ball WLCSP (Tape and Reel) CY8C20766A-24FDXCT  
27  
20  
20  
24-pin (4 × 4 × 0.6 mm) QFN  
CY8C20336AN-24LQXI  
CY8C20336AN-24LQXIT  
8 K  
8 K  
1 K  
1 K  
1
1
20  
20  
Yes No No  
Yes No No  
24-pin (4 × 4 × 0.6 mm) QFN  
(Tape and Reel)  
32-pin (5 × 5 × 0.6 mm) QFN  
CY8C20436AN-24LQXI  
CY8C20436AN-24LQXIT  
8 K  
8 K  
1 K  
1 K  
1
1
28  
28  
28  
28  
Yes No No  
Yes No No  
32-pin (5 × 5 × 0.6 mm) QFN  
(Tape and Reel)  
[69]  
[69]  
48-pin (7 × 7 × 1.0 mm) QFN  
48-pin (7 × 7 × 1.0 mm) QFN  
(Tape and Reel)  
CY8C20636AN-24LTXI  
CY8C20636AN-24LTXIT  
8 K  
8 K  
1 K  
1 K  
1
1
36  
36  
36  
36  
Yes No No  
Yes No No  
[69]  
[69]  
Document Number: 001-54459 Rev. *T  
Page 41 of 51  
CY8C20XX6A/S  
Table 41. PSoC Device Key Features and Ordering Information (continued)  
Flash SRAM CapSense Digital  
(Bytes) (Bytes) Blocks I/O Pins  
XRES  
Pin  
Analog  
Inputs  
Package  
Ordering Code  
USB ADC  
[68]  
16-pin (3 × 3 × 0.6 mm) QFN  
(no E-Pad)  
CY8C20246AS-24LKXI  
16 K  
16 K  
2 K  
2 K  
1
1
13  
13  
13  
Yes No Yes  
Yes No Yes  
16-pin (3 × 3 × 0.6 mm) QFN  
(no E-Pad, Tape and Reel)  
CY8C20246AS-24LKXIT  
13  
24-pin (4 × 4 × 0.6 mm) QFN  
CY8C20346AS-24LQXI  
CY8C20346AS-24LQXIT  
16 K  
16 K  
2 K  
2 K  
1
1
20  
20  
20  
20  
Yes No Yes  
Yes No Yes  
24-pin (4 × 4 × 0.6 mm) QFN  
(Tape and Reel)  
32-pin (5 × 5 × 0.6 mm) QFN  
CY8C20446AS-24LQXI  
CY8C20446AS-24LQXIT  
16 K  
16 K  
2 K  
2 K  
1
1
28  
28  
28  
28  
Yes No Yes  
Yes No Yes  
32-pin (5 × 5 × 0.6 mm) QFN  
(Tape and Reel)  
32-pin (5 × 5 × 0.6 mm) QFN  
CY8C20466AS-24LQXI  
CY8C20466AS-24LQXIT  
32 K  
32 K  
2 K  
2 K  
1
1
28  
28  
28  
28  
Yes No Yes  
Yes No Yes  
32-pin (5 × 5 × 0.6 mm) QFN  
(Tape and Reel)  
48-pin (6 × 6 × 0.6 mm) QFN  
CY8C20666AS-24LQXI  
CY8C20666AS-24LQXIT  
32 K  
32 K  
2 K  
2 K  
1
1
36  
36  
36  
36  
Yes Yes Yes  
Yes Yes Yes  
48-pin (6 × 6 × 0.6 mm) QFN  
(Tape and Reel)  
[69]  
[69]  
48-pin (7 × 7 × 1.0 mm) QFN  
48-pin (7 × 7 × 1.0 mm) QFN  
CY8C20666AS-24LTXI  
CY8C20666AS-24LTXIT  
32 K  
32 K  
2 K  
2 K  
1
1
36  
36  
36  
36  
Yes Yes Yes  
Yes Yes Yes  
[69]  
[69]  
(Tape and Reel)  
48-pin (6 × 6 × 0.6 mm) QFN  
CY8C20646AS-24LQXI  
CY8C20646AS-24LQXIT  
16 K  
16 K  
2 K  
2 K  
1
1
36  
36  
36  
36  
Yes Yes Yes  
Yes Yes Yes  
48-pin (6 × 6 × 0.6 mm) QFN  
(Tape and Reel)  
[69]  
[69]  
48-pin (7 × 7 × 1.0 mm) QFN  
CY8C20646AS-24LTXI  
CY8C20646AS-24LTXIT  
16 K  
16 K  
2 K  
2 K  
1
1
36  
36  
36  
36  
Yes Yes Yes  
Yes Yes Yes  
[69]  
48-pin (7 × 7 × 1.0 mm) QFN  
[69]  
(Tape and Reel)  
Ordering Code Definitions  
CY 20 XX6AX  
8
C
-
24 XX  
X
X
T
Tape and Reel  
Temperature range: X = C or I  
C = Commercial; I = Industrial  
Pb-free  
Package Type: XX = LK or LQ or PV or LT or FD  
LK = 16-pin QFN (no E-Pad)  
LQ = 24-pin QFN, 32-pin QFN, 48-pin (6 × 6 × 0.6 mm) QFN  
PV = 48-pin SSOP  
LT = 48-pin (7 × 7 × 1.0 mm) QFN  
FD = 30-ball WLCSP  
Speed Grade: 24 MHz  
Part Number  
Family Code  
Technology Code: C = CMOS  
Marketing Code: 8 = PSoC  
Company ID: CY = Cypress  
Notes  
68. Dual-function Digital I/O Pins also connect to the common analog mux.  
69. Not Recommended for New Designs.  
Document Number: 001-54459 Rev. *T  
Page 42 of 51  
CY8C20XX6A/S  
Acronyms  
Reference Documents  
Table 42. Acronyms Used in this Document  
Technical reference manual for CY8C20xx6 devices  
Acronym  
AC  
Description  
alternating current  
In-system Serial Programming (ISSP) protocol for 20xx6  
(AN2026C)  
ADC  
API  
CMOS  
CPU  
DAC  
DC  
analog-to-digital converter  
application programming interface  
complementary metal oxide semiconductor  
central processing unit  
digital-to-analog converter  
direct current  
Host Sourced Serial Programming for 20xx6 devices  
(AN59389)  
Document Conventions  
Units of Measure  
EOP  
FSR  
end of packet  
full scale range  
Table 43. Units of Measure  
Symbol  
°C  
dB  
fF  
Unit of Measure  
GPIO  
GUI  
general purpose input/output  
graphical user interface  
inter-integrated circuit  
in-circuit emulator  
digital analog converter current  
internal low speed oscillator  
internal main oscillator  
input/output  
in-system serial programming  
liquid crystal display  
low dropout (regulator)  
least-significant bit  
low voltage detect  
micro-controller unit  
mega instructions per second  
master in slave out  
master out slave in  
degree Celsius  
decibels  
femtofarad  
gram  
2
I C  
ICE  
IDAC  
ILO  
IMO  
I/O  
ISSP  
LCD  
LDO  
LSB  
g
Hz  
KB  
Kbit  
KHz  
Ksps  
k  
MHz  
M  
A  
F  
H  
s  
W  
mA  
ms  
mV  
nA  
nF  
ns  
hertz  
1024 bytes  
1024 bits  
kilohertz  
kilo samples per second  
kilohm  
megahertz  
megaohm  
LVD  
microampere  
microfarad  
microhenry  
microsecond  
microwatt  
milliampere  
millisecond  
millivolt  
nanoampere  
nanofarad  
MCU  
MIPS  
MISO  
MOSI  
MSB  
OCD  
POR  
PPOR  
PSRR  
most-significant bit  
on-chip debugger  
power on reset  
precision power on reset  
power supply rejection ratio  
PWRSYS power system  
®
nanosecond  
nanovolt  
ohm  
PSoC  
SLIMO  
SRAM  
SNR  
QFN  
SCL  
SDA  
SDATA  
SPI  
SS  
SSOP  
TC  
Programmable System-on-Chip  
nV  
W
slow internal main oscillator  
static random access memory  
signal to noise ratio  
quad flat no-lead  
serial I2C clock  
serial I2C data  
serial ISSP data  
serial peripheral interface  
slave select  
shrink small outline package  
test controller  
pA  
pF  
pp  
ppm  
ps  
sps  
s
V
picoampere  
picofarad  
peak-to-peak  
parts per million  
picosecond  
samples per second  
sigma: one standard deviation  
volt  
W
watt  
USB  
universal serial bus  
USB Data+  
USB Data–  
wafer level chip scale package  
crystal  
USB D+  
USB D–  
WLCSP  
XTAL  
Document Number: 001-54459 Rev. *T  
Page 43 of 51  
CY8C20XX6A/S  
Numeric Naming  
Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or ‘3Ah’).  
Hexadecimal numbers may also be represented by a ‘0x’ prefix, the C coding convention. Binary numbers have an appended  
lowercase ‘b’ (for example, 01010100b’ or ‘01000011b’). Numbers not indicated by an ‘h’, ‘b’, or 0x are decimal.  
Glossary  
Crosspoint connection  
Differential non-linearity  
Connection between any GPIO combination via analog multiplexer bus.  
Ideally, any two adjacent digital codes correspond to output analog voltages that are exactly  
one LSB apart. Differential non-linearity is a measure of the worst case deviation from the  
ideal 1 LSB step.  
Hold time  
Hold time is the time following a clock event during which the data input to a latch or flip-flop  
must remain stable in order to guarantee that the latched data is correct.  
2
I C  
It is a serial multi-master bus used to connect low speed peripherals to MCU.  
Integral nonlinearity  
It is a term describing the maximum deviation between the ideal output of a DAC/ADC and  
the actual output level.  
Latch-up current  
Current at which the latch-up test is conducted according to JESD78 standard (at 125  
degree Celsius)  
Power supply rejection ratio (PSRR)  
The PSRR is defined as the ratio of the change in supply voltage to the corresponding  
change in output voltage of the device.  
Scan  
The conversion of all sensor capacitances to digital values.  
Setup time  
Period required to prepare a device, machine, process, or system for it to be ready to  
function.  
Signal-to-noise ratio  
SPI  
The ratio between a capacitive finger signal and system noise.  
Serial peripheral interface is a synchronous serial data link standard.  
Document Number: 001-54459 Rev. *T  
Page 44 of 51  
CY8C20XX6A/S  
Errata  
®
This section describes the errata for the PSoC CY8C20x36A/46A/66A/96A/46AS/66AS/36H/46H families. Details include errata  
trigger conditions, scope of impact, available workarounds, and silicon revision applicability. Contact your local Cypress Sales Repre-  
sentative if you have questions.  
Qualification Status  
Product Status: Production released.  
Errata Summary  
The following Errata items apply to CY8C20x36A/46A/66A/96A/46AS/66AS/36H/46H families.  
1. Wakeup from sleep may intermittently fail  
Problem Definition  
When the device is put to sleep in Standby or I2C_USB Mode and the bandgap circuit is refreshed less frequently than every 8 ms  
(default), the device may not come out of sleep when a sleep-ending input is received.  
Parameters Affected  
None  
Trigger Condition(S)  
By default, when the device is in the Standby or I2C_USB sleep modes, the bandgap circuit is powered-up approximately every 8  
ms to facilitate detection of POR or LVD events. This interval can be lengthened or the periodic power-up disabled to reduce sleep  
current by setting the ALT_BUZZ bits in the SLP_CFG2 register or the Disable Buzz bit in the OSC_CR0 register respectively. If  
the bandgap circuit refresh interval is set longer than the default 8 ms, the device may fail to wakeup from sleep and enter a locked  
up state that can only be recovered by Watchdog Reset, XRES, or POR.  
Scope of Impact  
The trigger conditions outlined above may cause the device to never wakeup.  
Workaround  
Prior to entering Standby or I2C_USB sleep modes, do not lengthen or disable the bandgap refresh interval by manipulating the  
ALT_BUZZ bits in the SLP_CFG2 register or the Disable Buzz bit in the OSC_CR0 register respectively.  
Fix Status  
This issue will not be corrected in the next silicon revision.  
2. I2C Errors  
Problem Definition  
2
2
The I C block exhibits occasional data and bus corruption errors when the I C master initiates transactions while the device is  
transitioning in to or out of sleep mode.  
Parameters Affected  
2
2
2
Affects reliability of I C communication to device, and between I C master and third party I C slaves.  
Trigger Condition(S)  
Triggered by transitions into and out of the device’s sleep mode.  
Scope of Impact  
2
Data errors result in incorrect data reported to the I C master, or incorrect data received from the master by the device. Bus  
2
2
corruption errors can corrupt data in transactions between the I C master and third party I C slaves.  
Workaround  
2
Firmware workarounds are available in firmware. Generally the workaround consists of disconnecting the I C block from the bus  
2
prior to going to sleep modes. I C transactions during sleep are supported by a protocol in which the master wakes the device prior  
2
to the I C transaction.  
Fix Status  
To be fixed in future silicon.  
Document Number: 001-54459 Rev. *T  
Page 45 of 51  
CY8C20XX6A/S  
Changes  
None  
3. DoubleTimer0 ISR  
Problem Definition  
When programmable timer 0 is used in “one-shot” mode by setting bit 1 of register 0,B0h (PT0_CFG), and the timer interrupt is  
used to wake the device from sleep, the interrupt service routine (ISR) may be executed twice.  
Parameters Affected  
No datasheet parameters are affected.  
Trigger Condition(S)  
Triggered by enabling one-shot mode in the timer, and using the timer to wake from sleep mode.  
Scope of Impact  
The ISR may be executed twice.  
Workaround  
In the ISR, firmware should clear the one-shot bit with a statement such as “and reg[B0h], FDh”  
Fix Status  
Will not be fixed  
Changes  
None  
4. Missed GPIO Interrupt  
Problem Definition  
When in sleep mode, if a GPIO interrupt happens simultaneously with a Timer0 or Sleep Timer interrupt, the GPIO interrupt may  
be missed, and the corresponding GPIO ISR not run.  
Parameters Affected  
No datasheet parameters are affected.  
Trigger Condition(S)  
Triggered by enabling sleep mode, then having GPIO interrupt occur simultaneously with a Timer 0 or Sleep Timer interrupt.  
Scope of Impact  
The GPIO interrupt service routine will not be run.  
Workaround  
The system should be architected such that a missed GPIO interrupt may be detected. For example, if a GPIO is used to wake  
the system to perform some function, the system should detect if the function is not performed, and re-issue the GPIO interrupt.  
Alternatively, if a GPIO interrupt is required to wake the system, then firmware should disable the Sleep Timer and Timer0.  
Alternatively, the ISR’s for Sleep Timer and Timer0 should manually check the state of the GPIO to determine if the host system  
has attempted to generate a GPIO interrupt.  
Fix Status  
Will not be fixed  
Changes  
None  
Document Number: 001-54459 Rev. *T  
Page 46 of 51  
CY8C20XX6A/S  
5. Missed Interrupt During Transition to Sleep  
Problem Definition  
If an interrupt is posted a short time (within 2.5 CPU cycles) before firmware commands the device to sleep, the interrupt will be  
missed.  
Parameters Affected  
No datasheet parameters are affected.  
Trigger Condition(S)  
Triggered by enabling sleep mode just prior to an interrupt.  
Scope of Impact  
The relevant interrupt service routine will not be run.  
Workaround  
None.  
Fix Status  
Will not be fixed  
Changes  
None  
6. Wakeup from sleep with analog interrupt  
Problem Definition  
Device wakes up from sleep when an analog interrupt is trigger  
Parameters Affected  
No datasheet parameters are affected.  
Trigger Condition(S)  
Triggered by enabling analog interrupt during sleep mode when device operating temperature is 50 °C or above  
Scope of Impact  
Device unexpectedly wakes up from sleep  
Workaround  
Disable the analog interrupt before entering sleep and turn it back on upon wakeup.  
Fix Status  
Will not be fixed  
Changes  
None  
Document Number: 001-54459 Rev. *T  
Page 47 of 51  
CY8C20XX6A/S  
Document History Page  
DocumentTitle:CY8C20XX6A/S, 1.8VProgrammableCapSense® ControllerwithSmartSenseAuto-tuning1–33Buttons,  
0–6 Sliders  
Document Number: 001-54459  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
**  
2737924  
2764528  
SNV  
07/14/09  
New silicon and document  
*A  
MATT  
09/16/2009 Updated AC Chip Level Specifications  
Updated ADC User Module Electrical Specifications table  
Added Note 5.  
Added SR  
parameter.  
POWER_UP  
Updated Ordering information.  
Updated Capacitance on Crystal Pins  
*B  
*C  
2803229  
2846083  
VZD  
11/10/09  
Added “Contents” on page 3. Added Note 6 on page 20. Edited Features section  
to include reference to Incremental ADC.  
DST /  
KEJO  
01/12/2010 Updated “AC Programming Specifications” on page 30 per CDT 56531.  
Updated Idd typical values in “DC Chip-Level Specifications” on page 20.  
Added 30-pin WLCSP pin and package details.  
Added Contents on page 2.  
*D  
2935141 KEJO/ISW 03/05/2010 Updated “Features” on page 1. Added “SmartSense” on page 4.  
®
/ SSHH  
Updated “PSoC Functional Overview” on page 4.  
Removed SNR statement regarding on page 4 (Analog Multiplexer section).  
Updated “” on page 7 with the I2C enhanced slave interface point.  
Removed references to “system level” in “Designing with PSoC Designer” on  
page 8.  
Changed TC CLK and TC DATA to ISSP CLK and ISSP DATA respectively in  
all the pinouts.  
Modified notes in Pinouts.  
Updated 30-ball pin diagram.  
Removed IMO frequency trim options diagram in “Electrical Specifications” on  
page 19.  
Updated and formatted values in DC and AC specifications.  
Updated Ordering information table.  
Updated 48-pin SSOP package diagram. Added 30-Ball WLCSP package spec  
001-50669.  
Removed AC Analog Mux Bus Specifications section.  
Added SPI Master and Slave mode diagrams.  
Modified Definition for Timing for Fast/Standard Mode on the I2C Bus on page  
28.  
Updated “Thermal Impedances” on page 37.  
Combined Development Tools with “Development Tool Selection” on page 38.  
Removed references to “system level”.  
Updated “Evaluation Tools” on page 38.  
Added “Ordering Code Definitions” on page 42.  
Updated “Acronyms” on page 43.  
Added Glossary and “Reference Documents” on page 43.  
Changed datasheet status from Preliminary to Final  
*E  
*F  
3043291  
3071632  
SAAC  
09/30/10  
10/26/10  
Change: Added the line “Supports SmartSense” in the “Low power CapSense®  
block” bullet in the Features section.  
Impact: Helps to know that this part has the feature of Auto Tuning.  
Change: Replaced pod MPNs.  
Areas affected: Foot kit column of table 37.  
Change: Template and Styles update.  
Areas affected: Entire datasheet.  
Impact: Datasheet adheres to Cypress standards.  
JPX  
In Table 36 on page 33, modified t  
and t  
min values to 42. Updated  
HIGH  
LOW  
t
min value to 50; removed max value.  
SS_HIGH  
Document Number: 001-54459 Rev. *T  
Page 48 of 51  
CY8C20XX6A/S  
Document History Page (continued)  
DocumentTitle:CY8C20XX6A/S, 1.8VProgrammableCapSense® ControllerwithSmartSenseAuto-tuning1–33Buttons,  
0–6 Sliders  
Document Number: 001-54459  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
*G  
3247491 TTO/JPM/  
ARVM / BVI  
06/16/11  
Add 4 new parameters to Table 14 on page 21, and 2 new parameters to Table  
15 on page 22.  
Changed Typ values for the following parameters: I  
I
I
V
DD24, DD12, DD6, OSLPC.  
Added footnote # 40 and referred it to pin numbers 1, 14, 15, 42, and 43 under  
Table 10 on page 18.  
Added footnote # 43 and referred it to parameter V  
under Table 11 on page 19.  
IOZ  
Added “t  
” parameter to Table 27 on page 27.  
JIT_IMO  
Included footnote # 59 and added reference to t  
27 on page 27.  
specification under Table  
JIT_IMO  
Updated Solder Reflow Specifications on page 37 as per specs 25-00090 and  
25-00103.  
I
Max value changed from 0.5 µA to 1.1 µA in Table 13 on page 20.  
SB0  
Added Table 26 on page 26.  
Updated part numbers for “SmartSense_EMC” enabled CapSense controller.  
*H  
*I  
3367332  
3371807  
BTK /  
SSHH /  
JPM/TTO/  
VMAD  
09/09/11  
Added parameter “t  
Added parameter “I  
to Table 27 on page 27.  
” to Table 13 on page 20.  
OS  
SBI2C  
Added Table 24 on page 26.  
Added Table 25 on page 26.  
Replaced text “Port 2 or 3 pins” with “Port 2 or 3 or 4 pins” in Table 14, Table 15,  
Table 16, and Table 28.  
MATT  
09/30/2011 Updated Packaging Information (Updated the next revision package outline for  
Figure 20, Figure 23 and included a new package outline Figure 25).  
Updated Ordering Information (Added new part numbers  
CY8C20636A-24LQXI, CY8C20636A-24LQXIT, CY8C20646A-24LQXI,  
CY8C20646A-24LQXIT, CY8C20666A-24LQXI, CY8C20666A-24LQXIT,  
CY8C20666AS-24LQXI, CY8C20666AS-24LQXIT, CY8C20646AS-24LQXI  
and CY8C20646AS-24LQXIT).  
Updated in new template.  
*J  
3401666  
3414479  
MATT  
KPOL  
10/11/2011 No technical updates.  
*K  
10/19/2011 Removed clock stretching feature on page 1.  
2
Removed I C enhanced slave interface point from Additional System  
Resources.  
*L  
3452591 BVI / UDYG 12/01/2011 Changed document title.  
Updated DC Chip-Level Specifications table.  
Updated Solder Reflow Specifications section.  
Updated Getting Started and Designing with PSoC Designer sections.  
Included Development Tools section.  
Updated Software under Development Tool Selection section.  
*M  
*N  
3473330  
3587003  
ANBA  
DST  
12/22/2011 Updated DC Chip-Level Specifications under Electrical Specifications (updated  
maximum value of I  
parameter from 1.1 µA to 1.05 µA).  
SB0  
04/16/2012 Added note for WLCSP package on page 1.  
Added Sensing inputs to pin table captions.  
Updated Conditions for DC Reference Buffer Specifications.  
Updated t  
Added note for t  
description in AC Chip-Level Specifications.  
JIT_IMO  
, t  
, t  
, and t  
specs.  
VDDWAIT VDDXRES ACQ  
XRESINI  
Removed WLCSP package outline.  
*O  
3638569  
BVI  
06/06/2012 Updated F  
parameter in the Table 36, “SPI Slave AC Specifications,” on  
SCLK  
page 33.  
Changed t  
page 32.  
to t  
in Table 35, “SPI Master AC Specifications,” on  
OUT_H  
OUT_HIGH  
Updated package diagram 001-57280 to *C revision.  
Document Number: 001-54459 Rev. *T  
Page 49 of 51  
CY8C20XX6A/S  
Document History Page (continued)  
DocumentTitle:CY8C20XX6A/S, 1.8VProgrammableCapSense® ControllerwithSmartSenseAuto-tuning1–33Buttons,  
0–6 Sliders  
Document Number: 001-54459  
Orig. of  
Change  
Submission  
Date  
Revision  
ECN  
Description of Change  
10/11/2012 Updated min value of parameter F (from 19 to 15) in the Table 27, “AC  
32K1  
*P  
3774062  
UBU  
Chip-Level Specifications,” on page 27.  
Updated Packaging Information for 001-09116 (*F to *G), 001-13937 (*D to *E),  
51-85061 (*E to *F), 001-13191 (*F to *G), and 001-57280 (*C to *D).  
*Q  
*R  
3807186  
3836626  
PKS  
15/11/2012 No content update; appended to EROS document.  
SRLI  
01/03/2013 Updated Document Title to read as “CY8C20XX6A/S, 1.8 V Programmable  
®
CapSense Controller with SmartSense™ Auto-tuning 1–33 Buttons, 0–6  
Sliders”.  
Updated Features.  
®
Updated PSoC Functional Overview:  
Replaced “CY8C20X36A/46A/66A/96A/46AS/66AS” with “CY8C20XX6A/S”.  
Updated Getting Started:  
Replaced “CY8C20X36A/46A/66A/96A/46AS/66AS” with “CY8C20XX6A/S”.  
Updated Pinouts:  
Updated 16-pin QFN (10 Sensing Inputs)[3, 4]:  
Replaced “12 Sensing Inputs” with “10 Sensing Inputs” in heading, added Note  
3 only.  
Updated 24-pin QFN (17 Sensing Inputs) [7]:  
Replaced “12 Sensing Inputs” with “17 Sensing Inputs” in heading, added Note  
7 only.  
Updated 24-pin QFN (15 Sensing Inputs (With USB)) [11]:  
Replaced “18 Sensing Inputs” with “15 Sensing Inputs” in heading, added Note  
11 only.  
Updated 30-ball WLCSP (24 Sensing Inputs) [15]:  
Replaced “26 Sensing Inputs” with “24 Sensing Inputs” in heading, added Note  
15 only.  
Updated 32-pin QFN (25 Sensing Inputs) [18]:  
Replaced “27 Sensing Inputs” with “25 Sensing Inputs” in heading, added Note  
18 only.  
updated 32-pin QFN (22 Sensing Inputs (With USB)) [22]:  
Replaced “24 Sensing Inputs” with “22 Sensing Inputs” in heading, added Note  
22 only.  
Updated 48-pin SSOP (31 Sensing Inputs) [26]:  
Replaced “33 Sensing Inputs” with “31 Sensing Inputs” in heading, added Note  
26 only.  
Updated 48-pin QFN (33 Sensing Inputs) [29]:  
Replaced “35 Sensing Inputs” with “33 Sensing Inputs” in heading, added Note  
29 only.  
Updated 48-pin QFN (33 Sensing Inputs (With USB)) [33]:  
Replaced “35 Sensing Inputs” with “33 Sensing Inputs” in heading, added Note  
33 only.  
Updated 48-pin QFN (OCD) (33 Sensing Inputs) [37]:  
Added “33 Sensing Inputs” in heading, added Note 37 only.  
Updated Packaging Information:  
spec 001-42168 – Changed revision from *D to *E.  
spec 001-57280 – Changed revision from *D to *E.  
*S  
*T  
3997568  
4044148  
BVI  
BVI  
05/11/2013 Added Errata.  
06/28/2013 Added Errata Footnotes. Updated Template  
Updated Packaging Information:  
spec 001-09116 – Changed revision from *G to *H.  
Document Number: 001-54459 Rev. *T  
Page 50 of 51  
CY8C20XX6A/S  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
®
Products  
PSoC Solutions  
Automotive  
cypress.com/go/automotive  
cypress.com/go/clocks  
cypress.com/go/interface  
cypress.com/go/powerpsoc  
cypress.com/go/plc  
psoc.cypress.com/solutions  
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP  
Clocks & Buffers  
Interface  
Cypress Developer Community  
Lighting & Power Control  
Community | Forums | Blogs | Video | Training  
Technical Support  
Memory  
cypress.com/go/memory  
cypress.com/go/psoc  
cypress.com/go/support  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/go/touch  
cypress.com/go/USB  
cypress.com/go/wireless  
© Cypress Semiconductor Corporation, 2009-2013. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 001-54459 Rev. *T  
Revised June 28, 2013  
Page 51 of 51  
®
®
PSoC Designer™ is a trademark and PSoC and CapSense are registered trademarks of Cypress Semiconductor Corporation.  
2
2
2
Purchase of I C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Philips I C Patent Rights to use these components in an I C system, provided  
2
that the system conforms to the I C Standard Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semiconductors.  
All products and company names mentioned in this document may be the trademarks of their respective holders.  

相关型号:

CY8C20246AS-24LKXIT

1.8 V Programmable CapSense® Controller with SmartSense™ Auto-tuning 1–33 Buttons, 0–6 Sliders
CYPRESS

CY8C20247-24LKXI

1.8 V CapSense® Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors
CYPRESS

CY8C20247-24SXI

Microprocessor Circuit, CMOS, PDSO16, 0.150 MM, LEAD FREE, MS-012, SOIC-16
CYPRESS

CY8C20247/S-24LKXI

1.8 V CapSense® Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors
CYPRESS

CY8C20247/S-24LKXIT

1.8 V CapSense® Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors
CYPRESS

CY8C20247/S-24SXI

1.8 V CapSense® Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors
CYPRESS

CY8C20247S-24LKXI

1.8 V CapSense® Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors
CYPRESS

CY8C20247S-24LKXIT

1.8 V CapSense® Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors
CYPRESS

CY8C20247S-24SXI

1.8 V CapSense® Controller with SmartSense™ Auto-tuning 31 Buttons, 6 Sliders, Proximity Sensors
CYPRESS

CY8C20266-24LKXI

CapSense™ Applications
CYPRESS

CY8C20266-24LKXIT

CapSense™ Applications
CYPRESS

CY8C20324

CapSense PSoC Programmable System-on-Chip
CYPRESS