CY7C006A-20AXC [CYPRESS]

32 K/16 K × 8, 16 K × 9 Dual-Port Static RAM; 32 K / 16 K A ? 8 , 16 K A ? 9双端口静态RAM
CY7C006A-20AXC
型号: CY7C006A-20AXC
厂家: CYPRESS    CYPRESS
描述:

32 K/16 K × 8, 16 K × 9 Dual-Port Static RAM
32 K / 16 K A ? 8 , 16 K A ? 9双端口静态RAM

文件: 总22页 (文件大小:703K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY7C007A32 K/16 K × 8, 16 K × 9  
Dual-Port Static RAM  
CY7C006A/CY7C007A  
CY7C016A/CY7C017A  
32 K/16 K × 8, 16 K × 9  
Dual-Port Static RAM  
32 K/16  
K × 8, 16 K × 9 Dual-Port Static RAM  
Automatic power-down  
Features  
Expandable data bus to 16/18 bits or more using  
Master/Slave chip select when using more than one  
device  
True dual-ported memory cells which allow simultaneous  
access of the same memory location  
16 K × 8 organization (CY7C006A)  
32 K × 8 organization (CY7C007A)  
16 K × 9 organization (CY7C016A)  
32 K × 9 organization (CY7C017A)  
0.35-micron CMOS for optimum speed/power  
High-speed access: 12[1]/15/20 ns  
On-chip arbitration logic  
Semaphores included to permit software handshaking  
between ports  
INT flags for port-to-port communication  
Pin select for Master or Slave  
Commercial temperature range  
Available in 68-pin PLCC (CY7C006A, CY7C007A and  
CY7C017A), 64-pinTQFP(CY7C006A), andin80-pinTQFP  
(CY7C007A and CY7C016A)  
Low operating power  
Active: ICC = 180 mA (typical)  
Standby: ISB3 = 0.05 mA (typical)  
Pb-Free packages available  
Fully asynchronous operation  
Logic Block Diagram  
R/WL  
R/WR  
CER  
CEL  
OEL  
OER  
8/9  
[2]  
8/9  
[2]  
I/O0L–I/O7/8L  
I/O0R–I/O7/8R  
I/O  
Control  
I/O  
Control  
14/15  
14/15  
Address  
Decode  
Address  
Decode  
True Dual-Ported  
[4]  
[4]  
A0L–A13/14L  
A0R–A13/14R  
RAM Array  
14/15  
14/15  
[4]  
[4]  
A
0L–A13/14L  
A0R–A13/14R  
CER  
CEL  
Interrupt  
Semaphore  
Arbitration  
OEL  
OER  
R/WL  
SEML  
R/WR  
SEMR  
[3] BUSYR  
INTR  
[3]  
BUSYL  
INTL  
Notes  
M/S  
1. See page 7 for Load Conditions.  
2. I/O –I/O for x8 devices; I/O –I/O for x9 devices.  
0
7
0
8
3. BUSY is an output in master mode and an input in slave mode.  
4. A –A for 16K; A –A for 32K devices.  
0
13  
0
14  
Cypress Semiconductor Corporation  
Document Number: 38-06045 Rev. *F  
198 Champion Court  
San Jose, CA 95134-1709  
408-943-2600  
Revised December 17, 2010  
[+] Feedback  
CY7C006A/CY7C007A  
CY7C016A/CY7C017A  
Contents  
Pin Configurations ...........................................................3  
Selection Guide ................................................................4  
Pin Definitions ..................................................................5  
Architecture ......................................................................5  
Functional Description .....................................................5  
Write Operation ...........................................................5  
Read Operation ...........................................................5  
Interrupts .....................................................................5  
Busy ............................................................................6  
Master/Slave ...............................................................6  
Semaphore Operation .................................................6  
Maximum Ratings .............................................................7  
Operating Range ...............................................................7  
Electrical Characteristics .................................................7  
Capacitance Table ............................................................8  
AC Test Loads and Waveforms .......................................8  
AC Test Loads (Applicable to –12 only) .........................8  
Switching Characteristics ................................................9  
Data Retention Mode ......................................................10  
Timing ..............................................................................10  
Switching Waveforms ....................................................11  
Read Cycle No. 1 (Either Port Address Access) ....... 11  
Read Cycle No. 2 (Either Port CE/OE Access) ......... 11  
Read Cycle No. 3 (Either Port) .................................. 11  
Write Cycle No. 1: R/W Controlled Timing ................12  
Write Cycle No. 2: CE Controlled Timing ..................12  
Semaphore Read After Write Timing, Either Side .....13  
Timing Diagram of Semaphore Contention ...............13  
Timing Diagram of Read with BUSY (M/S=HIGH) ....14  
Write Timing with Busy Input (M/S=LOW) .................14  
CELValid First: ...........................................................15  
Left Address Valid First: ............................................15  
Busy Timing Diagram No. 1 (CE Arbitration) .............15  
Busy Timing Diagram No. 2 (Address Arbitration) ....15  
Interrupt Timing Diagrams .........................................16  
Ordering Information ......................................................18  
16K x 8 Asynchronous Dual-Port SRAM ...................18  
Ordering Code Definitions .........................................18  
Package Diagrams ..........................................................19  
Document History Page .................................................21  
Sales, Solutions, and Legal Information ......................22  
Worldwide Sales and Design Support .......................22  
Products ....................................................................22  
PSoC Solutions .........................................................22  
Document Number: 38-06045 Rev. *F  
Page 2 of 22  
[+] Feedback  
CY7C006A/CY7C007A  
CY7C016A/CY7C017A  
Pin Configurations  
68-pin PLCC  
Top View  
60  
59  
A
A
10  
11  
12  
13  
I/O  
I/O  
5L  
2L  
3L  
4L  
4L  
58  
57  
I/O  
A
A
A
3L  
I/O  
5L  
2L  
56  
55  
GND  
1L  
14  
15  
A
0L  
I/O  
6L  
54  
53  
52  
INT  
I/O  
7L  
L
16  
17  
CY7C006A (16K x 8)  
CY7C007A (32K x 8)  
CY7C017A (32K x 9)  
BUSY  
V
CC  
L
GND  
M/S  
GND  
18  
19  
20  
21  
I/O  
0R  
51  
50  
I/O  
1R  
BUSY  
R
I/O  
2R  
INT  
R
49  
48  
V
CC  
A
A
0R  
22  
23  
I/O  
3R  
1R  
47  
I/O  
4R  
24  
25  
26  
A
A
A
46  
45  
2R  
3R  
4R  
I/O  
5R  
I/O6  
R
44  
80-pin TQFP  
Top View  
NC  
1
2
NC  
60  
I/O  
A
5L  
2L  
59  
I/O  
I/O  
I/O  
A
4L  
3
4
3L  
4L  
5L  
58  
57  
A
A
3L  
2L  
5
6
7
8
56  
55  
54  
53  
A
A
GND  
I/O  
1L  
0L  
6L  
I/O  
7L  
INT  
L
BUSY  
V
L
9
10  
CC  
52  
51  
GND  
M/S  
NC  
CY7C007A (32K x 8)  
CY7C016A (16K X 9)  
GND  
I/O  
11  
12  
13  
14  
50  
49  
48  
47  
BUSY  
0R  
R
I/O  
1R  
INT  
R
I/O  
2R  
A
0R  
A
1R  
A
2R  
A
3R  
V
CC  
15  
16  
46  
45  
I/O  
3R  
I/O  
4R  
17  
44  
I/O  
5R  
A
18  
19  
20  
4R  
43  
42  
41  
I/O  
6R  
NC  
NC  
NC  
Notes  
5. This pin is I/O for CY7C017A only.  
6.  
A
is a no connect pin for 16K devices.  
14  
Document Number: 38-06045 Rev. *F  
Page 3 of 22  
[+] Feedback  
CY7C006A/CY7C007A  
CY7C016A/CY7C017A  
Pin Configurations (continued)  
64-pin TQFP  
Top View  
I/O  
2L  
A
48  
47  
1
2
4L  
A
A
I/O  
3L  
3L  
I/O  
4L  
2L  
46  
45  
3
4
A
A
I/O  
5L  
1L  
GND  
44  
43  
42  
41  
5
6
0L  
I/O  
6L  
INT  
L
I/O  
7L  
BUSY  
7
L
GND  
M/S  
V
CC  
8
CY7C006A (16K x 8)  
GND  
40  
39  
9
BUSY  
I/O  
0R  
10  
11  
12  
R
I/O  
1R  
38  
37  
INT  
R
I/O  
2R  
A
A
A
A
A
0R  
1R  
2R  
3R  
V
CC  
36  
35  
34  
13  
I/O  
3R  
14  
15  
I/O  
4R  
I/O  
5R  
33  
16  
4R  
Selection Guide  
CY7C006A  
CY7C006A  
CY7C007A  
CY7C016A  
CY7C017A  
–15  
CY7C006A  
CY7C007A  
CY7C016A  
CY7C017A  
–20  
CY7C007A  
CY7C016A  
CY7C017A  
–12[7]  
Maximum Access Time (ns)  
12  
195  
55  
15  
190  
50  
20  
180  
45  
Typical Operating Current (mA)  
Typical Standby Current for ISB1 (mA) (Both Ports TTL Level)  
Typical Standby Current for ISB3 (mA) (Both Ports CMOS Level)  
0.05  
0.05  
0.05  
Note  
7. See page 7 for Load Conditions.  
Document Number: 38-06045 Rev. *F  
Page 4 of 22  
[+] Feedback  
CY7C006A/CY7C007A  
CY7C016A/CY7C017A  
Pin Definitions  
Left Port  
CEL  
Right Port  
Description  
CER  
Chip Enable  
Read/Write Enable  
Output Enable  
Address  
R/WL  
R/WR  
OER  
OEL  
A0L–A14L  
I/O0L–I/O8L  
SEML  
A0R–A14R  
I/O0R–I/O8R  
SEMR  
Data Bus Input/Output (I/O0–I/O7 for ×8 devices and I/O0–I/O8 for ×9)  
Semaphore Enable  
Interrupt Flag  
Busy Flag  
INTL  
INTR  
BUSYL  
M/S  
BUSYR  
Master or Slave Select  
Power  
VCC  
GND  
Ground  
NC  
No Connect  
(INT) permits communication between ports or systems by  
means of a mail box. The semaphores are used to pass a flag,  
Architecture  
or token, from one port to the other to indicate that a shared  
resource is in use. The semaphore logic is comprised of eight  
shared latches. Only one side can control the latch  
(semaphore) at any time. Control of a semaphore indicates  
that a shared resource is in use. An automatic power-down  
feature is controlled independently on each port by a Chip  
Select (CE) pin.  
The CY7C006A, CY7C007A, CY7C016A and CY7C017A  
consist of an array of 32K/16K words of 8 bits and 32K words  
of 9 bits each of dual-port RAM cells, I/O and address lines,  
and control signals (CE, OE, R/W). These control pins permit  
independent access for reads or writes to any location in  
memory. To handle simultaneous writes/reads to the same  
location, a BUSY pin is provided on each port. Two Interrupt  
(INT) pins can be utilized for port-to-port communication. Two  
Semaphore (SEM) control pins are used for allocating shared  
resources. With the M/S pin, the devices can function as a  
master (BUSY pins are outputs) or as a slave (BUSY pins are  
inputs). The devices also have an automatic power-down  
feature controlled by CE. Each port is provided with its own  
Output Enable control (OE), which allows data to be read from  
the device.  
The CY7C006A, CY7C007A and CY7C017A are available in  
68-pin PLCC packages, the CY7C006A is also available in  
64-pin TQFP, and the CY7C007A and CY7C016A are also  
available in 80-pin TQFP packages.  
Write Operation  
Data must be set up for a duration of tSD before the rising edge  
of R/W in order to guarantee a valid write. A write operation is  
controlled by either the R/W pin (see Write Cycle No. 1  
waveform) or the CE pin (see Write Cycle No. 2 waveform).  
Required inputs for non-contention operations are summa-  
rized in Table 1.  
Functional Description  
The CY7C006A, CY7C007A, CY7C016A, and CY7C017A are  
low-power CMOS 32K × 8/9 and 16K × 8/9 dual-port static  
RAMs. Various arbitration schemes are included on the  
devices to handle situations when multiple processors access  
the same piece of data. Two ports are provided, permitting  
independent, asynchronous access for reads and writes to  
any location in memory. The devices can be utilized as  
standalone 8/9-bit dual-port static RAMs or multiple devices  
can be combined in order to function as a 16/18-bit or wider  
master/slave dual-port static RAM. An M/S pin is provided for  
implementing 16/18-bit or wider memory applications without  
the need for separate master and slave devices or additional  
discrete logic. Application areas include interprocessor/multi-  
processor designs, communications status buffering, and  
dual-port video/graphics memory.  
If a location is being written to by one port and the opposite  
port attempts to read that location, a port-to-port flowthrough  
delay must occur before the data is read on the output;  
otherwise the data read is not deterministic. Data will be valid  
on the port tDDD after the data is presented on the other port.  
Read Operation  
When reading the device, the user must assert both the OE  
and CE pins. Data will be available tACE after CE or tDOE after  
OE is asserted. If the user wishes to access a semaphore flag,  
then the SEM pin must be asserted instead of the CE pin, and  
OE must also be asserted.  
Interrupts  
Each port has independent control pins: Chip Enable (CE),  
Read or Write Enable (R/W), and Output Enable (OE). Two  
flags are provided on each port (BUSY and INT). BUSY  
signals that the port is trying to access the same location  
currently being accessed by the other port. The Interrupt flag  
The upper two memory locations may be used for message  
passing. The highest memory location (7FFF) is the mailbox  
for the right port and the second-highest memory location  
Document Number: 38-06045 Rev. *F  
Page 5 of 22  
[+] Feedback  
CY7C006A/CY7C007A  
CY7C016A/CY7C017A  
(7FFE) is the mailbox for the left port. When one port writes to  
the other port’s mailbox, an interrupt is generated to the owner.  
The interrupt is reset when the owner reads the contents of the  
mailbox. The message is user defined.  
dual-port memory locations. Semaphores are used to reserve  
resources that are shared between the two ports. The state of  
the semaphore indicates that a resource is in use. For example,  
if the left port wants to request a given resource, it sets a latch  
by writing a zero to a semaphore location. The left port then  
verifies its success in setting the latch by reading it. After writing  
to the semaphore, SEM or OE must be deasserted for tSOP  
before attempting to read the semaphore. The semaphore value  
will be available tSWRD + tDOE after the rising edge of the  
semaphore write. If the left port was successful (reads a zero), it  
assumes control of the shared resource, otherwise (reads a one)  
it assumes the right port has control and continues to poll the  
semaphore. When the right side has relinquished control of the  
semaphore (by writing a one), the left side will succeed in gaining  
control of the semaphore. If the left side no longer requires the  
semaphore, a one is written to cancel its request.  
Each port can read the other port’s mailbox without resetting the  
interrupt. The active state of the busy signal (to a port) prevents  
the port from setting the interrupt to the winning port. Also, an  
active busy to a port prevents that port from reading its own  
mailbox and, thus, resetting the interrupt to it.  
If an application does not require message passing, do not  
connect the interrupt pin to the processor’s interrupt request  
input pin. The operation of the interrupts and their interaction with  
Busy are summarized in Table 2.  
Busy  
The CY7C006A, CY7C007A, CY7C016A and CY7C017A  
provide on-chip arbitration to resolve simultaneous memory  
location access (contention). If both ports’ CEs are asserted and  
an address match occurs within tPS of each other, the busy logic  
will determine which port has access. If tPS is violated, one port  
will definitely gain permission to the location, but it is not  
predictable which port will get that permission. BUSY will be  
asserted tBLA after an address match or tBLC after CE is taken  
LOW.  
Semaphores are accessed by asserting SEM LOW. The SEM  
pin functions as a chip select for the semaphore latches (CE  
must remain HIGH during SEM LOW). A0–2 represents the  
semaphore address. OE and R/W are used in the same manner  
as a normal memory access. When writing or reading a  
semaphore, the other address pins have no effect.  
When writing to the semaphore, only I/O0 is used. If a zero is  
written to the left port of an available semaphore, a one will  
appear at the same semaphore address on the right port. That  
semaphore can now only be modified by the side showing zero  
(the left port in this case). If the left port now relinquishes control  
by writing a one to the semaphore, the semaphore will be set to  
one for both sides. However, if the right port had requested the  
semaphore (written a zero) while the left port had control, the  
right port would immediately own the semaphore as soon as the  
left port released it. Table 3 shows sample semaphore opera-  
tions.  
Master/Slave  
A M/S pin is provided in order to expand the word width by config-  
uring the device as either a master or a slave. The BUSY output  
of the master is connected to the BUSY input of the slave. This  
will allow the device to interface to a master device with no  
external components. Writing to slave devices must be delayed  
until after the BUSY input has settled (tBLC or tBLA), otherwise,  
the slave chip may begin a write cycle during a contention  
situation. When tied HIGH, the M/S pin allows the device to be  
used as a master and, therefore, the BUSY line is an output.  
BUSY can then be used to send the arbitration outcome to a  
slave.  
When reading a semaphore, all data lines output the semaphore  
value. The read value is latched in an output register to prevent  
the semaphore from changing state during a write from the other  
port. If both ports attempt to access the semaphore within tSPS  
of each other, the semaphore will definitely be obtained by one  
side or the other, but there is no guarantee which side will control  
the semaphore.  
Semaphore Operation  
The CY7C006A, CY7C007A, CY7C016A and CY7C017A  
provide eight semaphore latches, which are separate from the  
Document Number: 38-06045 Rev. *F  
Page 6 of 22  
[+] Feedback  
CY7C006A/CY7C007A  
CY7C016A/CY7C017A  
DC Input Voltage[10]........................................–0.5V to +7.0V  
Output Current into Outputs (LOW)............................. 20 mA  
Static Discharge Voltage............................................>2001V  
Latch-Up Current.....................................................>200 mA  
Maximum Ratings[8]  
Exceeding maximum ratings may shorten the useful life of the  
device. User guidelines are not tested.  
Storage Temperature .................................65C to +150C  
Ambient Temperature with  
Power Applied ............................................55C to +125C  
Operating Range  
Ambient  
Temperature  
Supply Voltage to Ground Potential................–0.3V to +7.0V  
Range  
VCC  
DC Voltage Applied to Outputs  
in High Z State................................................–0.5V to +7.0V  
Commercial  
0C to +70C  
5V 10%  
Electrical Characteristics  
Over the Operating Range  
CY7C006A  
CY7C007A  
CY7C016A  
CY7C017A  
Parameter  
Description  
Unit  
–12[9]  
–15  
–20  
Typ Max  
Min  
Typ  
Max Min  
Typ Max Min  
VOH  
Output HIGH Voltage  
(VCC = Min, IOH = –4.0 mA)  
2.4  
2.4  
2.4  
V
V
VOL  
Output LOW Voltage  
0.4  
0.4  
0.4  
(VCC = Min, IOH = +4.0 mA)  
VIH  
VIL  
IOZ  
ICC  
Input HIGH Voltage  
Input LOW Voltage  
2.2  
2.2  
2.2  
V
V
0.8  
10  
0.8  
10  
0.8  
10  
Output Leakage Current  
–10  
–10  
–10  
A  
Operating Current  
(VCC = Max, IOUT = 0 mA)  
Outputs Disabled  
Commercial  
Industrial  
195  
55  
325  
190  
215  
280  
305  
180  
45  
275 mA  
mA  
ISB1  
ISB2  
ISB3  
Standby Current  
(Both Ports TTL Level)  
CEL & CER VIH, f = fMAX  
Commercial  
Industrial  
75  
205  
0.5  
50  
65  
70  
95  
65  
mA  
mA  
Standby Current  
(One Port TTL Level)  
CEL | CER VIH, f = fMAX  
Commercial  
Industrial  
125  
0.05  
120  
135  
180  
205  
110  
0.05  
160 mA  
mA  
Standby Current  
Commercial  
Industrial  
0.05  
0.05  
0.5  
0.5  
0.5  
mA  
mA  
(Both Ports CMOS Level)  
CEL & CER VCC 0.2 V,  
f = 0  
ISB4  
Standby Current  
(One Port CMOS Level) CEL  
| CER VIH, f = fMAX  
Commercial  
Industrial  
115  
185  
110  
125  
160  
175  
100  
140 mA  
mA  
[10, 11]  
Notes  
8. The Voltage on any input or I/O pin cannot exceed the power pin during power-up.  
9. See page 7 for Load Conditions.  
10. Pulse width < 20 ns.  
11. f  
= 1/t = All inputs cycling at f = 1/t (except output enable). f = 0 means no address or control lines change. This applies only to inputs at CMOS level standby  
MAX  
RC RC  
I
.
SB3  
Document Number: 38-06045 Rev. *F  
Page 7 of 22  
[+] Feedback  
CY7C006A/CY7C007A  
CY7C016A/CY7C017A  
Capacitance Table[12]  
Parameter  
Description  
Test Conditions  
Max  
10  
Unit  
pF  
CIN  
Input Capacitance  
Output Capacitance  
TA = 25 C, f = 1 MHz, VCC = 5.0 V  
COUT  
10  
pF  
AC Test Loads and Waveforms  
5 V  
5 V  
R
TH  
= 250   
R1 = 893   
OUTPUT  
C = 30 pF  
OUTPUT  
R1 = 893   
R2 = 347   
OUTPUT  
C = 5 pF  
C = 30 pF  
R2 = 347   
V
TH  
= 1.4 V  
(a) Normal Load (Load 1)  
(c) Three-State Delay(Load 2)  
(Used for tLZ, tHZ, tHZWE, & tLZWE  
including scope and jig)  
(b) Thévenin Equivalent (Load 1)  
AC Test Loads (Applicable to –12 only)[13]  
ALL INPUTPULSES  
90%  
Z0 = 50   
R = 50   
OUTPUT  
3.0 V  
GND  
90%  
10%  
10%  
3 ns  
C
3 ns  
V
TH  
= 1.4 V  
(a) Load 1 (-12 only)  
1 .00  
0.90  
0.80  
0.70  
0.60  
0.50  
0.40  
0.30  
0.20  
0.1 0  
0.00  
1 0  
1 5  
20  
25  
30  
35  
Capacitance (pF)  
(b) Load Derating Curve  
Notes  
12. Tested initially and after any design or process changes that may affect these parameters.  
13. Test Conditions: C = 10 pF.  
Document Number: 38-06045 Rev. *F  
Page 8 of 22  
[+] Feedback  
CY7C006A/CY7C007A  
CY7C016A/CY7C017A  
Switching Characteristics  
Over the Operating Range[14]  
CY7C006A  
CY7C007A  
CY7C016A  
CY7C017A  
Parameter  
Description  
Unit  
–12[15]  
–15  
–20  
Min  
Max  
Min  
Max  
Min  
Max  
READ CYCLE  
tRC  
Read Cycle Time  
12  
3
3
3
0
12  
15  
3
3
3
0
15  
20  
3
3
3
0
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAA  
Address to Data Valid  
Output Hold From Address Change  
CE LOW to Data Valid  
OE LOW to Data Valid  
OE LOW to Low Z  
tOHA  
[16]  
tACE  
tDOE  
tLZOE  
12  
8
15  
10  
20  
12  
[17, 18, 19]  
[17, 18, 19]  
tHZOE  
OE HIGH to High Z  
10  
10  
12  
[17, 18, 19]  
tLZCE  
CE LOW to Low Z  
[17, 18, 19]  
tHZCE  
CE HIGH to High Z  
10  
10  
12  
[19]  
tPU  
tPD  
CE LOW to Power-Up  
CE HIGH to Power-Down  
[19]  
12  
15  
20  
WRITE CYCLE  
tWC  
Write Cycle Time  
12  
10  
10  
0
15  
12  
12  
0
20  
15  
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
[16]  
tSCE  
tAW  
tHA  
CE LOW to Write End  
Address Valid to Write End  
Address Hold From Write End  
Address Set-Up to Write Start  
Write Pulse Width  
[16]  
tSA  
tPWE  
tSD  
0
0
0
10  
10  
0
12  
10  
0
15  
15  
0
Data Set-Up to Write End  
Data Hold From Write End  
R/W LOW to High Z  
[22]  
tHD  
[18, 19]  
tHZWE  
10  
10  
12  
[18, 19]  
tLZWE  
R/W HIGH to Low Z  
3
3
3
[20]  
tWDD  
Write Pulse to Data Delay  
Write Data Valid to Read Data Valid  
25  
20  
30  
25  
45  
30  
[20]  
tDDD  
BUSY TIMING[21]  
tBLA  
BUSY LOW from Address Match  
BUSY HIGH from Address Mismatch  
12  
12  
15  
15  
20  
20  
ns  
ns  
tBHA  
Notes:  
14. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3.0 V, and output loading of the specified  
I
/I and 30-pF load capacitance.  
OI OH  
15. See page 7 for Load Conditions.  
16. To access RAM, CE = L, SEM = H. To access semaphore, CE = H and SEM = L. Either condition must be valid for the entire t  
time.  
SCE  
17. At any given temperature and voltage condition for any given device, t  
18. Test conditions used are Load 3.  
is less than t  
and t  
is less than t  
.
HZCE  
LZCE  
HZOE  
LZOE  
19. This parameter is guaranteed but not tested.  
20. For information on port-to-port delay through RAM cells from writing port to reading port, refer to Read Timing with Busy waveform.  
21. Test conditions used are Load 2.  
22. For 15 ns industrial parts t Min. is 0.5 ns.  
HD  
Document Number: 38-06045 Rev. *F  
Page 9 of 22  
[+] Feedback  
CY7C006A/CY7C007A  
CY7C016A/CY7C017A  
Switching Characteristics  
Over the Operating Range[14] (continued)  
CY7C006A  
CY7C007A  
CY7C016A  
CY7C017A  
Parameter  
Description  
Unit  
–12[15]  
–15  
–20  
Min  
Max  
Min  
Max  
15  
Min  
Max  
20  
tBLC  
tBHC  
tPS  
BUSY LOW from CE LOW  
BUSY HIGH from CE HIGH  
Port Set-Up for Priority  
12  
12  
ns  
ns  
ns  
ns  
ns  
ns  
15  
17  
5
0
5
0
5
0
tWB  
tWH  
tBDD  
R/W HIGH after BUSY (Slave)  
R/W HIGH after BUSY HIGH (Slave)  
BUSY HIGH to Data Valid  
11  
13  
15  
[23]  
12  
15  
20  
INTERRUPT TIMING[24]  
tINS  
INT Set Time  
12  
12  
15  
15  
20  
20  
ns  
ns  
tINR  
INT Reset Time  
SEMAPHORE TIMING  
tSOP  
tSWRD  
tSPS  
SEM Flag Update Pulse (OE or SEM)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
SEM Address Access Time  
10  
5
10  
5
10  
5
ns  
ns  
ns  
ns  
5
5
5
tSAA  
12  
15  
20  
Timing  
Data Retention Mode  
Data Retention Mode  
4.5V  
The CY7C006A, CY7C007A, CY7C016A, and CY7C017A are  
designed with battery backup in mind. Data retention voltage and  
supply current are guaranteed over temperature. The following  
rules ensure data retention:  
V
CC  
4.5V  
V
CC  
2.0V  
t
RC  
1. Chip Enable (CE) must be held HIGH during data retention,  
within VCC to VCC – 0.2 V.  
V
CC  
to V – 0.2V  
CC  
V
IH  
CE  
2. CE must be kept between VCC – 0.2 V and 70% of VCC during  
the power-up and power-down transitions.  
3. The RAM can begin operation >tRC after VCC reaches the  
minimum operating voltage (4.5 V).  
Parameter  
ICCDR1  
Test Conditions[25]  
Max  
1.5  
Unit  
mA  
@ VCCDR = 2 V  
Notes:  
23. t  
is a calculated parameter and is the greater of t  
–t  
(actual) or t  
–t (actual).  
BDD  
WDD PWE  
DDD SD  
24. Test conditions used are Load 2.  
25. CE = V , V = GND to V , T = 25 C. This parameter is guaranteed but not tested.  
CC  
in  
CC  
A
Document Number: 38-06045 Rev. *F  
Page 10 of 22  
[+] Feedback  
CY7C006A/CY7C007A  
CY7C016A/CY7C017A  
Switching Waveforms  
Read Cycle No. 1 (Either Port Address Access)[26, 27, 28]  
t
RC  
ADDRESS  
t
AA  
t
t
OHA  
OHA  
DATA OUT  
PREVIOUS DATAVALID  
DATA VALID  
Read Cycle No. 2 (Either Port CE/OE Access)[26, 29, 30]  
t
ACE  
CE  
OE  
t
HZCE  
t
DOE  
t
HZOE  
t
LZOE  
DATA VALID  
DATA OUT  
t
LZCE  
t
PU  
t
PD  
I
CC  
CURRENT  
I
SB  
Read Cycle No. 3 (Either Port)[26, 28, 29, 30]  
t
RC  
ADDRESS  
t
AA  
t
OHA  
t
t
LZCE  
t
ABE  
CE  
t
HZCE  
t
ACE  
LZCE  
DATA OUT  
Notes  
26. R/W is HIGH for read cycles.  
27. Device is continuously selected CE = V . This waveform cannot be used for semaphore reads.  
IL  
28. OE = V .  
IL  
29. Address valid prior to or coincident with CE transition LOW.  
30. To access RAM, CE = V , SEM = V . To access semaphore, CE = V , SEM = V .  
IL  
IH  
IH  
IL  
Document Number: 38-06045 Rev. *F  
Page 11 of 22  
[+] Feedback  
CY7C006A/CY7C007A  
CY7C016A/CY7C017A  
Switching Waveforms (continued)  
Write Cycle No. 1: R/W Controlled Timing [31, 32, 33, 34]  
t
WC  
ADDRESS  
OE  
[36]  
t
HZOE  
t
AW  
[35]  
CE  
[34]  
PWE  
t
t
t
HA  
SA  
R/W  
DATAOUT  
DATA IN  
[36]  
HZWE  
t
t
LZWE  
NOTE 37  
NOTE 37  
t
t
HD  
SD  
Write Cycle No. 2: CE Controlled Timing [31, 32, 33, 38]  
t
WC  
ADDRESS  
t
AW  
[35]  
CE  
t
t
t
HA  
SA  
SCE  
R/W  
t
t
HD  
SD  
DATA IN  
Notes  
31. R/W or CE must be HIGH during all address transitions.  
32. A write occurs during the overlap (t or t ) of a LOW CE or SEM.  
SCE  
PWE  
33. t is measured from the earlier of CE or R/W or (SEM or R/W) going HIGH at the end of write cycle.  
HA  
34. If OE is LOW during a R/W controlled write cycle, the write pulse width must be the larger of t  
or (t  
+ t ) to allow the I/O drivers to turn off and data  
PWE  
HZWE SD  
to be placed on the bus for the required t . If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be  
SD  
as short as the specified t  
.
PWE  
35. To access RAM, CE = V , SEM = V  
.
IH  
IL  
36. Transition is measured ±500 mV from steady state with a 5-pF load (including scope and jig). This parameter is sampled and not 100% tested.  
37. During this period, the I/O pins are in the output state, and input signals must not be applied.  
38. If the CE or SEM LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the high-impedance state.  
Document Number: 38-06045 Rev. *F  
Page 12 of 22  
[+] Feedback  
CY7C006A/CY7C007A  
CY7C016A/CY7C017A  
Switching Waveforms (continued)  
Semaphore Read After Write Timing, Either Side[39]  
t
AA  
t
OHA  
A –A  
0
VALID ADRESS  
VALID ADRESS  
2
t
AW  
t
ACE  
t
HA  
SEM  
t
t
SOP  
SCE  
t
SD  
I/O  
0
DATA VALID  
DATA  
VALID  
IN  
OUT  
t
HD  
t
t
PWE  
SA  
R/W  
OE  
t
t
DOE  
SWRD  
t
SOP  
WRITE CYCLE  
READ CYCLE  
Timing Diagram of Semaphore Contention[40, 41, 42]  
A
0L  
–A  
2L  
MATCH  
R/W  
L
SEM  
–A  
L
t
SPS  
A
MATCH  
0R  
2R  
R/W  
R
SEM  
R
Notes  
39. CE = HIGH for the duration of the above timing (both write and read cycle).  
40. I/O = I/O = LOW (request semaphore); CE = CE = HIGH.  
0R  
0L  
R
L
41. Semaphores are reset (available to both ports) at cycle start.  
42. If t is violated, the semaphore will definitely be obtained by one side or the other, but which side will get the semaphore is unpredictable.  
SPS  
Document Number: 38-06045 Rev. *F  
Page 13 of 22  
[+] Feedback  
CY7C006A/CY7C007A  
CY7C016A/CY7C017A  
Switching Waveforms (continued)  
Timing Diagram of Read with BUSY (M/S=HIGH)[43]  
t
WC  
ADDRESS  
R
MATCH  
t
PWE  
R/W  
R
t
t
HD  
SD  
DATA IN  
VALID  
R
t
PS  
ADDRESS  
L
MATCH  
t
BLA  
t
BHA  
BUSY  
L
t
BDD  
t
DDD  
DATA  
VALID  
OUTL  
t
WDD  
Write Timing with Busy Input (M/S=LOW)  
t
PWE  
R/W  
t
t
WH  
WB  
BUSY  
Note  
43. CE = CE = LOW.  
L
R
Document Number: 38-06045 Rev. *F  
Page 14 of 22  
[+] Feedback  
CY7C006A/CY7C007A  
CY7C016A/CY7C017A  
Switching Waveforms (continued)  
Busy Timing Diagram No. 1 (CE Arbitration)[44]  
CE Valid First:  
L
ADDRESS  
L,R  
ADDRESS MATCH  
CE  
L
t
PS  
CE  
R
t
t
BHC  
BLC  
BUSY  
R
CER ValidFirst:  
ADDRESS  
ADDRESS MATCH  
L,R  
CE  
R
t
PS  
CE  
L
t
t
BHC  
BLC  
BUSY  
L
Busy Timing Diagram No. 2 (Address Arbitration)[44]  
Left Address Valid First:  
t
or t  
WC  
RC  
ADDRESS  
L
ADDRESS MATCH  
ADDRESS MISMATCH  
t
PS  
ADDRESS  
R
t
t
BHA  
BLA  
BUSY  
R
Right AddressValid First:  
t
or t  
WC  
RC  
ADDRESS  
R
ADDRESS MATCH  
ADDRESS MISMATCH  
t
PS  
ADDRESS  
L
t
t
BHA  
BLA  
BUSY  
L
Note  
44. If t is violated, the busy signal will be asserted on one side or the other, but there is no guarantee to which side BUSY will be asserted.  
PS  
Document Number: 38-06045 Rev. *F  
Page 15 of 22  
[+] Feedback  
CY7C006A/CY7C007A  
CY7C016A/CY7C017A  
Switching Waveforms (continued)  
Interrupt Timing Diagrams  
Left Side Sets INTR:  
t
WC  
ADDRESS  
WRITE 7FFF  
L
[45]  
t
HA  
CE  
L
R/W  
INT  
L
R
[46]  
t
INS  
Right Side Clears INTR:  
t
RC  
READ 7FFF  
ADDRESS  
R
CE  
R
[46]  
INR  
t
R/W  
R
OE  
R
INT  
R
Right Side Sets INTL:  
t
WC  
ADDRESS  
WRITE 7FFE  
R
[45]  
HA  
t
CE  
R
R
R/W  
INT  
L
[46]  
INS  
t
Left Side Clears INTL:  
t
RC  
READ 7FFE  
R
ADDRESS  
CE  
L
L
[46]  
INR  
t
R/W  
OE  
L
L
INT  
Notes  
45. t depends on which enable pin (CE or R/W ) is deasserted first.  
HA  
L
L
46. t  
or t  
depends on which enable pin (CE or R/W ) is asserted last.  
INS  
INR L L  
Document Number: 38-06045 Rev. *F  
Page 16 of 22  
[+] Feedback  
CY7C006A/CY7C007A  
CY7C016A/CY7C017A  
Table 1. Non-Contending Read/Write  
Inputs  
Outputs  
CE  
H
H
X
R/W  
X
OE  
X
SEM  
H
I/O0I/O8  
Operation  
High Z  
Deselected: Power-Down  
Read Data in Semaphore Flag  
I/O Lines Disabled  
Write into Semaphore Flag  
Read  
H
L
L
Data Out  
High Z  
X
H
X
X
H
L
L
Data In  
Data Out  
Data In  
H
L
L
H
L
X
H
Write  
L
X
X
L
Not Allowed  
Table 2. Interrupt Operation Example (assumes BUSYL=BUSYR=HIGH)  
Left Port  
Right Port  
OER A0R–14R  
X
Function  
R/WL CEL  
OEL  
X
A0L–14L  
7FFF  
X
INTL R/WR CER  
INTR  
L[48]  
H[47]  
X
Set Right INTR Flag  
Reset Right INTR Flag  
Set Left INTL Flag  
Reset Left INTL Flag  
L
X
X
X
L
X
X
L
X
X
X
L
X
L
L
X
X
L
X
X
7FFF  
7FFE  
X
X
X
L[47]  
H[48]  
X
X
L
7FFE  
X
X
Table 3. Semaphore Operation Example  
Function I/O0I/O8 Left I/O0I/O8Right  
Status  
No action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port has semaphore token  
Left port writes 0 to semaphore  
Right port writes 0 to semaphore  
Left port writes 1 to semaphore  
Left port writes 0 to semaphore  
Right port writes 1 to semaphore  
Left port writes 1 to semaphore  
Right port writes 0 to semaphore  
Right port writes 1 to semaphore  
Left port writes 0 to semaphore  
Left port writes 1 to semaphore  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
Notes  
47. If BUSY = L, then no change.  
R
48. If BUSY = L, then no change.  
L
Document Number: 38-06045 Rev. *F  
Page 17 of 22  
[+] Feedback  
CY7C006A/CY7C007A  
CY7C016A/CY7C017A  
Ordering Information  
16K x 8 Asynchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
CY7C006A-20AC  
Package Type  
20  
A65  
A65  
A65  
J81  
64-Pin Thin Quad Flat Pack  
Commercial  
CY7C006A-20AXC  
CY7C006A-20AXI  
CY7C006A-20JXC  
64-Pin Pb-Free Thin Quad Flat Pack  
64-Pin Pb-Free Thin Quad Flat Pack  
68-Pin Pb-Free Plastic Leaded Chip Carrier  
Commercial  
Industrial  
Commercial  
Ordering Code Definitions  
CY 7C 06A - 20  
0
X
X
X
Temperature Range: X = C or I  
C = Commercial; I = Industrial  
X = Pb-free (RoHS Compliant)  
Package Type: X = A or J  
A = 64-pin TQFP  
J = 68-pin PLCC  
Speed Grade: 20 ns  
06A = Depth: 16K  
0 = Width: × 8  
7C = Dual Port SRAM  
CY = Cypress Device  
Document Number: 38-06045 Rev. *F  
Page 18 of 22  
[+] Feedback  
CY7C006A/CY7C007A  
CY7C016A/CY7C017A  
Package Diagrams  
64-Lead Thin Plastic Quad Flat Pack (14 x 14 x 1.4 mm) A65  
64-Lead Pb-Free Thin Plastic Quad Flat Pack (14 x 14 x 1.4 mm) A65  
51-85046 *D  
Document Number: 38-06045 Rev. *F  
Page 19 of 22  
[+] Feedback  
CY7C006A/CY7C007A  
CY7C016A/CY7C017A  
Package Diagrams (continued)  
80-Pin Thin Plastic Quad Flat Pack A80  
80-Pin Pb-Free Thin Plastic Quad Flat Pack A80  
51-85065 *C  
68-Lead Plastic Leaded Chip Carrier J81  
68-Lead Pb-Free Plastic Leaded Chip Carrier J81  
51-85005 *B  
Document Number: 38-06045 Rev. *F  
Page 20 of 22  
[+] Feedback  
CY7C006A/CY7C007A  
CY7C016A/CY7C017A  
Document History Page  
Document Title: CY7C006A/CY7C007A/CY7C016A/CY7C017A 32K/16K x 8, 16K x 9 Dual-Port Static RAM  
Document Number: 38-06045  
Orig. of  
Change  
REV.  
ECN NO. Issue Date  
Description of Change  
**  
110197  
122295  
237620  
345376  
09/29/01  
12/27/02  
See ECN  
See ECN  
SZV  
Change from Spec number: 38-00831 to 38-06045  
Power up requirements added to Maximum Ratings Information  
Removed cross information from features section  
*A  
*B  
*C  
RBI  
YDT  
AEQ  
Removed I-Temp versions for both packages, since they are not valid part  
numbers.  
*D  
387333  
See ECN  
PCX  
Included Pb-Free Logo  
Included package: CY7C006A-20AI  
Included Pb-Free packages:  
CY7C006A-15AXC, CY7C006A-20AXC, CY7C006A-20AXI,  
CY7C006A-20JXC, CY7C007A-20JXC, CY7C016A-15AXC  
*E  
*F  
2896210  
3110296  
03/22/2010 RAME  
12/14/2010 EYB  
Updated Ordering Information  
Updated Package Diagram  
Updated Ordering Information.  
Added Ordering Code Definitions.  
Minor edits and updated in new template.  
Document Number: 38-06045 Rev. *F  
Page 21 of 22  
[+] Feedback  
CY7C006A/CY7C007A  
CY7C016A/CY7C017A  
Sales, Solutions, and Legal Information  
Worldwide Sales and Design Support  
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the office  
closest to you, visit us at Cypress Locations.  
Products  
Automotive  
cypress.com/go/automotive  
cypress.com/go/clocks  
cypress.com/go/interface  
cypress.com/go/powerpsoc  
cypress.com/go/plc  
PSoC Solutions  
Clocks & Buffers  
Interface  
psoc.cypress.com/solutions  
PSoC 1 | PSoC 3 | PSoC 5  
Lighting & Power Control  
Memory  
cypress.com/go/memory  
cypress.com/go/image  
cypress.com/go/psoc  
Optical & Image Sensing  
PSoC  
Touch Sensing  
USB Controllers  
Wireless/RF  
cypress.com/go/touch  
cypress.com/go/USB  
cypress.com/go/wireless  
© Cypress Semiconductor Corporation, 2001-2010. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of  
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for  
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as  
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems  
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),  
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,  
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress  
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without  
the express written permission of Cypress.  
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES  
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not  
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where  
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer  
assumes all risk of such use and in doing so indemnifies Cypress against all charges.  
Use may be limited by and subject to the applicable Cypress software license agreement.  
Document Number: 38-06045 Rev. *F  
Revised December 17, 2010  
Page 22 of 22  
All products and company names mentioned in this document may be the trademarks of their respective holders.  
[+] Feedback  

相关型号:

CY7C006A-20AXCT

Multi-Port SRAM, 16KX8, 20ns, CMOS, PQFP64, 14 X 14 MM, 1.40 MM HEIGHT, ROHS COMPLIANT, PLASTIC, MS-026, TQFP-64
CYPRESS

CY7C006A-20AXI

32 K/16 K × 8, 16 K × 9 Dual-Port Static RAM
CYPRESS

CY7C006A-20JC

32K/16K x8, 32K/16K x9 Dual-Port Static RAM
CYPRESS

CY7C006A-20JCT

Dual-Port SRAM, 16KX8, 20ns, CMOS, PQCC68, PLASTIC, LCC-68
CYPRESS

CY7C006A-20JXC

32 K/16 K × 8, 16 K × 9 Dual-Port Static RAM
CYPRESS

CY7C006A-20JXCT

暂无描述
CYPRESS

CY7C006AV

3.3V 4K/8K/16K/32K x 8/9 Dual-Port Static RAM
CYPRESS

CY7C006AV-20AC

3.3V 4K/8K/16K/32K x 8/9 Dual-Port Static RAM
CYPRESS

CY7C006AV-20JC

3.3V 4K/8K/16K/32K x 8/9 Dual-Port Static RAM
CYPRESS

CY7C006AV-25AC

3.3V 4K/8K/16K/32K x 8/9 Dual-Port Static RAM
CYPRESS

CY7C006AV-25AXC

3.3V 4K/8K/16K/32K x 8/9 Dual-Port Static RAM
CYPRESS

CY7C006AV-25JC

3.3V 4K/8K/16K/32K x 8/9 Dual-Port Static RAM
CYPRESS